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Abstract: The wildfire prediction model is crucial for accurate rescue and rapid evacuation. Existing
models mainly adopt regular grids or fire perimeters to describe the wildfire landscape. However,
these models have difficulty in explicitly demonstrating the local spread details, especially in a
complex landscape. In this paper, we propose a wildfire spread model with an irregular graph
network (IGN). This model implemented an IGN generation algorithm to characterize the wildland
landscape with a variable scale, adaptively encoding complex regions with dense nodes and simple
regions with sparse nodes. Then, a deep learning-based spread model is designed to calculate
the spread duration of each graph edge under variable environmental conditions. Comparative
experiments between the IGN model and widely used fire simulation models were conducted on
a real wildfire in Getty, California, USA. The results show that the IGN model can accurately and
explicitly describe the spatiotemporal characteristics of the wildfire spread in a novel graph form
while maintaining competitive simulation refinement and computational efficiency (Jaccard: 0.587,
SM: 0.740, OA: 0.800).

Keywords: wildfire spread; irregular graph network; variable scale; deep learning; emergency rescue

1. Introduction

Wildfires are some of the most serious natural hazards in the world, affecting the
earth’s surface and atmosphere for over 350 million years and causing significant loss of life,
along with economic and ecological effects [1,2]. In 2019, forest fires in Australia, lasting
nearly 6 months, burned almost 8 million acres and killed at least 28 people [3]. Large-scale
wildfires directly destroy vegetation and threaten wildlife while releasing large amounts
of gases that affect humans in the long term [4–6]. Modeling wildfire spread is crucial to
ensure the accurate deployment of firefighting resources and to conduct prompt, targeted
evacuation and avoid wildland firefighter entrapments [7,8].

Wildfire spread models can be summarized as empirical and quasi-empirical [9], phys-
ical and quasi-physical [10], or as simulation and mathematical analogs [11]. Empirical
models use experimental data to construct empirical functions of environmental parameters
and fire spread rates [12–16]. Due to the experimental parameters being typically appli-
cable only to specific scenarios, the empirical model may fail to accurately reflect wildfire
spread under scenarios that differ substantially from their basis. Inherently different from
empirical models, physical models quantify the wildfire spread process in terms of thermal
conduction, convection, and radiation based on thermodynamic theory [17–20]. The physi-
cal characteristic makes the universality of physical models superior to empirical models.
However, purely physical simulation is computation-intensive with a time-consuming
iterative solution process, making them difficult to simulate wildfire in the large-scale
wildland with high timeliness. To address the above issues, mathematical analog mod-
els are constructed by mathematical equations and physical mechanisms. These models

Fire 2022, 5, 185. https://doi.org/10.3390/fire5060185 https://www.mdpi.com/journal/fire

https://doi.org/10.3390/fire5060185
https://doi.org/10.3390/fire5060185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fire
https://www.mdpi.com
https://orcid.org/0000-0002-0450-8325
https://doi.org/10.3390/fire5060185
https://www.mdpi.com/journal/fire
https://www.mdpi.com/article/10.3390/fire5060185?type=check_update&version=3


Fire 2022, 5, 185 2 of 22

have higher timeliness and maintain competitive accuracies [21–23], such as the Huygens
model [24–26] and the cellular automata (CA) model [27–31]. As a vector-based method,
the Huygens model discretizes the fire perimeter into a series of independent fire ignitions,
calculates the perimeter of the next time step at each ignition by an empirical elliptical
model, and fuses these perimeters to form a new fire perimeter. Rothermel [23] proposed
a mathematical fire model for predicting the rate of spread and intensity and further im-
plemented the BEHAVE fire prediction system [32,33]. Based on the Rothermel model,
vector-based ellipse models were constructed to simulate the fire spread from a single
ignition point [34,35]. Finney [36,37] proposed a fire simulation model named FARSITE
based on the Huygens method, including fire behavior models for surface, crown, spotting,
point-source fire acceleration, and fuel moisture. The simulation accuracy of the Huygens
model depends on the refinement of perimeter discretization, and the calculation process is
fairly complex and requires computational resources. In contrast, the grid-based cellular
automata model is gaining momentum due to its simple structure and low computational
complexity [28–30,38–40]. This model divides the wildfire landscape into a series of regular,
contiguous cells and constructs a state transition function f to determine the moment
when a cell is ignited under its neighborhood conditions. Then a minimum travel time
algorithm [41] is implemented to iteratively calculate the ignition time of each cell from
the ignition. The landscape division method is crucial for these grid-based models since it
greatly determines the design of the transition function f . Most landscapes of CA models
are divided into regular quadrilaterals [29,30], and some are hexagonal [42,43]. These
regular grids usually have the same spatial resolution; therefore, an appropriate resolution
is important since a higher resolution needs more computation and storage, while a lower
resolution results in poor refinement in a complex landscape. For instance, when the
wildfire landscape is highly heterogeneous, a regular grid may contain various fuels and
variable slopes, which increases the uncertainty of cell properties and even causes signif-
icant simulation bias. It is natural to consider increasing the spatial resolution to reduce
the grid heterogeneity. However, this will exponentially increase computational require-
ments and data storage space. In addition, the output formats of Huygens and CA models
are fire perimeter and regular grids, respectively. These formats are difficult to explicitly
demonstrate the spatiotemporal details of wildfire spread, such as the spread route.

The graph network, consisting of a series of nodes and edges, has been an important
model for characterizing the complex physical world [44–47]. This graph structure has the
advantage of describing the relationship between graph nodes and contains the potential to
demonstrate the spread details of wildfire. Compared to regular grids, the graph network
is more flexible and can, therefore, adaptively characterize complex landscapes and even
some abstract social relationships. For example, the triangulated irregular network, as a
special graph network, has been widely used to characterize geographic topology, with
a refined grid for complex regions and a coarse grid for simple regions so as to save
storage [47,48]. In wildfire research, the random configuration graph was proposed to
analyze the association of graph node distribution patterns and predict the number of
surviving trees after a fire [49,50]. Graph networks were adopted to analyze the association
between fire suppression nodes and firefighter deployment and survival [51–53]. As for the
wildfire spread prediction, Johnston [54] proposed irregular grids to minimize the distortion
of fire shapes brought by the grid-based model. However, the nodes of irregular grids are
generated by a random distribution, and simulation results were presented with the fire
perimeters instead of irregular grids. Stepanov [55] then used the Delaunay triangulation
to represent the landscape and evaluate the rate of fire spread along any edge. Hajian [56]
represented the landscape as a graph network and modeled the fire propagation time as the
stochastic shortest path problem. However, the triangulation generation of these models is
relatively complex, as it ensures that polygons have constant properties in terms of fuel
and topography, but the fire spreads along graph edges instead of polygons. In addition,
the rate of spread is calculated by the elliptical fire model, which has a certain complexity
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in the computational solution. Other important wildfire behaviors for firefighters, such as
flame length and fire intensity [57], are also neglected in these models.

Inspired by deep learning [58–62], the graph network is gaining momentum with the
deep neural network (DNN) and forms the graph convolutional network (GCNs), which
have been applied to characterize physical surfaces and simulate physical deformations
under external forces [63–65]. Different from traditional mathematical models, DNN can
be defined as a combination of multiple nonlinear layers Y = DNN(X). For each layer(
y = σ

(
xAT + b

))
, the input x is first processed by a linear layer (v = xAT + b), where the

AT and b are the linear transformation matrix and the bias matrix, respectively. The linear
output v is then mapped into a nonlinear space by an activation layer (y = σ(v)). Then, the
output y of this nonlinear layer is taken as the input x of the next nonlinear layer. Here,
AT and b are model parameters and randomly initialized. The back-propagating learning
approach [66] is a crucial component of DNN, as it is able to update the model parameters
AT and b of each layer by the gradient information in back propagation. Therefore, DNN
has the ability to learn data features autonomously, reducing the large amount of manual
feature design work in traditional methods. The universal approximation theorem of DNN
has been proved by Hecht [67], and many complex applications have demonstrated the
competitive accuracy and efficiency of the data-driven DNN model [68–71]. Therefore, it
would be a good choice to adopt DNN to model the wildfire spread in the graph network.

In this paper, we propose a wildfire spread model with an irregular graph network
(IGN) to simulate and analyze the spatiotemporal spread of wildfires in a variable-scale
landscape. An IGN generation algorithm adaptively adjusts the graph node density
according to the landscape complexity, enabling the variable-scale homogeneity of graph
nodes and edges. Valid spread nodes (VSNs) and valid spread edges (VSEs) are defined to
describe the wildfire spread process in the special IGN. Then, a deep learning-based spread
model is implemented to calculate the spread time, flame length, and fire intensity from the
ignited nodes to the unignited nodes. A real wildfire, the Getty fire in California, United
States (US), was selected as the study case, and comparative results with the widely used
FARSITE model and CA model were conducted. The results show that the IGN model can
explicitly demonstrate the spatiotemporal spread of wildfires in the graph landscape with
a competitive performance in simulation refinement and computational efficiency.

The remainder of this paper is organized as follows: we introduce our materials and
methods in Section 2. Section 3 describes our experimental results, Section 4 presents the
discussion analysis, and Section 5 is the conclusion.

2. Materials and Methods
2.1. Experimental Area

To demonstrate and validate our IGN model, we chose a real wildfire named Getty
Fire as a study case, which occurred in California, US, on 28 October 2019. This wildfire
broke out at 01:34:00 and spread for nearly 10 h until it was almost completely controlled
by firefighters. Detailed records can be found in the Los Angeles Fire Department [72].
The fire ignition was located at 34◦5′47′′ N, 118◦28′53′′ W and the burned area of the final
fire perimeter was about 704 acres. We followed the details in [27] to collect and process
model data from LANDFIRE [73], USGS [74], and Mesowest [75]. The wildfire region and
dynamic weather data are shown in Figure 1. Comparative experiments are conducted
with the widely used FARSITE model [36] and CA model [27]. These three models are
representative in the field of wildfire spread prediction and differ in theoretical principle,
spread pattern, landscape type, and output format, as Appendix A illustrates. In addition,
we should note that spot fire was a nonlinear and stochastic fire behavior [76–79]. There
was the possibility that the spot fire had occurred in the Getty Fire. However, any record of
the spot fire in the Getty Fire was not found. Given the stochasticity and the lack of records,
spot fire was not taken into account in current models.
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Figure 1. Study case in Getty Fire. (a) Wildfire region; (b) historical weather data.

All models were executed on the same hardware equipment, a 4-core (2.30 GHz)
Inter(R) Core (TM) i7-10510U laptop with 16 GB of RAM. The final perimeter of Getty Fire
was taken as the baseline to quantitatively evaluate the simulation results of the above three
models. The perimeter was measured by both GPS tracker and remote sensing imagery on
November 2nd, and the wildfire was totally controlled by firefighters at that time. Many
evaluation metrics have been proposed to measure the similarity between the predictive
wildfires and the actual wildfire perimeters [76,77]. Here, we adopted the Sorensen metric
(SM) [76], Jaccard coefficient [77], and overall accuracy (OA) [78] to quantitatively evaluate
model performance, as shown in Equations (1)–(3).

Sorensen =
2·TP

2·TP + FP + FN
, (1)

Jaccard =
TP

TP + FP + FN
, (2)

OA =
TP + TN

TP + FP + FN + TN
, (3)

where TP is the true positive rate (number of predictions s1 with corresponding labels s1,
where s1 is the burned area, s0 is the unburned area), TN is the true negative rate (number
of predictions s0 with corresponding labels s0), FP is the false positive rate (number of
predictions s1 with corresponding labels s0), and FN is the false negative rate (number of
predictions s0 with corresponding labels s1). As the output format of the IGN model is
a graph, the simulation result of the IGN model cannot be directly applied to the above
metrics. Therefore, a kriging interpolation algorithm was used to convert the graph nodes
into a raster map. Then the region within 600 min is extracted and further compared with
the recorded perimeter.

In addition to the above three metrics, the recorded burned area at a different time of
the Getty Fire [72] was collected, and an area metric was set to compare the real burned
area with the predicted areas by these models. The burned areas were recorded at 111,
171, 191, 216, 281, 406, and 446 min. Therefore, the area metric was defined as the average
area error (AAE) of these moments. Additionally, model runtime was also adopted as an
important metric to analyze the model’s computational efficiency.
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2.2. Variable-Scale Landscape with IGN
2.2.1. Definition of the IGN

When there are various fuels or variable slopes on a graph edge, it indicates the hetero-
geneity problem. To address this problem, we implement an IGN generation algorithm to
characterize the wildfire landscape with a variable scale. Different from the previous graph
method [54–56], this generation algorithm directly aims at ensuring that graph edges have
constant properties in terms of fuel and topography instead of polygons. The density and
distribution of graph nodes are adaptively adjusted according to the landscape complexity.
First, we use G = (V, E) to define the IGN and then elaborate on its basic components,
graph nodes V, and graph edges E. Each graph node nodei ∈ V represents a dimensionless
independent cell with the properties,

Anode = {ID, X, Y, Fuel, Elevation, Time}, (4)

where ID is the unique code of the graph node, (X, Y) are geographic coordinates, Fuel
is the fuel type; here, we adopt the fuel model in the FARSITE model to classify the fuel
type [36]. Elevation is the absolute elevation, and Time is set to record the ignition time of
each node and initialized to infinity. The graph edge edgei ∈ E describes the connection
properties between graph nodes,

Aedge =
{

IDstart, IDtarget, Fuel, Slope, Length, Angle
}

, (5)

where IDstart and IDtarget are unique codes for the start and target node in a graph edge,
respectively. Slope is the edge slope (from IDstart to IDtarget), determined by the edge
length Length and elevation of two graph nodes. Angle is the azimuth angle, describing the
direction of the vector formed by IDstart and IDtarget, within a range of 0–2 π . After defining
the property space, IGN initialization and optimization are introduced to determine the
spatial distribution of the graph nodes.

2.2.2. IGN Initialization

As shown in Figure 2, we set the maximum graph resolution GRmax and the minimum
graph resolution GRmin. The GRmax is the shortest edge length in the IGN while the
GRmin is the longest length. Uniform sampling with distance interval GRmin is adopted
to initialize the spatial distribution of graph nodes. The Delaunay algorithm [79,80] is
adopted to construct graph edges based on the spatial distribution of graph nodes. The
edge property Aedge is critical to wildfire spread simulation as it determines the rate of
spread. However, edge properties are likely to be heterogeneous and cannot be accurately
defined; various fuel or variable slope may exist in a graph edge when the landscape is
complex. Therefore, it is necessary to optimize the spatial distribution of graph nodes to
ensure the homogeneity of graph edges.
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2.2.3. IGN Adaptive Optimization

Adaptive optimization aims to dynamically adjust the node distribution of the IGN
to eliminate edge heterogeneity. An IGN with GRmin might well characterize a regional
landscape with single vegetation and a gentle slope, but it fails to maintain the homogeneity
of the graph edges when the landscape is complex, in which case graph nodes are adaptively
added to eliminate the heterogeneity of graph edges, as illustrated in Figure 3a. Therefore,
an adaptive optimization method with three steps is implemented, as shown in Figure 3b.
The first step is edge interpolation, where the edge is pre-interpolated with GRmax to form
a candidate node set Edgei = {ni

0, ni
1, . . . ni

M}, ni
0 and ni

M are the start and target nodes
of the ith edge, respectively. M + 1 is the total number of nodes in the interpolated edge.
Each node has an independent temporary property Ai

m. The second step is a homogeneity
check. When the fuel type of node ni

m is different from that of the previous neighboring
node ni

m−1, it means that there is fuel heterogeneity in the edge, and node ni
m is formally

inserted into the graph nodes. EDi
m is the elevation difference between nodes ni

m and
ni

m−1, and similarly, EDi
m−1 is the elevation difference between nodes ni

m−1 and ni
m−2. If

the absolute difference between EDi
m and EDi

m−1 exceeds a threshold Ted, it means that
an unacceptable slope change exists at node ni

m. To ensure the slope homogeneity, node
ni

m is inserted into the graph nodes. The details of the adaptive process can be found in
the pseudo-code in Appendix B. Third, the properties of the newly inserted nodes are
generated, and an updated IGN is reconstructed by the Delaunay algorithm. The above
steps iterate until no new nodes are inserted, then the graph nodes whose connected nodes
are all non-combustible are taken as redundant nodes and removed. The spatial distribution
of graph nodes is determined, and the final variable-scale IGN is constructed.
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As stated in the adaptive optimization process, Ted is an important factor that de-
termines the structure of IGN. As when Ted is smaller, the homogeneity check in IGN
optimization will be more sensitive to slope changes. It indicates that more graph nodes
will be inserted, and the graph refinement will be higher, and vice versa. Therefore, it is
necessary to analyze the effect of different Ted values on the IGN structure, and then select
the optimal value, as we discussed in Section 4.2.

2.3. Deep Learning-Based Spread Model
2.3.1. Definition of the IGN Spread

The spread of wildfire in the IGN is different from the grid-based model. The existing
graph-based model adopted the elliptical fire model to calculate the rate of spread in the
IGN. However, the computational solution is fairly complex when the wind direction
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and edge angle are different. Therefore, we design a deep learning-based spread model
named WFDNN (wildfire deep neural network) to simplify the calculation process. We first
introduce VSEs (valid spread edges) and VSNs (valid spread nodes) to illustrate the spread
process in the IGN-based landscape. The ignition time Ti of graph node ni is determined
by its connected ignited nodes. Suppose the set of graph nodes connected with node ni is
Ni =

{
ni

0, ni
1, . . . , ni

M
}

, the ignition time of Ni is Ti
con = {T0, T1, . . . , TM}, the spread time

from Ni to node ni is ti
con = {t0, t1, . . . , tM}, and M + 1 is the number of connected nodes.

Here, we sum over Ti
con and ti

con as the candidate ignition time of node ni, then choose
the minimum time as the Ti. The ignited node corresponding to the minimum time is
taken as the VSN of node ni, and the edge formed by node ni and the VSN is defined as
the VSE. Therefore, the wildfire simulation in the IGN landscape is composed of these
VSNs and VSEs, which explicitly points out the spread route from the ignition to these
unburned areas.

2.3.2. Construction of Grid-Based Dataset

After defining the VSN and VSE, a training dataset is constructed to provide samples
to train the WFDNN model. First, we select the FARSITE model [36] as the simulator to
generate ground truth labels. Here, real wildfire cases are not used to construct the dataset.
This is because publicly available comprehensive case data records are few. Therefore,
these limited cases fail to meet the data requirements of WFDNN. In contrast, the input
data of the FARSITE model are relatively easy to obtain from USGS data [73]. This mature
model has been widely used for wildfire experiments [76,81–83]. Other models are also
available to generate datasets, such as BehavePlus [33], WRF-SFIRE [84] and WFA [85]. Then,
we download essential landscape (lcp) data from USGS LANDFIRE [86] and up-sample
the spatial resolution to GRmax (5 m). The lcp file is a special multi-band raster format for
FARSITE model and consists of eight bands (fuel model, elevation, slope, aspect, canopy
cover, canopy base height, canopy bulk density, and stand height) [87]. Next, we clip the
lcp data into small patches with the size 500 m × 500 m, and 70 patches are generated with
the filter criterion that a patch should contain more than 85% vegetation coverage. Here,
the vegetation coverage is determined by the fuel model layer from the lcp file. For each
patch, 10 stochastic wildfires that burned for 1 h are simulated by the FARSITE model,
where weather data are random values generated by a uniform distribution (weather data
contain wind speed, wind direction, temperature, humidity, and their threshold ranges are
0–12 m/s, 0–2 π, 10–25 ◦C, and 5–20%, respectively), and fire ignitions are random points
within the central neighborhood of the patch region. As the position of a fire ignition may
not fall exactly on a graph node, we choose the nearest graph node to the ignition as the
ignition node and set the ignition time property of the ignition node to 0. Finally, seven
hundred simulated wildfires are generated, but these simulations are grid-based results.

2.3.3. Construction of IGN Dataset

To convert these grid-based simulations into graph-based simulations, a Grid-Graph
matching method is implemented for the graph landscape, as Figure 4 shown. Based on
the same coordinate system, the IGN is overlaid with the grid-based simulations. Then, we
map the ignition time property of the grid to the graph node at the corresponding position.
Thus, the graph node becomes equipped with the ignition time label. Next, an empirical
VSE extraction method is adopted to determine the VSNs and VSEs in these labeled graph
nodes. Suppose that node ni is a labeled graph node with ignition time Ti, its connected
nodes is Ni =

{
ni

0, ni
1, . . . , ni

M
}

, the ignition time of Ni is Ti
con = {T0, T1, . . . , TM}, and M

+ 1 is the number of connected nodes. Thus, the spread time from Ni to node ni can be
calculated as ti

con =
{

Ti − T0, Ti − T1, . . . , Ti − TM
}

. If ti
m is greater than 0, it means that

node ni is ignited after the connected node ti
m, and vice versa. Then, we remove these nodes

with ti
m < 0 as they are ignited later and impossible to ignite the node ni. When dealing with

the complex landscape, it is difficult to infer the VSN based on ignition time alone since the
VSN is determined by both ignition time and spread time, as discussed in Section 4.3. Thus,
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the empirical formulas ts = femp(θ) in the grid-based model [27] is adopted to calculate the
spread time tsi

con of graph edges Ni. Due to the differences in landscape representations, it
is natural that there is an offset between ti

con and tsi
con. We think this offset of the VSE is

the minimum relative to other connected edges. The details of the Grid-Graph matching
algorithm can be found in the pseudo-code in Appendix C. Take the demo in Figure 4 as
an example, the offset in tsi

2 and ti
2 (ti

2 = T − T2) is the minimum, the node ni
2 is taken as

the VSN of node ni, the edge formed by node ni and the VSN ni
2 is defined as the VSE. We

notice that T1 is similar to T, as node ni
1 and node ni are almost ignited by the node ni

2 at
almost the same moment. Here, node ni

1 is not taken as the VSN, as the spread time ti
1

from node ni
1 to node ni is much greater than ti

1 (ti
1 = T − T1) while the wind direction is

45◦. Finally, based on the empirical method, total 65,505 VSEs are extracted from the 700
grid-based labels. To train the WFDNN, we adopt a 4:1 ratio to divide the VSEs in the IGN
dataset into 52,404 training VSEs and 13,101 test VSEs, respectively.
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2.3.4. Design of Deep Neural Network

To rapidly and accurately calculate the spread time of each graph edge, we design
the deep neural network WFDNN to fit a nonlinear formula f̂ and predict the spread
parameters from the ignited node to the unignited node,

L
(

t̂, f̂ l, f̂ i; t, f l, f i
)
= f̂ (Fuel, Length, Slope, Angle, WD, WS, TE, H), (6)

where Fuel, Length, Slope, and Angle are fuel type, edge length, slope, and azimuth angle,
respectively. WD, WS, TE, and H are wind direction, wind speed, temperature, and
humidity, respectively. t, f l, f i is the ground truth of the spread time t̂, the flame length
f̂ l, the fire intensity f̂ i. L is an L1 loss function used to calculate the difference between
the prediction ŷ and the ground truth y. Take the spread time as an example; the L1 loss is
defined as L =

∣∣t̂− t
∣∣. The architecture of the WFDNN is shown in Figure 5.
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WFDNN consists of two hybrid layers, a linear layer and an activation layer. The first
hybrid layer is an LBR (Linear + BN + ReLU) layer, composed of a linear layer (Linear), a
batch normalization (BN) layer, and a linear rectification (ReLU) layer. The linear layer is a
linear transformation defined in Equation (7),

v = xAT + b, (7)

where x and v are the input and output tensor, respectively. AT is the transformation
matrix, and b is the bias matrix. This linear operation is essentially matrix multiplication
and addition, mapping the input x into a higher dimensional tensor v. The BN layer [88] is
a normalization operation, transforming the input tensor into a normal distribution with
mean u = 0 and variance σ = 1, as defined in Equation (8).

ω =
x− E[v]√
Var[v] + ε

∗ γ + β, (8)

where E[·] and Var[·] are the expectation and variance of the input tensor v, respectively. γ
and β are learnable parameter vectors, and ε is a small value added to the denominator for
numerical stability. This BN layer is able to prevent gradient explosion or disappearance
and accelerate network convergence. By contrast, as one of the activation layers, the ReLU
layer [89] is designed to incorporate the nonlinear function into the network and improve
the network’s ability to fit the sample data, as defined in Equation (9).

y = ReLU(ω) = (ω)+ = max(0, ω), (9)

This hybrid layer maps the input tensors (BS × 1 × M) to a high-order tensor
(BS × 1 × 32), where BS is the batch size and set as 32, and M is the feature number
of the VSE and determined by Equation (6). The second hybrid layer contains five CBR
(Conv + BN + ReLU) layers; each CBR layer is composed of a convolution (Conv) layer,
a batch normalization (BN) layer, and a ReLU layer. The convolution layer [90] is im-
plemented with local connectivity and weight sharing to extract features from the input
tensor. As the number of convolutional layers increases, deeper features of the input tensor
can be extracted. The first CBR layer is designed to generate the higher-order features
(BS × 32 × 32), and the remaining four CBR layers are implemented with the same kernel
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number and extract deeper features (BS × 64 × 4). The last linear layer and sigmoid layer
are designed to regress a prediction tensor (BS × 3), consisting of the spread time t̂, the
flame length f̂ l, the fire intensity f̂ i of the input graph edges. The sigmoid layer [91] is
another type of activation function and converts any input into a value between 0 to 1, as
defined in Equation (10).

σ(x) =
1

1 + e−x , (10)

When the WFDNN was trained on the IGN dataset with the back-propagating learning
method, the minimum travel time algorithm was then adopted to iteratively calculate the
ignition time of each graph node from the ignition node under dynamic weather conditions.
The spread of wildfire can be explicitly demonstrated in a novel graph structure with
crucial wildfire characteristics, such as spread rate, flame length, and fire intensity. To better
analyze wildfire, the values of these characteristics can be classified into specific categories
with custom thresholds. The number of categories and the range of values are flexible and
can be dynamically adjusted according to the actual requirements.

3. Results
3.1. WFDNN Result

The deep neural network WFDNN is implemented by PyTorch; the initial learning rate
is 0.001, the optimizer is Adam, and the loss function is L1 loss. After 100,000 iterations, the
WFDNN converges with a loss value of 0.061, as shown in Figure 6a. On the test dataset,
the trained WFDNN shows competitive performance compared with the FARSITE model
and CA model. The inference time is 0.0017 s for each sample, and the mean absolute error
is 0.936 min, 0.895 feet, and 177.2 kw/m on spread time, flame length, and fire intensity,
respectively, as shown in Figure 6b.

Fire 2022, 9, x FOR PEER REVIEW 10 of 22 
 

 

𝑦𝑦 = 𝐺𝐺𝑆𝑆𝐿𝐿𝑅𝑅(𝜔𝜔) = (𝜔𝜔)+ = 𝑇𝑇𝐽𝐽𝑥𝑥 (0,𝜔𝜔), (9) 

This hybrid layer maps the input tensors (BS × 1 × M) to a high-order tensor (BS × 1 × 
32), where BS is the batch size and set as 32, and M is the feature number of the VSE and 
determined by Equation (6). The second hybrid layer contains five CBR (Conv + BN + 
ReLU) layers; each CBR layer is composed of a convolution (Conv) layer, a batch normal-
ization (BN) layer, and a ReLU layer. The convolution layer [90] is implemented with local 
connectivity and weight sharing to extract features from the input tensor. As the number 
of convolutional layers increases, deeper features of the input tensor can be extracted. The 
first CBR layer is designed to generate the higher-order features (BS × 32 × 32), and the 
remaining four CBR layers are implemented with the same kernel number and extract 
deeper features (BS × 64 × 4). The last linear layer and sigmoid layer are designed to regress 
a prediction tensor (BS × 3), consisting of the spread time �̂�𝐸, the flame length 𝑓𝑓𝐹𝐹� , the fire 
intensity 𝑓𝑓𝑓𝑓�  of the input graph edges. The sigmoid layer [91] is another type of activation 
function and converts any input into a value between 0 to 1, as defined in Equation (10). 

𝜎𝜎(𝑥𝑥) = 1
1+𝑛𝑛−𝑥𝑥

, (10) 

When the WFDNN was trained on the IGN dataset with the back-propagating learn-
ing method, the minimum travel time algorithm was then adopted to iteratively calculate 
the ignition time of each graph node from the ignition node under dynamic weather con-
ditions. The spread of wildfire can be explicitly demonstrated in a novel graph structure 
with crucial wildfire characteristics, such as spread rate, flame length, and fire intensity. 
To better analyze wildfire, the values of these characteristics can be classified into specific 
categories with custom thresholds. The number of categories and the range of values are 
flexible and can be dynamically adjusted according to the actual requirements. 

3. Results 
3.1. WFDNN Result 

The deep neural network WFDNN is implemented by PyTorch; the initial learning 
rate is 0.001, the optimizer is Adam, and the loss function is L1 loss. After 100,000 itera-
tions, the WFDNN converges with a loss value of 0.061, as shown in Figure 6a. On the test 
dataset, the trained WFDNN shows competitive performance compared with the FAR-
SITE model and CA model. The inference time is 0.0017 s for each sample, and the mean 
absolute error is 0.936 min, 0.895 feet, and 177.2 kw/m on spread time, flame length, and 
fire intensity, respectively, as shown in Figure 6b. 

 
Figure 6. Performance of WFDNN. (a) Training curve; (b) test error. 

3.2. Results of Getty Fire Case 
As shown in Figure 7, the simulation results of the above three models are displayed 

and categorized by a 2-h time interval. In terms of model refinement, the simulations with 

Figure 6. Performance of WFDNN. (a) Training curve; (b) test error.

3.2. Results of Getty Fire Case

As shown in Figure 7, the simulation results of the above three models are displayed
and categorized by a 2-h time interval. In terms of model refinement, the simulations
with the high-resolution landscape are more refined than those with low resolution. They
naturally contain more details about the wildfire spread process. In contrast, the IGN
model adopts a variable scale landscape and demonstrates the spread of wildfire with a
spatiotemporal spread route. Figure 7e shows the local route of IGN simulation, which
clearly describes the fire spread from the ignition to the surrounding unburned area.
Obviously, a higher refinement of the model will lead to lower computational efficiency.
The runtimes of the above five scenarios (Figure 7a–d) are 15.864 s (FARSITE-30 m), 45.809 s
(FARSITE-5 m), 0.954 s (CA-30 m), 56.431 s (CA-5 m), and 82.888 s (IGN), respectively. The
higher refinement notably improves the model computation time. We should note that the
runtime of the FARSITE model is sensitive to the “Perimeter Resolution (PR)” parameter.
In the high-resolution scenario, when the PR is set to 30 m, 20 m, and 10 m, the simulation
runtime is 45.809 s, 1 min 59.076 s, and 9 min 45.809 s, respectively. When the PR is set to
5 m, the FARSITE model cannot output the results within the limited hourly waiting time.
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Figure 7. Experimental simulation results. (a) FARSITE model [30 m]; (b) FARSITE model [5 m];
(c) CA model [30 m]; (d) CA model [5 m]; (e) IGN model; (f) local IGN results.
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The burned area comparison of the above three models is presented in Figure 8a. The
area of the record data (red line) increases steadily from 0 to 150 min, then grows rapidly
from 150 to 200 min, and next turns slow until the wildfire is gradually under containment
by firefighters. The IGN model (pink line) maintains the best performance with an average
area error (AAE) of 109.43 and has the closest value with the record at any time (111 min:
33 acres, 171 min: 17 acres, 191 min: 153 acres, 216 min: 312 acres, 281 min: 169 acres,
406 min: 62 acres, and 446 min: 20 acres). At the same time, other models (FARSITE-5
m, FARSITE-30 m, CA-5 m, and CA-30 m) perform with AAE 277.43 acres, 171 acres,
257.29 acres, and 279.71 acres, respectively. The model performances with Jaccard, SM, and
OA are illustrated in Figure 8b; three models all demonstrate competitive performance in
the Getty Fire case. CA model has the best performance (Jaccard: 0.624, SM: 0.769, OA:
0.843). Although the performance of the IGN model (Jaccard: 0.587, SM: 0.740, OA: 0.800)
is slightly lower than the CA model, it has an advantage over its baseline model, FARSITE
model (Jaccard: 0.564, SM: 0.721, OA: 0.801).
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In addition to the wildfire spread route, the IGN model is also able to demonstrate
other crucial wildfire characteristics in the graph form, such as spread rate, flame length,
and fire intensity, as shown in Figure 9. Here, the spread rate is divided into 0–20 km/h
(Green), 21–50 km/h (Blue), and >50 km/h (Red), while the flame length and fire intensity
are divided into 0–1 feet (Green), 2–3 feet (Blue), >3 feet (Red), and 0–150 kw/m (Green),
151–300 kw/m (Blue), >300 kw/m (Red), respectively.
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Figure 9. Wildfire spread characteristics in IGN-based landscape. (a) Spread rate; (b) flame length;
(c) fire intensity.

4. Discussion
4.1. Analysis of Getty Case

As for the computational efficiency, the CA model has a significant computational
advantage in the low-resolution scenario compared to FARSITE and IGN models, whereas
CA model only calculates the ignition time of raster grids and does not involve the pre-
diction of spread rate, flame length, and fire intensity. IGN model has the same order of
magnitude of computation time as the other models and is about 30 s slower than the
FARSITE and CA models with 5-m resolution. This is mainly due to the fact that the com-
puter is more suitable for the calculation of raster grids instead of the graph structure. This
difference in model runtime can be reduced when multiprocessor computing systems such
as computational clusters based on Message Passing Interface (MPI) paradigm are adopted.

The final wildfire perimeter recorded by GeoMAC [74] was adopted to evaluate model
performance. The perimeter area is about 704 acres, while the record in LAFD [72] is near
800 acres at 600 min. This is mainly due to measurement errors and the difference in
calculation methods of different government agencies. Additionally, it should be noted
that the recorded area contains some measurement errors (the recorded area at 216 min and
281 min is the same, and at 406 and 446 min as well), as it is difficult to accurately obtain
the area from the remote sensing imagery or GPS tracker, especially when the wildfire is
still burning and spreading.

In addition, we found that the IGN model slightly outperformed the FARSITE model.
Nevertheless, it seems more reasonable that the FARSITE model performs better than the
IGN model, as the training datasets for the IGN model are all from the baseline FARSITE
model. This might be explained as there are measurement errors in the recorded fire
perimeter and data deviation in model input. For example, the dynamic weather data are
downloaded from a nearby weather station, and they are not able to accurately describe
the wind field in the wildfire region. Therefore, the evaluation metrics for the simulation
and the real record contain some errors, which might lead to the result that the IGN model
slightly outperformed the baseline model in this fire case.

The wildfire spread characteristics are crucial to avoid firefighter entrapments [8].
When the value of spread rate, flame length, or fire line intensity is too large, there would
be a higher likelihood of triggering entrapment and causing firefighter injury or even death.
Therefore, firefighters should avoid these high-risk areas or take measures in advance to
block the spread of wildfires, such as firebreaks. Furthermore, the graph-based wildfire
simulation model is enlightening for other wildfire research, such as safety zones [92] and
escape routes [93].



Fire 2022, 5, 185 14 of 22

4.2. Effect of Elevation Difference Threshold on IGN

Here, we discuss and compare the graph network characteristics under three thresh-
olds (Ted = 1 m, 3 m, and 5 m). A patch with size 500 m × 500 m was selected as the
case and processed by our IGN generation algorithm. The numbers of graph nodes and
edges are 9538 (Ted = 1 m), 6089 (Ted = 3 m), 2101 (Ted = 5 m), and 28,300 (Ted = 1 m), 18,131
(Ted = 3 m), 6218 (Ted = 5 m), respectively. Figure 10 shows the local graph structures of
different thresholds Ted. To better describe the IGN characteristics, we define the graph
edges with lengths less than 10 m as short edges while others as long edges. when Ted is 1 m,
the IGN structure is the most complex, and 99% of graph edges are short edges. This IGN
contains rich landscape, but its data volume is too large and the redundancy is high. While
Ted is 3 m, the IGN structure is simplified but still dominated by short edges, accounting
for 88% of the total number of graph edges. When further increasing the threshold Ted to
5 m, the percentage of short edges drops to 58%, enabling to balance the model refinement
and data redundancy. Therefore, Ted is set as 5 m in our IGN optimization part, and the
IGN model with this threshold shows prominent performance and is verified on the real
wildfire Getty Fire case.
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4.3. VSE Dataset Analysis

VSN and VSE are defined to describe the graph node that first ignites another node
and the graph edge they form. However, it is not an easy task to determine the VSN and
VSE when generating the IGN dataset from the grid-based dataset, as we only know the
ignition time of the graph node and cannot accurately infer the VSN from the connected
nodes. Therefore, we have proposed several methods to generate the IGN dataset, such
as the empirical method (EMP), the maximum time method (MAX), and the all-extraction
method (ALL). The empirical method is illustrated in Section 2.3.2, while the maximum
time method thinks that the larger the ignition time difference between the nodes, the larger
contribution of the ignition effect. Thus, this method considers the edge with the maximum
spread time among all connected graph edges as the VSE. In contrast, the all-extraction
method takes all graph edges with a spread time greater than zero as VSEs, as all connected
edges are contributors to the ignition of the target node. Based on the above three methods,
the number of generated VSEs in the IGN dataset is 65,505 (EMP), 80,821 (MAX), and
210,116 (ALL), respectively. Each dataset is randomly divided into training and testing sets
according to the ratio of 4:1 and further adopted to train and test WFDNN. As Figure 11a,b
shows, the empirical method converges faster and has the smallest loss value (EMP loss:
0.061, MAX loss: 0.086, ALL loss: 0.091). In addition, the empirical method maintains the
advantage in test error of spread time (EMP loss: 0.936 min, MAX loss: 1.999 min, ALL loss:
2.147 min), flame length (EMP loss: 0.895 feet, MAX loss: 0.721 feet, ALL loss: 0.962 feet)
and fire intensity (EMP loss: 177.2 kw/m, MAX loss: 180.0 kw/m, ALL loss: 179.1 kw/m).
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Moreover, the Getty Fire case was taken to compare the above three methods from a visual
perspective, as shown in Figure 11c–e. Although there is only a slight difference in the
values of the model training and testing, it is evident in the case that the simulation results
of these methods have notable differences. These results show that WFDNN trained by
the empirical method is able to simulate the wildfire and generate predictions that fit
well with the recorded fire perimeter. However, the WFDNN performs poorly with the
datasets constructed by the other two methods (MAX and ALL). The prediction results
are significantly different from the real recorded perimeter, which indicates maximum
time method and all-extraction method are inappropriate for application in actual wildfire
spread prediction.

Figure 11. Comparison of different VSE dataset construction. (a) Training curve; (b) test error;
(c) empirical method; (d) maximum time method; (e) all-extraction method.

5. Conclusions

A wildfire spread model can provide explicit guidance for emergency rescue. Most
such models use regular grids or perimeter polygons to represent the wildfire landscapes.
These grid-based models divide the spatial landscape into adjacent regular cells and
calculate the moment when a cell is ignited, while the polygon-based models adopt the
Huygens principle and predict the fire perimeters at given moments. However, it is difficult
for the above models to explicitly demonstrate the spatiotemporal details of wildfire spread,
such as the spread route, especially in complex landscapes.

We proposed a wildfire spread model with an irregular graph network (IGN). An
IGN generation algorithm was implemented to characterize the wildfire landscape with
a variable scale, enabling to adaptively optimize the graph node density and graph edge
connection according to the region complexity. This irregular representation solves the
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problem of choosing the best resolution in the grid-based landscape and realizes a novel
mode to simulate the spread of wildfire. In addition, a deep learning-based spread model
named WFDNN was designed for the special IGN landscape, which fit a nonlinear for-
mula to predict the spread time, flame length, and fire intensity of graph edges under
various environmental conditions. A real wildfire in Getty, California, US, was selected to
demonstrate and evaluate our IGN model. Comparative experiments with the widely used
FARSITE model and CA model showed that our model has the ability to simulate wildfire
spread with competitive accuracy while maintaining competitive simulation refinement
and computational efficiency. The IGN model is superior in describing the spatiotempo-
ral characteristics of wildfires with an explicit spread route. This special graph route is
equipped with crucial wildfire behavior properties such as ignition time, spread rate, flame
length, and fire intensity, which are essential for emergency management agencies to make
rescue plans and avoid entering potentially high-risk areas.

The present IGN is enlightening in wildfire spread prediction; however, there are still
some limitations, and more future work is needed. First, the IGN model is a mathematical
analog model that combines a graph network and deep neural network to model the spread
of wildfires. It ignores physical and chemical processes such as inert heating, drying,
pyrolysis, flame combustion, and coke afterburning accompanied by media movement
and plume formation [21,22]. It would be worthwhile to directly incorporate the physical
mechanism into the IGN model and further improve model performance. Second, this
model does not incorporate the graph topology and ignores the thermal effect of these non-
VSNs. The prediction error tends to be magnified when the spread times of connected graph
edges are more similar, as other graph nodes play as important a role as the VSN node.
Therefore, it would be interesting to adopt the graph convolutional network (GCN) [63]
to model the graph topology and predict the wildfire spread in the graph mode, but the
computation method in this GCN model would be complex and hard to design, as the
number of connected nodes is variable and computational resources are limited.
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Appendix A

The differences between three models (FARSITE, CA, and IGN) are summarized and
explained in Table A1.

Table A1. Model comparison.

FARSITE CA IGN

Theoretical principle Thermal physics Thermal physics Deep learning
Spread pattern Huygens Cellular automata Graph network
Landscape type Vector Grid Vector
Output format Polygon or Grid Grid Graph

(1) Theoretical principle

The kernel principles of FARSITE and CA models are the same, as they both rely on
thermal physics theory and ignition experiments to construct mathematical equations. In
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contrast, the IGN model proposes a deep neural network named WFDNN to construct
these complex equations. The sample dataset to train the WFDNN is generated by FARSITE
model (surely other suitable models can also be alternative). Thus, the WFDNN indirectly
inherits some thermophysical properties.

(2) Spread pattern

After implementing the mathematical equations, a spreading model is needed to
realize the extrapolation from a fire ignition to the unburned area. There are significant
differences in the spread patterns of the three models. Based on the Huygens principle,
the FARSITE model defines the wildfire landscape as a continuous space and adopts an
elliptical model to calculate the spread range of the next moment at the sampling point of
the wildfire boundary, while the CA model is designed based on the principle of cellular
automata, which divides the wildfire landscape into adjacent regular grids and calculates
the cumulative influence of the central cell pair on the neighboring cells. In contrast, our
IGN model innovatively takes an adaptive irregular graph network to characterize the
wildfire landscape and calculates the spread of wildfires from the graph nodes along the
graph edges.

(3) Landscape type

FARSITE and IGN are vector landscapes, while the CA model is the grid landscape.
The landscape type is mainly determined by the spread pattern that the model adopts.

(4) Output format

The FARSITE model is able to output the simulation results in both polygon (fire
perimeter) and grid format, while the CA model only outputs the grid format. In compari-
son, our IGN model defines the simulation in a novel graph network format, enabling it to
explicitly describe the spread details of wildfire.
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Appendix B

The adaptive iteration process is crucial for graph edge homogeneity. To explain it
more clearly, we use pseudo-code to elaborate on the details, as Algorithm A1 shows.
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Algorithm A1 Adaptive iteration process in IGN optimization.

# INPUT : Gint, the initial IGN with uniform sampling and Delaunay algorithm
# OUTPUT : Gopt, the optimized IGN
(V, E) =Gint is the edges of the graph network
Vnew = null # To store newly inserted nodes
Iter_counter = 0 # Count the time of iteration
Iter_count_max = 1e3 # The maximum time of iteration
# Adaptive iteration
while True:

# count the number of iteration
Iter_counter += 1
for each edgei ∈ E:

# Step 1: Edge interpolation. Use equally spaced interpolation to obtain a candidate
node set

{ni
0, ni

1, . . . ni
M} = Interpolate(edgei)

NCi =
{

ni
0 , ni

1 , . . . ni
M

}
# Candidate node set, containing M+1 nodes

# Step 2: homogeneity check: fuel type and slope
for each ni

m ∈ NCi: # fuel type
if FTni

m
! = FTni

m−1
:

# The fuel type changes in the edgei, thus we add the node to avoid the
heterogeneity.

Vnew.add(ni
m) # add node ni

m into Vnew
# Slope homogeneity. Here we use elevation difference to replace
EDNCi= Get_ED(NCi) # Get elevation differences of neighboring nodes
for each EDm ∈ EDNCi

if EDm − EDm−1> Ted:
# The elevation has a large wave, thus we add the node to eliminate it.
Vnew.add(ni

m) # add node ni
m into Vnew

# Step 3: Reconstruct the IGN by Delaunay algorithm,
Vc= Concatenate(V, Vnew) # Concatenate and generate new node set
G = Delaunay(Vc ) # Update the G with new nodes
(V, E) = G
# if no more new nodes or reaching the maximum iteration
If is_null(Vnew ) or Iter_counter> Iter_count_max:

Break
# Get the Gopt
Gopt = G

Return Gopt

Appendix C

The Grid-Graph matching algorithm is crucial to generate the IGN dataset. To explain
it more clearly, we use pseudo-code to elaborate on the details, as Algorithm A2 shows.
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Algorithm A2 Grid-Graph matching algorithm.

# graph network; Lgrid grid-based labels
# OUTPUT : Lgraph, graph-based labels
# and Lgrid
GT = Overlay(G, Lgrid)
# from the time in Lgrid
{T0 , T1, . . . TK} = GT is the number of graph nodes
# Set
VSEs = null
Lgraph = null
# Search the VSE and VSN
For each ni ∈ G:

# Get the spread time of each connected edge

Ti
con =

{
Ti − Ti

m

}
, m = 0, 1, . . . , M. # M is the number of nodes connected with ni

# Estimate spread time with an empirical formula femp
tsi = femp(θ) is the proprieties of graph edges

# The minimum is taken as the VSE
j = argmin(abs{Ti

con − tsi}) # j is the index of the node with the minimum difference
# Add the VSE
VSEs.add(pair{ni, nj})

# Get the dataset
Lgraph = VSEs

Return Lgraph
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