Wetland Fire Assessment and Monitoring in the Paraná River Delta, Using Radar and Optical Data for Burnt Area Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Collection
2.2.1. SAOCOM-1A Data
2.2.2. SENTINEL-1 Data
2.2.3. SENTINEL-2 Global Mosaic
2.3. Workflow
2.3.1. Optical Vegetation Indices
2.3.2. Optical and Radar Integration
2.3.3. Feature Extraction and Classification
2.3.4. Accuracy Assessment
3. Results and Discussion
3.1. Wetland Change Patterns: Water Surface Detection
3.2. Burned Area Detection and Mapping with S2
3.3. Burned Area Detection and Mapping with S1
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berkes, F.; Colding, J.; Folke, C. Navigating Social-Ecological Systems: Building Resilience for Complexity and Change; Cambridge University Press: Cambridge, UK, 2003; p. 393. [Google Scholar]
- Briassoulis, H. The socio-ecological fit of human responses to environmental degradation: An integrated assessment methodology. Environ. Manag. 2015, 56, 1448–1466. [Google Scholar] [CrossRef] [PubMed]
- Egidi, G.; Salvati, L.; Cudlin, P.; Salvia, R.; Romagnoli, M. A New ‘Lexicon’ of Land Degradation: Toward a Holistic Thinking for Complex Socioeconomic Issues. Sustainability 2020, 12, 4285. [Google Scholar] [CrossRef]
- Metternicht, G.; Zinck, J.A.; Blanco, P.D.; del Valle, H.F. Remote Sensing of Land Degradation: Experiences from Latin America and the Caribbean. J. Environ. Qual. 2010, 39, 42–61. [Google Scholar] [CrossRef] [PubMed]
- Dubovyk, O. The role of Remote Sensing in land degradation assessments: Opportunities and challenges. Eur. J. Remote Sens. 2017, 50, 601–613. [Google Scholar] [CrossRef]
- Del Valle, H.F.; Blanco, P.D.; Hardtke, L.A.; Metternicht, G.; Bouza, P.J.; Bisigato, A.; Rostagno, C.M. Contribution of Open Access Global SAR Mosaics to Soil Survey Programs at Regional Level: A Case Study in North-Eastern Patagonia. In Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies; Zinck, J.A., Metternicht, G., Bocco, G., Del Valle, H.F., Eds.; Springer: New York, NY, USA, 2016; pp. 321–346. [Google Scholar]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.T.A.; et al. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Chatenoux, B.; Piller, T.; Moser, F.; Lacroix, P. Data Cube on Demand (DCoD): Generating an earth observation Data Cube anywhere in the world. Int. J. Appl. Earth Obs. Geoinf. 2019, 87, 102035. [Google Scholar] [CrossRef]
- Rocchini, D.; Petras, V.; Petrasova, A.; Horning, N.; Furtkevicova, L.; Neteler, M.; Leutner, B.; Wegmann, M. Open data and open source for remote sensing training in ecology. Ecol. Inform. 2017, 40, 57–61. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Mallinis, G. A cloud-based mapping approach for assessing spatiotemporal changes in erosion dynamics due to biotic and abiotic disturbances in a Mediterranean Peri-Urban forest. CATENA 2022, 218. [Google Scholar] [CrossRef]
- Gemitzi, A.; Koutsias, N. A Google Earth Engine code to estimate properties of vegetation phenology in fire affected areas—A case study in North Evia wildfire event on August 2021. Remote Sens. Appl. Soc. Environ. 2022, 26, 100720. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Spalevic, V.; Mincato, R.L. Wildfire Effects on Soil Erosion Dynamics: The Case of 2021 Megafires in Greece. J. Agric. For. 2022, 68, 49–63. [Google Scholar]
- Silvestro, R.; Saulino, L.; Cavallo, C.; Allevato, E.; Pindozzi, S.; Cervelli, E.; Conti, P.; Mazzoleni, S.; Saracino, A. The Footprint of Wildfires on Mediterranean Forest Ecosystem Services in Vesuvius National Park. Fire 2021, 4, 95. [Google Scholar] [CrossRef]
- Kalesnik, F.; Aceñolaza, P.G. Regional distribution of native and exotic species in levees of the lower delta of the Paraná River. Acta Sci. Biol. Sci. 2008, 30, 391–402. [Google Scholar] [CrossRef]
- Kalesnik, F.; Vicari, R.; Aceñolaza, P.; Sirolli, H.; Bonan, L.; Iribarren, L.; Ramello, M.; Valle, J.; Bó, R. Restauración ecológica en humedales. Conservación y desarrollo sustentable en el Delta del Paraná. In SIACRE-2015: Aportes y Conclusiones. Tomando Decisiones para Revertir la Degradación Ambiental; Zuleta, G.A., Rovere, A.E., Mollard, F.P., Eds.; Vázquez Mazzini Editores: Buenos Aires, Argentina, 2017; Volume 22, pp. 193–202. (In Spanish) [Google Scholar]
- Bedendo, D.J. Soils of Entre Rios. In Soils of Argentina; Rubio, G., Lavado, R.S., Pereyra, F.X., Eds.; Springer: Cham, Switzerland, 2019; pp. 165–173. [Google Scholar]
- Neiff, J.; Mendiondo, M.; Depettris, C. ENSO Floods on River Ecosystems: Catastrophes or Myths? In River Flood Defence (Kassel Reports of Hydraulic Engineering); Toenmsnann, F., Koch, M., Eds.; Herkules Verlag: Kassel, Germany, 2000; Volume 9, pp. 141–152. [Google Scholar]
- Marchetti, Z.Y.; Aceñolaza, P.G. Evaluation of the relationships between floristic heterogeneity of Panicum prionitis Ness tall grasslands and the fire history, hydrological regime and soil texture in the Paraná River floodplain, Argentina. Interciencia 2011, 36, 600–607. [Google Scholar]
- Salvia, M.; Franco, M.; Grings, F.; Perna, P.; Martino, R.; Karszenbaum, H.; Ferrazzoli, P. Estimating Flow Resistance of Wetlands Using SAR Images and Interaction Models. Remote Sens. 2009, 1, 992–1008. [Google Scholar] [CrossRef] [Green Version]
- Zamboni, L.P.; Tentor, F.R.; Sione, W.F.; Hardtke, L.A.; del Valle, H.F.; Quignard, I.; Aceñolaza, P.G. Ecología del fuego en el Complejo Litoral del Río Paraná: Estimación de la ocurrencia de incendios a partir de mapas de focos de calor. Interciencia 2013, 38, 634–641. (In Spanish) [Google Scholar]
- Marchetti, Z.Y.; Aceñolaza, P.G. Vegetation communities and their relationship with the pulse regime on islands of the Middle Paraná River, Argentina. Iheringia Ser. Bot. 2011, 66, 209–226. [Google Scholar]
- Kandus, P.; Quintana, R.D. The Paraná River Delta. In The Wetland Book; Finlayson, C.M., Milton, G., Prentice, R., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–9. [Google Scholar]
- Sione, W.; Aceñolaza, P.G.; Zamboni, L.P.; del Valle, H.F.; Serafini, C.; Gallardo Lancho, J.F. Estimación indirecta de emisiones de CO2 a partir de información satelital en áreas quemadas de ambientes insulares del delta del río Paraná (Argentina). In Emisiones de Gases con efecto Invernadero en ecosistemas Iberoamericanos; Gallardo, J.F., Campo, J., Conti, M.E., Eds.; Editorial SiFyQA: Salamanca, Spain, 2009; pp. 255–272. (In Spanish) [Google Scholar]
- Ipiña, A.; Salum, G.; Crinó, E.; Piacentini, R. Satellite and ground detection of very dense smoke clouds produced on the islands of the Paraná river delta that affected a large region in Central Argentina. Adv. Space Res. 2012, 49, 966–977. [Google Scholar] [CrossRef]
- Grimm, A.M.; Almeida, A.S.; Beneti, C.A.A.; Leite, E.A. The combined effect of climate oscillations in producing extremes: The 2020 drought in southern Brazil. RBRH 2020, 25, e48. [Google Scholar] [CrossRef]
- Ministerio de Ambiente y Desarrollo Sostenible. Informe de superficies afectadas por incendios en el Delta e islas del Río Paraná Enero-Septiembre 2020; Dirección Nacional de Planificación y Ordenamiento Ambiental del Territorio: Buenos Aires, Argentina, 2020; p. 40. (In Spanish) [Google Scholar]
- Aceñolaza, P.; Zamboni, L.; Sione, W.; Kalesnik, F. Caracterización de la región superior del Complejo litoral del Río Paraná: Grandes Unidades de ambiente. Ser. Miscelánea INSUGEO 2008, 17, 293–308. (In Spanish) [Google Scholar]
- Sica, Y.V.; Quintana, R.D.; Radeloff, V.C.; Gavier-Pizarro, G.I. Wetland loss due to land-use change in the Lower Paraná River Delta, Argentina. Sci. Total Environ. 2016, 568, 967–978. [Google Scholar] [CrossRef]
- Aquino, D.S.; Gavier-Pizarro, G.; Quintana, R.D. Disentangling the effects of hydro-climatic factors and land use intensification on wetland vegetation dynamics in the Lower Delta of the Paraná River. Remote Sens. Appl. Soc. Environ. 2021, 21, 100466. [Google Scholar] [CrossRef]
- Salvia, M.; Ceballos, D.; Grings, F.; Karszenbaum, H.; Kandus, P. Post-Fire Effects in Wetland Environments: Landscape Assessment of Plant Coverage and Soil Recovery in the Paraná River Delta Marshes, Argentina. Fire Ecol. 2012, 8, 17–37. [Google Scholar] [CrossRef]
- Kandus, P.; Quintana, R.D.; Minotti, P.G.; Oddi, P.D.J.; Baigún, C.; González Trilla, G.; Ceballos, D.S. Ecosistemas de humedal y una perspectiva hidrogeomórfica como marco para la valoración ecológica de sus bienes y servicios. In Valoración de Servicios Ecosistémicos. Conceptos, Herramientas y Aplicaciones para el Ordenamiento Territorial; Laterra, P., Jobbágy, E.G., Paruelo, J.M., Eds.; Ediciones INTA: Buenos Aires, Argentina, 2011; pp. 265–290. (In Spanish) [Google Scholar]
- Minotti, P. The Paraná-Paraguay Fluvial Corridor (Argentina). In The Wetland Book, Finlayson, C.M.; Milton, G., Prentice, R., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 785–796. [Google Scholar] [CrossRef]
- CONAE. SAOCOM-1 Level 1 Product Format. SAOCOM Project. 13 January 2020. Available online: https://catalogos.conae.gov.ar/catalogo/docs/SAOCOM/SAOCOM-1_SAR_Level-1_Product-Format_13Jan2020.pdf (accessed on 15 December 2020).
- Kirches, G. Algorithm Theoretical Basis Document Sentinel 2 Global Mosaics Copernicus Sentinel-2 Global Mosaic (S2GM) within the Global Land Component of the Copernicus Land Service. Available online: https://usermanual.readthedocs.io/en/1.1.2/_downloads/5a2d961d53dea1eb1117ec73e4cbff09/S2GM-SC2-ATBD-BC-v1.3.2.pdf (accessed on 15 December 2020).
- QGIS Development Team. QGIS Geographic Information System. Open Credit Geospatial Foundation. Available online: http://qgis.osgeo.org (accessed on 15 January 2020).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- SAS Planet Development Team. SAS. Planet v180518.9750 Nightly. Available online: http://sasgis.org/ (accessed on 15 December 2020).
- Scientific Exploitation of Operational Missions. Sentinel Application Platform (SNAP). Scientific Exploitation of Operational Missions, European Spatial Agency. Available online: https://www.eoportal.org/other-space-activities/snap-sentinel-application-platform#snap-sentinel-application-platform-toolbox (accessed on 10 January 2022).
- Google, LLC. Available online: https://www.google.com/ (accessed on 21 July 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; Available online: https://www.R-project.org/ (accessed on 10 January 2022).
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Stroppiana, D.; Bordogna, G.; Carrara, P.; Boschetti, M.; Boschetti, L.; Brivio, P.A. A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm. ISPRS J. Photogramm. Remote Sens. 2012, 69, 88–102. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Tanase, M.; Kennedy, R.; Aponte, C. Radar Burn Ratio for fire severity estimation at canopy level: An example for temperate forests. Remote Sens. Environ. 2015, 170, 14–31. [Google Scholar] [CrossRef]
- Durante, M.; Di Bella, C.M. A MODIS based tool to assess inundation patterns: An example for the Paraná Delta River. RIA 2020, 46, 30–45. [Google Scholar]
- Pleniou, M.; Koutsias, N. Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach applied in a fire-affected area. ISPRS J. Photogramm. Remote Sens. 2013, 79, 199–210. [Google Scholar] [CrossRef]
- Lanorte, A.; Danese, M.; Lasaponara, R.; Murgante, B. Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Observ. Geoinf. 2013, 20, 42–51. [Google Scholar] [CrossRef]
- Lasaponara, R.; Tucci, B. Identification of Burned Areas and Severity Using SAR Sentinel-1. IEEE Geosci. Remote Sens. Lett. 2019, 16, 917–921. [Google Scholar] [CrossRef]
- Kalogirou, V.; Ferrazzoli, P.; Vecchia, A.D.; Foumelis, M. On the SAR backscatter of burned forest: A model-based study in C-band, over burned pine canopies. IEEE Trans. Geosci. Remote Sens. 2004, 52, 6205–6215. [Google Scholar] [CrossRef]
- Imperatore, P.; Azar, R.; Calo, F.; Stroppiana, D.; Brivio, P.A.; Lanari, R.; Pepe, A. Effect of the Vegetation Fire on Backscattering: An Investigation Based on Sentinel-1 Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4478–4492. [Google Scholar] [CrossRef]
- Szpakowski, D.M.; Jensen, J.L.R. A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef] [Green Version]
- Tanase, M.A.; Belenguer-Plomer, M.A.; Roteta, E.; Bastarrika, A.; Wheeler, J.; Fernández-Carrillo, Á.; Tansey, K.; Wiedemann, W.; Navratil, P.; Lohberger, S.; et al. Burned Area Detection and Mapping: Intercomparison of Sentinel-1 and Sentinel-2 Based Algorithms over Tropical Africa. Remote Sens. 2020, 12, 334. [Google Scholar] [CrossRef]
- Verhegghen, A.; Eva, H.; Ceccherini, G.; Achard, F.; Gond, V.; Gourlet-Fleury, S.; Cerutti, P.O. The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests. Remote Sens. 2016, 8, 986. [Google Scholar] [CrossRef] [Green Version]
- Belenguer-Plomer, M.A.; Tanase, M.A.; Fernandez-Carrillo, A.; Chuvieco, E. Burned area detection and mapping using sentinel-1 backscatter coefficient and thermal anomalies. Remote Sens. Environ. 2019, 233, 111345. [Google Scholar] [CrossRef]
- Puig, A.; Salinas, H.F.O.; Borús, J.A. Relevance of the Paraná River hydrology on the fluvial water quality of the Delta Biosphere Reserve. Environ. Sci. Pollut. Res. 2015, 23, 11430–11447. [Google Scholar] [CrossRef]
- Li, X.; Song, K.; Liu, G. Wetland Fire Scar Monitoring and Its Response to Changes of the Pantanal Wetland. Sensors 2020, 20, 4268. [Google Scholar] [CrossRef]
- Zamboni, L.P.; Aceñolaza, P.G. Efectos del Fuego sobre la biomasa vegetal en un área del Predelta del río Paraná. (Entre Ríos, Argentina). Boletín De La Soc. Argent. De Botánica 2005, 40, 90. (In Spanish) [Google Scholar]
- Bixby, R.J.; Cooper, S.D.; Gresswell, R.E.; Brown, L.E.; Dahm, C.N.; Dwire, K.A. Fire effects on aquatic ecosystems: An assessment of the current state of the science. Freshw. Sci. 2015, 34, 1340–1350. [Google Scholar] [CrossRef]
- Kellndorfer, J. Using SAR data for mapping deforestation and forest degradation. In The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; Flores, A., Herndon, K., Thapa, R., Cherrington, E., Eds.; Servir Global: Washington, DC, USA, 2019; pp. 65–172. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009; p. 422. [Google Scholar]
Data | Satellite/Other Sources | Date | Spatial Resolution m | Data Source |
---|---|---|---|---|
L-band, TNQP images | SAOCOM-1A | - 10 March 2020 - 4, 9 and 25 October 2020 | 50 | CONAE |
L-band, SQP images | - 5 July 2020 - 20 August 2020 - 18 September 2020 - 9 October 2020 | 10 | ||
C-band, GRDH, SDV images | SENTINEL-1A/B | - 31 October 2018 - 1, 6 and 11 January 2020 - 3 and 4 June 2020 - 21 and 28 July 2020 - 2, 3, 26 and 27 August 2020 - 19 and 20 September 2020 - 25, 26, and 31 October 2020 | 10 | ESA |
Mosaic: Blue, Green, Red, NIR, SWIRS, and SWIRL bands | SENTINEL-2 | 2018 Quarters 2020 - January to December 2020 - January 2021 | 10, 60 | SENTINEL-2 Global Mosaic Consortium (S2GM) |
NDVI | NBR | NBR 2 | |
---|---|---|---|
Mean μb, burned | 0.23 | 0.14 | −0.23 |
Mean μub, unburned | 0.10 | −0.001 | −0.06 |
Standard deviations δb, burned | 0.15 | 0.11 | 0.09 |
Standard deviations δub, unburned | 0.06 | 0.08 | 0.06 |
M, separation index | 0.62 | 0.74 | 0.93 |
NBR 2 Difference | Total | Commission Errors | |||
---|---|---|---|---|---|
Burned | Not-Burned | ||||
S2-mosaic pixel 10-m | Burned | 43 | 33 | 76 | 0.434 |
Unburned | 19 | 105 | 124 | 0.153 | |
Total | 62 | 138 | 200 | ||
Omission errors | 0.306 | 0.239 | 0.74 |
BAC S1 | Total | Commission Errors | |||
---|---|---|---|---|---|
Burned | Not-Burned | ||||
S2-mosaic pixel 10-m | Burned | 45 | 31 | 76 | 0.408 |
Unburned | 21 | 103 | 124 | 0.169 | |
Total | 66 | 134 | 200 | ||
Omission errors | 0.318 | 0.231 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Valle, H.; Sione, W.F.; Aceñolaza, P.G. Wetland Fire Assessment and Monitoring in the Paraná River Delta, Using Radar and Optical Data for Burnt Area Mapping. Fire 2022, 5, 190. https://doi.org/10.3390/fire5060190
Del Valle H, Sione WF, Aceñolaza PG. Wetland Fire Assessment and Monitoring in the Paraná River Delta, Using Radar and Optical Data for Burnt Area Mapping. Fire. 2022; 5(6):190. https://doi.org/10.3390/fire5060190
Chicago/Turabian StyleDel Valle, Héctor, Walter Fabián Sione, and Pablo Gilberto Aceñolaza. 2022. "Wetland Fire Assessment and Monitoring in the Paraná River Delta, Using Radar and Optical Data for Burnt Area Mapping" Fire 5, no. 6: 190. https://doi.org/10.3390/fire5060190
APA StyleDel Valle, H., Sione, W. F., & Aceñolaza, P. G. (2022). Wetland Fire Assessment and Monitoring in the Paraná River Delta, Using Radar and Optical Data for Burnt Area Mapping. Fire, 5(6), 190. https://doi.org/10.3390/fire5060190