Post-Fire Natural Regeneration Trends in Bolivia: 2001–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Burned Areas
2.2.2. Normalized Difference Vegetation Index
2.2.3. Land Cover Type
2.3. Data Processing and Statistical Analyses
3. Results
3.1. Regeneration Trends by Region
3.2. Regeneration Trends by Land Cover Type
3.3. Regeneration Trends Based on Wildfire Reoccurrence
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilbao, B.; Steil, L.; Urbieta, I.R.; Anderson, L.; Pinto, C.; González, M.E.; Millán, A.; Falleiro, R.M.; Morici, E.; Ibarnegaray, V.; et al. Wildfires. In Adaptation to Climate Change Risks in Ibero-American Countries; Moreno, J.M., Laguna-Defior, C., Barros, V., Calvo Buendía, E., Marengo, J.A., Oswald Spring, U., Eds.; RIOCCADAPT Report; McGraw Hill: New York, NY, USA, 2020; pp. 435–496. [Google Scholar]
- Lizundia-Loiola, J.; Pettinari, M.L.; Chuvieco, E. Temporal Anomalies in Burned Area Trends: Satellite Estimations of the Amazonian 2019 Fire Crisis. Remote Sens. 2020, 12, 151. [Google Scholar] [CrossRef] [Green Version]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global Trends of Forest Loss Due to Fire From 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- Maillard, O.; Herzog, S.K.; Soria-Auza, R.W.; Vides-Almonacid, R. Impact of Fires on Key Biodiversity Areas (KBAs) and Priority Bird Species for Conservation in Bolivia. Fire 2022, 5, 4. [Google Scholar] [CrossRef]
- Maillard, O.; Flores-Valencia, M.; Michme, G.; Coronado, R.; Bachfischer, M.; Azurduy, H.; Vides-Almonacid, R.; Flores, R.; Angulo, S.; Mielich, N. Phenology Patterns and Postfire Vegetation Regeneration in the Chiquitania Region of Bolivia Using Sentinel-2. Fire 2022, 5, 70. [Google Scholar] [CrossRef]
- Mostacedo, B. Avances y necesidades de la ecología forestal en Bolivia: Estudios de caso en la Chiquitanía y Amazonía. Ecol. Boliv. 2005, 40, 1–4. [Google Scholar]
- Fredericksen, T.S.; Justiniano, M.J.; Mostacedo, B.; Kennard, D.; McDonald, L. Comparative regeneration ecology of three leguminous timber species in a Bolivian tropical dry forest. New For. 2000, 20, 45–64. [Google Scholar] [CrossRef]
- Blate, G. Modest Trade-offs between Timber Management and Fire Susceptibility of a Bolivian Semi-Deciduous Forest. Ecol. Appl. 2005, 15, 1649–1663. [Google Scholar] [CrossRef]
- Quevedo, L. Ecology and Silviculture of Long-Lived Pioneer Timber Species in a Bolivian Tropical Forest. Ph.D. Thesis, CATIE, Turrialba, Costa Rica, 2006. [Google Scholar]
- Veldman, J.W.; Mostacedo, B.; Peña-Claros, M.; Putz, F.E. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. For. Ecol. Manage. 2009, 258, 1643–1649. [Google Scholar] [CrossRef]
- Menacho, W.; Quevedo, L.; Arce, A. Regeneración Natural y Muestreo Diagnóstico Después del Aprovechamiento Forestal en un Bosque seco Chiquitano; CIMAR: Santa Cruz, Bolivia, 2011. [Google Scholar]
- Pinto, L.M.; Quevedo, L.; Arce, A. Efectos del Aprovechamiento Forestal Sobre la Regeneración Natural en un Bosque seco Chiquitano, Santa Cruz, Bolivia; CIMAR: Santa Cruz, Bolivia, 2011. [Google Scholar]
- Kennard, D.K.; Gould, K.; Putz, F.E.; Fredericksen, T.S.; Morales, F. Effect of disturbance intensity on regeneration mechanisms in a tropical dry forest. For. Ecol. Manage. 2002, 162, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Mostacedo, B.; Fredericksen, T.; Gould, K.; Toledo, M. Community structure and composition to wildfire in dry and subhumid tropical forests in Bolivia. J. Trop. For. Sci. 2001, 13, 488–502. [Google Scholar]
- Gould, K.A.; Fredericksen, T.S.; Morales, F.; Kennard, D.; Putz, F.E.; Mostacedo, B.; Toledo, M. Post-fire tree re-generation in lowland Bolivia: Implications for fire management. For. Ecol. Manag. 2002, 185, 225–234. [Google Scholar] [CrossRef]
- Devisscher, T.; Boyd, E.; Malhibb, Y. Anticipating future risk in social-ecological systems using fuzzy cognitive mapping: The case of wildfire in the Chiquitania, Bolivia. Ecol. Soc. 2016, 21, 18. [Google Scholar] [CrossRef]
- Mostacedo, B.; Viruez, A.; Varon, Y.; Paz-Roca, A.; Parada, V.; Veliz, V. Tree survival and resprouting after wildfire in tropical dry and subhumid ecosystems of Chiquitania, Bolivia. Trees For. People 2022, 10, 100327. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; Saiz, G.; García, R.A.; Pauchard, A.; Ferreira, A.; Merino, A. Post-fire ecological restoration in Latin American forest ecosystems: Insights and lessons from the last two decades. For. Ecol. Manag. 2020, 509, 120083. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Alcaraz-Segura, D.; Chuvieco, E.; Epstein, H.E.; Kasischke, E.S.; Trishchenko, A. Debating the greening vs. browning of the North American boreal forest: Differences between satellite datasets. Global Chang. Biol. 2009, 16, 760–770. [Google Scholar] [CrossRef]
- García, M.; Pettinari, M.L.; Chuvieco, E.; Salas, J.; Mouillot, F.; Chen, W.; Aguado, I. Characterizing Global Fire Regimes from Satellite-Derived Products. Forests 2022, 13, 699. [Google Scholar] [CrossRef]
- Gitas, I.; Mitri, G.; Veraverbeke, S.; Polychronaki, A. Advances in Remote Sensing of Post-Fire Vegetation Recovery Monitoring—A Review. In Remote Sensing of Biomass—Principles and Applications; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Chazdon, R.L. Landscape Restoration, Natural Regeneration, and the Forests of the Future. Ann. Missouri Bot. Gard. 2017, 102, 251–257. [Google Scholar] [CrossRef]
- Hartung, M.; Carreño-Rocabado, G.; Peña-Claros, M.; van der Sande, M.T. Tropical Dry Forest Resilience to Fire Depends on Fire Frequency and Climate. Front. For. Glob. Chang. 2021, 4, 755104. [Google Scholar] [CrossRef]
- Villarroel, D.; Pinto-Viveros, M.; Sainz, L. Evaluación de Impactos Ecológicos en Áreas Afectadas por Quemas e Incendios en la Amazonía, Bosque Seco Chiquitano y el Pantanal Boliviano: Monitoreo y Diagnóstico Integral de los Impactos Generados por los Incendios; Fundación Amigos de la Naturaleza (FAN) & World Wildlife Fund (WWF Bolivia): Santa Cruz, Bolivia, 2021. [Google Scholar]
- Ibisch, P.L.; Beck, S.G.; Gerkmann, B.; Carretero, A. Ecorregiones y ecosistemas. In Biodiversidad: La Riqueza de Bolivia. Estado de Conocimiento Y Conservación. Ministerio de Desarrollo Sostenible; Ibisch, P.L., Mérida, G., Eds.; Editorial FAN: Santa Cruz de la Sierra, Bolivia, 2003; pp. 47–88. [Google Scholar]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Giglio, L.; Huang, H.; Zubkova, M.; Humber, M.L. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 2019, 235, 111490. [Google Scholar] [CrossRef] [PubMed]
- Vetrita, Y.; Cochrane, M.A.; Suwarsono; Priyatna, M.; Sukowati, K.A.D.; Khomarudin, M.R. Evaluating accuracy of four MODIS-derived burned area products for tropical peatland and non-peatland fires. Environ. Res. Lett. 2021, 16, 035015. [Google Scholar] [CrossRef]
- Didan, K. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN Grid V006. NASA EOSDIS Land ProcessesDAAC. Available online: https://doi.org/10.5067/MODIS/MOD13A2.006 (accessed on 12 June 2022). [CrossRef]
- Fang, X.; Zhu, Q.; Ren, L.; Chen, H.; Wang, K.; Peng, C. Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST: A case study in Quebec, Canada. Remote Sens. Environ. 2018, 206, 391–402. [Google Scholar] [CrossRef]
- Zhong, L.; Ma, Y.; Salama, M.S.; Su, Z. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Clim. Chang. 2010, 103, 519–535. [Google Scholar] [CrossRef]
- Wardlow, B.; Egbert, S. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006 NASA EOSDIS Land Processes DAAC. 2019. Available online: https://doi.org/10.5067/MODIS/MCD12Q1.006 (accessed on 12 June 2022). [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Morell, O.; Fried, R. On Nonparametric Tests for Trend Detection in Seasonal Time Series. In Statistical Inference, Econometric Analysis and Matrix Algebra; Schipp, B., Kräer, W., Eds.; Physica-Verlag HD: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Chandler, R.; Scott, M. Statistical Methods for Trend Detection and Analysis in the Environmental Sciences; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Rodríguez, A. Cartografía multitemporal de quemas e incendios forestales en Bolivia: Detección y validación post-incendio. Ecol. Boliv. 2012, 47, 53–71. [Google Scholar]
- Ibarnegaray, V.; Rodriguez Montellano, A.; Pinto, C.; Quintanilla, M. Quemas e Incendios Forestales. In Atlas Socioambiental de las Tierras Bajas y Yungas de Bolivia; Editorial FAN; Fundación Amigos de la Naturaleza: Santa Cruz, Bolivia, 2016; pp. 66–73. [Google Scholar]
- Singh, M.; Sood, S.; Collins, C.M. Fire Dynamics of the Bolivian Amazon. Land 2022, 11, 1436. [Google Scholar] [CrossRef]
- Killeen, T.J.; Schulenberg, T.S. A Biological Assessment of Parque Nacional Noel; RAP Working Papers 10; Conservation International: Washington, DC, USA, 1998. [Google Scholar]
- Killeen, T.J.; Siles, T.M.; Grimwood, T.; Tieszen, L.L.; Steininger, M.K.; Tucker, C.J.; Panfil, S.N. Habitat heterogeneity on a forest-savanna ecotone in Noel Kempff Mercado National Park (Santa Cruz, Bolivia); Implications for the long-term conservation of biodiversity in a changing climate. In How Landscapes Change: Human Disturbance and Ecosystem Disruptions in the Americas; Ecological, Studies; Bradshaw, G.A., Marquet, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 162, p. 285. [Google Scholar]
- Villegas, Z.; Mostacedo, B. Diagnóstico de la Situación Actual Sobre Políticas, Información, Avance y Necesidades Futuras Sobre MRV en Bolivia; CIFOR: Bogor, Indonesia, 2011. [Google Scholar]
- Pinto, C.; Vroomans, V. Chaqueos e Incendios Forestales en Bolivia; Instituto Boliviano de Investigación Forestal: Santa Cruz, Bolivia, 2007. [Google Scholar]
- Kessler, M.; Driesch, P. Causas e historia de la destrucción de bosques altoandinos en Bolivia. Ecol. Boliv. 1993, 21, 1–18. [Google Scholar]
- Eissing, S.; Stab, S.; Poschold, P.; Niekisch, M. Regeneration of Tropical Forest Patches Following Slash-and-Burn Agriculture at Beni Biological Station Biosphere Reserve, Amazonian Lowlands of Bolivia. In Biodiversity, Conservation and Management in the Region of the Beni Biological Station Biosphere Reserve, Bolivia; SI/MAB Series No. 4; Herrera-MacBryde, O., Dallmeier, F., MacBryde, B., Comiskey, J.A., Miranda, C., Eds.; Smithsonian Institution: Washington, DC, USA, 2000. [Google Scholar]
- Killeen, T.J.; Chavez, E.; Peña-Claros, M.; Toledo, M.; Arroyo, L.; Caballero, J.; Guillén, R.; Quevedo, R.; Saldias, M.; Soria, L.; et al. The Chiquitano dry forest, the transition between humid and dry forest in eastern lowland Bolivia. Syst. Assoc. Spec. 2006, 69, 213. [Google Scholar] [CrossRef]
- Villarroel, V.J.; Catari, J.C.; Calderon, D.; Mendez, R.; Feldpausch, T. Estructura, composición y diversidad arbórea de dos áreas de Cerrado sensu stricto de la Chiquitanía (Santa Cruz, Bolivia). Ecol. Boliv. 2010, 45, 116–130. [Google Scholar]
- Langstroth, R. Biogeography of the Llanos de Moxos: Natural and anthropogenic determinants. Geogr. Helv. 2011, 66, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Mayle, F.E.; Langstroth, R.P.; Fisher, R.A.; Meir, P. Long-term forest-savannah dynamics in the Bolivian Amazon: Implications for conservation. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 291–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanagarth, W. Acerca de la Geoecología de las Sabanas del Beni en el Noreste de Bolivia; Instituto de Ecología: La Paz, Bolivia, 1993. [Google Scholar]
- Comiskey, J.A.; Dallmeier, F.; Aymard, G. Floristic Composition and Diversity of Forested Habitats in the Estación Biológica del Beni, Amazonian Bolivia. In Biodiversity, Conservation and Management in the Region of the Beni Biological Station Biosphere Reserve, Bolivia; SI/MAB Series No. 4; Herrera-MacBryde, O., Dallmeier, F., MacBryde, B., Comiskey, J.A., Miranda, C., Eds.; Smithsonian Institution: Washington, DC, USA, 2000. [Google Scholar]
- Wellens, J.; Millington, A.; Hickin, W.; Arquepino, R.; Jones, S. Vegetation Mapping from Satellite Data, for Future Habitat Studies in the Amazonian Lowlands of Bolivia. In Biodiversity, Conservation and Management in the Region of the Beni Biological Station Biosphere Reserve, Bolivia; SI/MAB Series No. 4; Herrera-MacBryde, O., Dallmeier, F., MacBryde, B., Comiskey, J.A., Miranda, C., Eds.; Smithsonian Institution: Washington, DC, USA, 2000. [Google Scholar]
- Maillard, O.; Anívarro, R.; Flores-Valencia, M. Pérdida de la Cobertura Natural (1986–2019) y Proyecciones de Escenarios a Futuro (2050) en el Departamento de Santa Cruz; Informe Técnico del Observatorio Bosque Seco Chiquitano; Fundación para la Conservación del Bosque Chiquitano: Santa Cruz, Bolivia, 2020; p. 55. [Google Scholar]
- Killeen, T.J. The effect of grazing on native Gramineae in Concepci6n, Santa Cruz, Bolivia. Trop Grassl. 1991, 25, 12–19. [Google Scholar]
- Holdsworth, A.R.; Uhl, C. Fire in Amazonian selectively logged rain forest and the potential for tire reduction. Ecol. Appl. 1997, 7, 713–725. [Google Scholar] [CrossRef]
- Uhl, C. Perspectives on wildfire in the humid tropics. Cons. Biol. 1998, 12, 942–943. [Google Scholar] [CrossRef]
- Devisscher, T.; Malhi, Y.; Rojas Landívar, V.D.; Oliveras, I. Understanding ecological transitions under recurrent wildfire: A case study in the seasonally dry tropical forests of the Chiquitania, Bolivia. For. Ecol. Manag. 2016, 360, 273–286. [Google Scholar] [CrossRef]
Departament | Burned Areas (ha) | Increasing/ Significant (p < 0.05) | Increasing/ Non-Significant (p > 0.05) | Decreasing/ Non-Significant (p > 0.05) | Decreasing/ Significant (p < 0.05) | Total |
---|---|---|---|---|---|---|
Beni | 10,121,319 | 30.2 | 6.7 | 2.7 | 2.6 | 42.2 |
Chuquisaca | 99,229 | 0.3 | 0.1 | 0.0 | 0.0 | 0.4 |
Cochabamba | 292,685 | 0.6 | 0.2 | 0.1 | 0.2 | 1.1 |
La Paz | 1,142,139 | 2.4 | 1.2 | 0.5 | 0.6 | 4.7 |
Oruro | 18,189 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pando | 264,624 | 0.4 | 0.2 | 0.1 | 0.3 | 1.0 |
Potosí | 6404 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Santa Cruz | 12,060,676 | 19.5 | 12.6 | 5.9 | 11.9 | 49.9 |
Tarija | 175,302 | 0.2 | 0.1 | 0.1 | 0.3 | 0.7 |
Total | 24,180,566 | 53.6 | 21.1 | 9.4 | 15.9 | 100 |
Land Cover Type | Burned Áreas (ha) | Increasing/ Significant (p < 0.05) | Increasing/ Non-Significant (p > 0.05) | Decreasing/ Non-Significant (p > 0.05) | Decreasing/ Significant (p < 0.05) | Total |
---|---|---|---|---|---|---|
Evergreen Needleleaf Forests | 4508 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Evergreen Broadleaf Forests | 4,422,915 | 9.2 | 4.4 | 2.0 | 2.2 | 17.7 |
Deciduous Needleleaf Forests | 25 | 0.0 | 0.0 | - | - | 0.0 |
Deciduous Broadleaf Forests | 3,999,299 | 8.6 | 5.4 | 1.7 | 0.8 | 16.6 |
Mixed Forests | 96,223 | 0.3 | 0.1 | 0.0 | 0.0 | 0.4 |
Closed Shrublands | 1500 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Open Shrublands | 110,493 | 0.3 | 0.1 | 0.0 | 0.0 | 0.4 |
Woody Savannas | 2,356,589 | 4.6 | 2.3 | 1.1 | 1.8 | 9.8 |
Savannas | 8,079,829 | 23.0 | 5.1 | 2.4 | 3.7 | 34.2 |
Grasslands | 3,884,840 | 6.9 | 3.2 | 1.5 | 4.6 | 16.2 |
Permanent Wetlands | 143,498 | 0.3 | 0.1 | 0.1 | 0.1 | 0.6 |
Croplands | 1,002,063 | 0.3 | 0.4 | 0.6 | 2.6 | 3.9 |
Urban and Built-up Lands | 8408 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cropland/Natural Vegetation Mosaics | 57,000 | 0.1 | 0.0 | 0.0 | 0.1 | 0.2 |
Non-Vegetated Lands | 13,377 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Total | 24,180,566 | 53.6 | 21.1 | 9.4 | 15.9 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maillard, O. Post-Fire Natural Regeneration Trends in Bolivia: 2001–2021. Fire 2023, 6, 18. https://doi.org/10.3390/fire6010018
Maillard O. Post-Fire Natural Regeneration Trends in Bolivia: 2001–2021. Fire. 2023; 6(1):18. https://doi.org/10.3390/fire6010018
Chicago/Turabian StyleMaillard, Oswaldo. 2023. "Post-Fire Natural Regeneration Trends in Bolivia: 2001–2021" Fire 6, no. 1: 18. https://doi.org/10.3390/fire6010018
APA StyleMaillard, O. (2023). Post-Fire Natural Regeneration Trends in Bolivia: 2001–2021. Fire, 6(1), 18. https://doi.org/10.3390/fire6010018