Combustion and Emission Analysis of Spent Mushroom Compost and Forestry Woodchip for Management and Energy Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Characterization
2.2. Experimental Combustion Test and Emission Monitoring
2.3. Sampling and Characterization of Combustion Bed and Ashes
3. Results and Discussion
3.1. Biomass Characterization
Metal Content
3.2. Characterization of Fluidized Bed
3.2.1. Thermogravimetric Analysis
3.2.2. Metal Content
3.3. Characterization of Emissions
3.3.1. Metals in Emission
3.3.2. Metals in Ash
3.3.3. Emission Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nussbaumer, T. Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction. Energy Fuels 2003, 17, 1510–1521. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.; Demirbas, A.; Hossain, M.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Chen, W.-H.; Kuo, P.-C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 2010, 35, 2580–2586. [Google Scholar] [CrossRef]
- Demirbas, A.H.; Demirbas, I. Importance of rural bioenergy for developing countries. Energy Convers. Manag. 2007, 48, 2386–2398. [Google Scholar] [CrossRef]
- Adánez, J.; Gayán, P.; de Diego, L.F.; García-Labiano, F.; Abad, A. Combustion of Wood Chips in a CFBC. Modeling and Validation. Ind. Eng. Chem. Res. 2003, 42, 987–999. [Google Scholar] [CrossRef]
- Soria-Verdugo, A.; Goos, E.; García-Hernando, N. Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model. Fuel Process. Technol. 2015, 134, 360–371. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.C.; Adhikari, D.K.; Goyal, H.B. Biomass-based energy fuel through biochemical routes: A review. Renew. Sustain. Energy Rev. 2009, 13, 167–178. [Google Scholar] [CrossRef]
- European Commission Directorate. The EU and Energy Union and Climate Action; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Demirbas, M.F.; Balat, M.; Balat, H. Potential contribution of biomass to the sustainable energy development. Energy Convers. Manag. 2009, 50, 1746–1760. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Progress in Thermochemical Biomass Conversion; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Basu, P. Combustion and Gasification in Fluidized bed, 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Tinaut, F.V.; Melgar, A.; Pérez, J.F.; Horrillo, A. Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Process. Technol. 2008, 89, 1076–1089. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass-Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Xu, G.; Li, M.; Lu, P. Experimental investigation on flow properties of different biomass and torrefied biomass powders. Biomass-Bioenergy 2019, 122, 63–75. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Bai, Y.; Yang, Y.; Liu, S.; Chen, X.; Xu, J.; Liu, Y.; Wang, Y.; Guo, X.; et al. Wintertime aerosol chemistry in Beijing during haze period: Significant contribution from secondary formation and biomass burning emission. Atmos. Res. 2018, 218, 25–33. [Google Scholar] [CrossRef]
- Růžičková, J.; Kucbel, M.; Raclavská, H.; Švédová, B.; Raclavský, K.; Juchelková, D. Comparison of organic compounds in char and soot from the combustion of biomass in boilers of various emission classes. J. Environ. Manag. 2019, 236, 769–783. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y.; Jin, Q.; Chen, Q.; Zhou, Y. Mechanism analysis on the pulverized coal combustion flame stability and NOx emission in a swirl burner with deep air staging. J. Energy Inst. 2019, 92, 298–310. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B. The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecol. Indic. 2017, 74, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Colantoni, A.; Bianchini, L.; Paris, E.; Palma, A.; Vincenti, B.; Carnevale, M.; Scarfone, A.; del Giudice, A.; Civitarese, V.; di Stefano, V.; et al. Different Pellet Mixtures Obtained from Spent Coffee Grounds: Energetic Characterization. In Proceedings of the European Biomass Conference and Exhibition Proceedings, Marseille, France, 6–9 July 2020. [Google Scholar]
- Serrano, C.; Portero, H.; Monedero, E. Pine chips combustion in a 50 kW domestic biomass boiler. Fuel 2013, 111, 564–573. [Google Scholar] [CrossRef]
- Park, S.; Yu, G.-H.; Bae, M.-S. Effects of combustion condition and biomass type on the light absorption of fine organic aerosols from fresh biomass burning emissions over Korea. Environ. Pollut. 2020, 265, 114841. [Google Scholar] [CrossRef]
- Tucki, K.; Orynycz, O.; Wasiak, A.; Świć, A.; Mieszkalski, L.; Wichłacz, J. Low Emissions Resulting from Combustion of Forest Biomass in a Small Scale Heating Device. Energies 2020, 13, 5495. [Google Scholar] [CrossRef]
- Lyubov, V.K.; Popov, A.N.; Popova, E.I. Study of the Energy Efficiency of Wood Pellets and Poplar Chips. J. Phys. Conf. Ser. 2020, 1683, 042045. [Google Scholar] [CrossRef]
- Carvalho, R.L.; Jensen, O.M.; Tarelho, L.A.D.C. Mapping the performance of wood-burning stoves by installations worldwide. Energy Build. 2016, 127, 658–679. [Google Scholar] [CrossRef]
- Vicente, E.; Alves, C. An overview of particulate emissions from residential biomass combustion. Atmos. Res. 2018, 199, 159–185. [Google Scholar] [CrossRef]
- Padilla-Barrera, Z.; Torres-Jardón, R.; Ruiz-Suarez, L.G.; Castro, T.; Peralta, O.; Saavedra, M.I.; Masera, O.; Molina, L.T.; Zavala, M. Determination of emission factors for climate forcers and air pollutants from improved wood-burning cookstoves in Mexico. Energy Sustain. Dev. 2019, 50, 61–68. [Google Scholar] [CrossRef]
- Fidanza, M.A.; Sanford, D.L.; Beyer, D.M.; Aurentz, D.J. Analysis of Fresh Mushroom Compost. HortTechnology 2010, 20, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; McMullan, J.; McCahey, S. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresour. Technol. 2001, 79, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Najafi, B.; Ardabili, S.F.; Shamshirband, S.; Chau, K.-W. Spent mushroom compost (SMC) as a source for biogas production in Iran. Eng. Appl. Comput. Fluid Mech. 2019, 13, 967–982. [Google Scholar] [CrossRef] [Green Version]
- Umor, N.A.; Ismail, S.; Abdullah, S.; Huzaifah, M.H.R.; Huzir, N.M.; Mahmood, N.A.N.; Zahrim, A.Y. Zero waste management of spent mushroom compost. J. Mater. Cycles Waste Manag. 2021, 23, 1726–1736. [Google Scholar] [CrossRef]
- Finney, K.N.; Ryu, C.; Sharifi, V.N.; Swithenbank, J. The reuse of spent mushroom compost and coal tailings for energy recovery: Comparison of thermal treatment technologies. Bioresour. Technol. 2009, 100, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, J.; Chen, J.; Xie, W.; Kuo, J.; Lu, X.; Chang, K.; Wen, S.; Sun, G.; Cai, H.; et al. Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: Thermal conversion, kinetic, thermodynamic and emission analyses. Bioresour. Technol. 2018, 266, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Finney, K.N.; Sharifi, V.N.; Swithenbank, J. Combustion of spent mushroom compost and coal tailing pellets in a fluidised-bed. Renew. Energy 2009, 34, 860–868. [Google Scholar] [CrossRef]
- Dhyani, V.; Awasthi, M.K.; Wang, Q.; Kumar, J.; Ren, X.; Zhao, J.; Chen, H.; Wang, M.; Bhaskar, T.; Zhang, Z. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste. Bioresour. Technol. 2018, 252, 59–65. [Google Scholar] [CrossRef]
- Kapu, N.; Manning, M.; Hurley, T.; Voigt, J.; Cosgrove, D.; Romaine, C. Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars. Bioresour. Technol. 2012, 114, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-J.; Liu, J.-H.; Sun, L.-F.; Hu, Z.-F.; Qiao, J.-J. Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production. Bioresour. Technol. 2013, 136, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Liu, G.; Wang, X.; Qi, C.; Hu, Y. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal. Bioresour. Technol. 2016, 214, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, J.; He, Y.; Sun, S.; Chen, J.; Sun, J.; Chang, K.; Kuo, J.; Ning, X. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel. Bioresour. Technol. 2016, 218, 631–642. [Google Scholar] [CrossRef]
- Gao, N.; Li, A.; Quan, C.; Du, L.; Duan, Y. TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J. Anal. Appl. Pyrolysis 2013, 100, 26–32. [Google Scholar] [CrossRef]
- Carnevale, M.; Petracchini, F.; Salerno, M.; Colantoni, A.; Tonolo, A.; Drigo, C.; Paris, E.; Guerriero, E.; Paolini, V.; Gallucci, F. Characterization of Agricultural Residues: Physical and Chemical Analysis for Energy Transformations. In Proceedings of the European Biomass Conference and Exhibition Proceedings, Lisbon, Portugal, 27–30 May 2019. [Google Scholar]
- Gogebakan, Z.; Selçuk, N. Cofiring Lignite with Hazelnut Shell and Cotton Residue in a Pilot-Scale Fluidized Bed Combustor. Energy Fuels 2008, 22, 1620–1627. [Google Scholar] [CrossRef]
- Gallucci, F.; Palma, A.; Vincenti, B.; Carnevale, M.; Paris, E.; Ancona, V.; Migliarese Caputi, M.V.; Borello, D. Fluidized bed gasification of biomass from plant assisted bioremediation (PABR): Lab-scale assessment of the effect of different catalytic bed material on emissions. Fuel 2022, 322, 124214. [Google Scholar] [CrossRef]
- Arvelakis, S.; Vourliotis, P.; Kakaras, E.; Koukios, E. Effect of leaching on the ash behavior of wheat straw and olive residue during fluidized bed combustion. Biomass-Bioenergy 2001, 20, 459–470. [Google Scholar] [CrossRef]
- Silvennoinen, J.; Hedman, M. Co-firing of agricultural fuels in a full-scale fluidized bed boiler. Fuel Process. Technol. 2013, 105, 11–19. [Google Scholar] [CrossRef]
- Vamvuka, D.; Zografos, D. Predicting the behaviour of ash from agricultural wastes during combustion. Fuel 2004, 83, 2051–2057. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass-Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Serageldin, M.; Pan, W.-P. Coal analysis using thermogravimetry. Thermochim. Acta 1984, 76, 145–160. [Google Scholar] [CrossRef]
- Haykiri-Açma, H.; Ersoy-Meriçboyu, A.; Küçükbayrak, S. Combustion reactivity of different rank coals. Energy Convers. Manag. 2002, 43, 459–465. [Google Scholar] [CrossRef]
- Lee, J.-M.; Kim, N.-W.; Kim, J.-S. Reactivity study of combustion for coals and their chars in relation to volatile content. Korean J. Chem. Eng. 2009, 26, 506–512. [Google Scholar] [CrossRef]
- Kastanaki, E.; Vamvuka, D.; Grammelis, P.; Kakaras, E. Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization. Fuel Process. Technol. 2002, 77–78, 159–166. [Google Scholar] [CrossRef]
- Gil, M.; Casal, D.; Pevida, C.; Pis, J.; Rubiera, F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour. Technol. 2010, 101, 5601–5608. [Google Scholar] [CrossRef] [Green Version]
- Vamvuka, D.; Pitharoulis, M.; Alevizos, G.; Repouskou, E.; Pentari, D. Ash effects during combustion of lignite/biomass blends in fluidized bed. Renew. Energy 2009, 34, 2662–2671. [Google Scholar] [CrossRef]
- Yan, R.; Liang, D.T.; Tsen, L. Case studies––Problem solving in fluidized bed waste fuel incineration. Energy Convers. Manag. 2005, 46, 1165–1178. [Google Scholar] [CrossRef]
- Bakker, R.R.; Jenkins, B.M.; Williams, R.B. Fluidized Bed Combustion of Leached Rice Straw. Energy Fuels 2002, 16, 356–365. [Google Scholar] [CrossRef]
- Thy, P.; Barfod, G.; Cole, A.; Brown, E.; Jenkins, B.; Lesher, C. Trace metal release during wood pyrolysis. Fuel 2017, 203, 548–556. [Google Scholar] [CrossRef]
- Colantoni, A.; Paris, E.; Bianchini, L.; Ferri, S.; Marcantonio, V.; Carnevale, M.; Palma, A.; Civitarese, V.; Gallucci, F. Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process. Sci. Rep. 2021, 11, 5119. [Google Scholar] [CrossRef] [PubMed]
- Proto, A.R.; Palma, A.; Paris, E.; Papandrea, S.F.; Vincenti, B.; Carnevale, M.; Guerriero, E.; Bonofiglio, R.; Gallucci, F. Assessment of wood chip combustion and emission behavior of different agricultural biomasses. Fuel 2021, 289, 119758. [Google Scholar] [CrossRef]
- World Health Organization WHO. World Report on Ageing and Health 2015; World Health Organisation: Geneva, Switzerland, 2015. [Google Scholar]
- Michalik, M.; Wilczynska-Michalik, W. Mineral and Chemical Composition of Biomass Ash. Eur. Mineral. Conf. 2012, 1, 2–6. [Google Scholar]
- Mirowski, T. Utilization of Biomass for Energy Purpose versus Reduction of Emission of Air Pollutants from Municipal and Households Sector. Rocz. Ochr. Sr. 2016, 18, 466–477. [Google Scholar]
- Cheah, C.B.; Ramli, M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resour. Conserv. Recycl. 2011, 55, 669–685. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Álvarez, A.; Lavín, A.G.; Bueno, J.L. Study of biomass combustion wastes. Fuel 2015, 148, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Cuenca, J.; Rodríguez, J.; Martín-Morales, M.; Sánchez-Roldán, Z.; Zamorano, M. Effects of olive residue biomass fly ash as filler in self-compacting concrete. Constr. Build. Mater. 2013, 40, 702–709. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Baxter, D. Trace element concentrations and associations in some biomass ashes. Fuel 2014, 129, 292–313. [Google Scholar] [CrossRef]
- Berra, M.; Mangialardi, T.; Paolini, A.E. Reuse of woody biomass fly ash in cement-based materials. Constr. Build. Mater. 2015, 76, 286–296. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. The Elemental Composition of Biomass Ashes as a Preliminary Assessment of the Recovery Potential. Gospod. Surowcami Miner. Miner. Resour. Manag. 2018, 34, 115–132. [Google Scholar] [CrossRef]
- Baernthaler, G.; Zischka, M.; Haraldsson, C.; Obernberger, I. Determination of major and minor ash-forming elements in solid biofuels. Biomass-Bioenergy 2006, 30, 983–997. [Google Scholar] [CrossRef]
Boiler Data and Operative Parameters | Min | Max | Unit |
---|---|---|---|
Thermal power produced | 310 | 330 | [kWth] |
Fuel flow | 295 | 320 | [kg/h] |
Primary air flow | 680 | 720 | [Nm3/h] |
Secondary air flow | 325 | 850 | [Nm3/h] |
Gas flow | 1850 | 2000 | [Nm3/h] |
Exchanger inlet fumes temperature | 825 | 858 | [°C] |
Boiler outlet fumes temperature | 155 | 158 | [°C] |
Parameter | Unit | Value |
---|---|---|
Diameter | [m] | 0.35 |
Area | [m2] | 0.09 |
Density | [kg/Nm3] | 1.31 |
Moisture | [%] | 12 |
Velocity | [m/sec] | 13.60 |
Stack temperature | [°C] | 138.66 |
Stack pressure | [kPa] | 99.38 |
Velocity at nozzle | [m/sec] | 13.52 |
Prope temperature | [°C] | 134.5 |
Filter temperature | [°C] | 120.3 |
Environment pressure | [kPa] | 99.39 |
Biomass | Ash [%] | Moisture [%] | Fixed carbon [%] | Volatile [%] | C [%] | H [%] | N [%] | S [%] | HHV [MJ/kg] | LHV [MJ/kg] |
---|---|---|---|---|---|---|---|---|---|---|
MMW | 19.71 | 51.13 | 3.16 | 26.00 | 31.97 | 2.18 | 2.01 | 1.29 | 17.11 | 16.66 |
SMC | 12.10 | 65.55 | 2.15 | 20.20 | 11.0 | 1.1 | 1.7 | 1.81 | 17.04 | 15.25 |
[mg/kg] | MMW | SMC |
---|---|---|
Li | 6.63 | 3.78 |
B | 25.96 | 20.62 |
Na | 2249.85 | 3247.60 |
Mg | 5507.92 | 5270.18 |
Al | 5050.91 | 4127.11 |
K | 21,222.47 | 29,463.62 |
Ca | 5424.93 | 45,854.00 |
Cr | 5.85 | 2.57 |
Mn | 227.43 | 238.17 |
Fe | 4187.94 | 3962.32 |
Co | 1.94 | 2.01 |
Ni | 5.95 | 9.85 |
Cu | 30.37 | 33.95 |
Zn | 79.02 | 165.81 |
Ga | 10.36 | 8.55 |
Sr | 269.33 | 178.21 |
Ag | <LOQ | <LOQ |
Cd | 0.09 | 0.38 |
In | <LOQ | <LOQ |
Ba | 161.03 | 100.61 |
Tl | 0.36 | <LOQ |
Pb | 5.02 | 2.12 |
Bi | <LOQ | <LOQ |
[mg/kg] | Olivine/Sand | Bed Material | Δ |
---|---|---|---|
K | 23.05 | 13,752.25 | 13,729.20 |
Ca | 325.00 | 5669.26 | 5344.26 |
Al | 1948.87 | 5515.90 | 3567.02 |
Na | 102.92 | 1249.87 | 1146.95 |
Sr | 1.92 | 189.02 | 187.11 |
Zn | 7.91 | 129.30 | 121.38 |
Ba | 0.67 | 63.18 | 62.51 |
B | <LOQ | 52.63 | 52.63 |
Mn | 582.41 | 606.74 | 24.32 |
Li | 1.14 | 7.07 | 5.93 |
Cu | 13.14 | 16.80 | 3.66 |
Ga | 0.22 | 2.90 | 2.68 |
Pb | 0.04 | 1.25 | 1.21 |
Co | 67.59 | 50.09 | −17.51 |
Cr | 183.64 | 121.02 | −62.62 |
Ni | 1292.55 | 941.62 | −350.93 |
Fe | 36,207.20 | 24,281.19 | −11,926.01 |
Mg | 162,477.03 | 120,670.85 | −41,806.18 |
Ag | <LOQ | <LOQ | <LOQ |
Cd | <LOQ | <LOQ | <LOQ |
In | <LOQ | <LOQ | <LOQ |
Tl | <LOQ | <LOQ | <LOQ |
Bi | <LOQ | <LOQ | <LOQ |
CO [mg/Nm3] | NOx [mg/Nm3] | SO2 [mg/Nm3] | TOC [mgC/Nm3] |
---|---|---|---|
4.94 | 298.63 | 263.45 | 1.55 |
11% O2 | |||
8.18 | 494.42 | 436.18 | 2.57 |
PM2.5 [mg/Nm3] | PM2.5-10 [mg/Nm3] | PM10 [mg/Nm3] | TSP [mg/Nm3] |
---|---|---|---|
31.51 | 6.67 | 2.61 | 83.92 |
11% O2 | |||
52.17 | 11.05 | 4.33 | 138.71 |
[mg/Nm3] | Filter | Bubblers | Total |
---|---|---|---|
Li | 0.0028 | <LOQ | 0.0028 |
B | 0.1793 | <LOQ | 0.1793 |
Na | 1.2805 | 0.1517 | 1.4322 |
Mg | 1.4418 | 0.0620 | 1.5039 |
Al | 1.8454 | 0.0560 | 1.9015 |
K | 1.5716 | 0.1652 | 1.7369 |
Ca | 1.3729 | 0.0778 | 1.4507 |
Cr | 0.0043 | 0.0006 | 0.0049 |
Mn | 0.0608 | 0.0018 | 0.0626 |
Fe | 1.8324 | 0.0521 | 1.8845 |
Co | 0.0008 | <LOQ | 0.0008 |
Ni | 0.0044 | 0.0016 | 0.0060 |
Cu | 0.0176 | 0.0052 | 0.0228 |
Zn | 0.0590 | 0.0460 | 0.1050 |
Ga | 0.0021 | 0.0006 | 0.0028 |
Sr | 0.0698 | 0.0019 | 0.0717 |
Ag | <LOQ | <LOQ | <LOQ |
Cd | 0.0005 | 0.0037 | 0.0041 |
In | <LOQ | <LOQ | <LOQ |
Ba | 0.0314 | 0.0123 | 0.0437 |
Tl | 0.0015 | 0.0002 | 0.0017 |
Pb | 0.0140 | 0.0204 | 0.0344 |
Bi | <LOQ | <LOQ | <LOQ |
[mg/Nm3] | Ash |
---|---|
Li | 23.66 |
B | 70.89 |
Na | 6031.09 |
Mg | 14,103.48 |
Al | 89,890.02 |
K | 51,842.23 |
Ca | 13,436.21 |
Cr | 24.72 |
Mn | 541.68 |
Fe | 11,982.08 |
Co | 5.01 |
Ni | 16.34 |
Cu | 68.77 |
Zn | 156.91 |
Ga | 26.17 |
Sr | 700.02 |
Ag | <LOQ |
Cd | 0.10 |
In | <LOQ |
Ba | 375.88 |
Tl | 0.69 |
Pb | 13.22 |
Bi | <LOQ |
O [%] | C [%] | Ca [%] | Si [%] | K [%] | S [%] | Al [%] | Na [%] | Mg [%] | Fe [%] | Zn [%] | Cl [%] | P [%] | Cu [%] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.9 | 18.5 | 11.4 | 7.96 | 6.10 | 2.40 | 1.67 | 1.68 | 1.24 | 1.08 | 1.06 | 0.62 | 0.57 | 0.21 |
EF | [mg emitted/kg fuel] |
---|---|
Li | 0.027 |
B | 1.704 |
Na | 13.613 |
Mg | 14.294 |
Al | 18.073 |
K | 16.509 |
Ca | 13.789 |
Cr | 0.047 |
Mn | 0.595 |
Fe | 17.912 |
Co | 0.008 |
Ni | 0.057 |
Cu | 0.217 |
Zn | 0.998 |
Ga | 0.027 |
Sr | 0.681 |
Cd | 0.039 |
Ba | 0.415 |
Pb | 0.327 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnevale, M.; Paris, E.; Vincenti, B.; Palma, A.; Salerno, M.; Guerriero, E.; Mancini, R.; Calcopietro, M.; Gallucci, F. Combustion and Emission Analysis of Spent Mushroom Compost and Forestry Woodchip for Management and Energy Production. Fire 2023, 6, 9. https://doi.org/10.3390/fire6010009
Carnevale M, Paris E, Vincenti B, Palma A, Salerno M, Guerriero E, Mancini R, Calcopietro M, Gallucci F. Combustion and Emission Analysis of Spent Mushroom Compost and Forestry Woodchip for Management and Energy Production. Fire. 2023; 6(1):9. https://doi.org/10.3390/fire6010009
Chicago/Turabian StyleCarnevale, Monica, Enrico Paris, Beatrice Vincenti, Adriano Palma, Mariangela Salerno, Ettore Guerriero, Raffaele Mancini, Marco Calcopietro, and Francesco Gallucci. 2023. "Combustion and Emission Analysis of Spent Mushroom Compost and Forestry Woodchip for Management and Energy Production" Fire 6, no. 1: 9. https://doi.org/10.3390/fire6010009
APA StyleCarnevale, M., Paris, E., Vincenti, B., Palma, A., Salerno, M., Guerriero, E., Mancini, R., Calcopietro, M., & Gallucci, F. (2023). Combustion and Emission Analysis of Spent Mushroom Compost and Forestry Woodchip for Management and Energy Production. Fire, 6(1), 9. https://doi.org/10.3390/fire6010009