Research on the Fire Behaviors of Polymeric Separator Materials PI, PPESK, and PVDF
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Materials
2.2. Experimental Instruments
2.3. Experimental Methods
2.4. Calculation Methods
2.4.1. Heat Release Rate
- is the calibration constant of the orifice flowmeter;
- is the pressure difference of the orifice flowmeter;
- is the absolute temperature of the gas on the orifice flowmeter;
- is the average value of the oxygen mole fraction measured during the 1-min baseline measurement;
- is the molar fraction of oxygen measured by the oxygen analyzer.
2.4.2. Fire Performance Index
- , kW/m2.
- , s.
2.4.3. Fire Growth Index
- , kW/m2.
- , s.
2.4.4. Broido Method to Achieve Activation Energy from Thermogravimetry
- is the initial weight of the sample, g.
- is the final residue mass of the sample, g.
- is the pre-exponential factor, also known as Arrhenius constant;
- is the base of the natural logarithm.
- is the experimental activation energy, which can be generally regarded as a constant independent of temperature, kJ/mol;
- is the molar gas constant, J/(mol·K);
- is the absolute temperature, K.
3. Results and Discussion
3.1. Experimental Phenomena and Smoke/Ignition Time
3.2. Heat Release Rate
3.3. Flue Gas Analysis
3.4. Combustibility Index
3.4.1. Fire Performance Index
3.4.2. Fire Growth Index
3.5. Thermogravimetric Analysis
3.6. Flame Temperature
4. Conclusions
- According to the combustion index of the polymers and various quantitative parameters, the fire risk of the three single polymer samples was ranked as PPESK > PI > PVDF, and that of the mixtures was ranked as PI/PVDF > PPESK/PVDF. Moreover, the thermal hazard of the polymer materials would be significantly influenced by changes in the external heat flux.
- The HRR curves of the polymer separator materials were consistent with the CO2 concentration curves. The temperature of the fire could be inferred by measuring the CO2 concentration. Nevertheless, in the early stage of most fires, the probability of smoke poisoning was higher, while in the stable combustion period, suffocation and burns were more likely to occur.
- After the polymers were mixed, the positive feedback of the two substances in the burning process would change the combustion characteristics of mixtures and could be distinguished from the single polymer. For instance, the pHRR of PI/PVDF was approximately ten times that of PI or PVDF combustion, while for PPESK/PVDF, the pHRR values were between those of PPESK and PVDF, indicating that changes in the combustion characteristics were significantly associated with the polymer materials. Compared with the current commercial PVDF, PPESK and PI are recognized as excellent separator materials with high-temperature resistance. However, according to the results of the present study, in the event of a fire, the addition of PPESK and PI may significantly improve the pHRR. Hence, their combination as separator materials warrants further evaluation.
- According to the fire risk coefficient and activation energy calculated by the Broido method, mixing polymers increases the fire risk. The specific increase depends primarily on the type of mixed polymer components. Therefore, from the point of view of fire suppression, once TR occurs, the addition of PI, or other high-temperature resistant polymers, as separator materials might require more fire extinguishing agents, which has greater firefighting value.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Xia, H.; Lin, J.; Chen, S.; Xu, X. Brief analysis the safety of solid-state lithium ion batteries. Energy Storage Sci. Technol. 2018, 7, 994–1002. [Google Scholar] [CrossRef]
- Jiang, W.; Yu, Y.; Chen, C. A review on lithium-ion batteries safety issues: Existing problems and possible solutions. Mater. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Xu, H.; Song, Y.; He, X. Polyimides as Promising Materials for Lithium-Ion Batteries: A Review. Nano-Micro Lett. 2023, 15, 135. [Google Scholar] [CrossRef]
- Liang, X.; Yang, Y.; Jin, X.; Huang, Z.; Kang, F. The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci. 2015, 493, 1–7. [Google Scholar] [CrossRef]
- Liu, N.; Wu, H.; Mcdowell, M.T.; Yao, Y.; Wang, C.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321. [Google Scholar] [CrossRef] [PubMed]
- Wagemaker, M.; Mulder, F.M. Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 2012, 46, 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Li, J.; Wu, Z.; Guo, X.; Zhong, B.; Sun, S. LiMn0.5Fe0.5PO4 solid solution materials synthesized by rheological phase reaction and their excellent electrochemical performances as cathode of lithium ion battery. J. Power Source 2013, 234, 217–222. [Google Scholar] [CrossRef]
- Lu, C.; Qi, W.; Li, L.; Xu, J.; Chen, P.; Xu, R.; Han, L.; Yu, Q. Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery. J. Appl. Electrochem. 2013, 43, 711–720. [Google Scholar] [CrossRef]
- Gong, W.; Wei, S.; Ruan, S.; Shen, C. Electrospun coaxial PPESK/PVDF fibrous membranes with thermal shutdown property used for lithium-ion batteries. Mater. Lett. 2019, 244, 126–129. [Google Scholar] [CrossRef]
- Hermouet, F.; Rogaume, T.; Guillaume, E.; Richard, F.; Marquis, D.; Ponticq, X. Experimental characterization of the reaction-to-fire of an Acrylonitrile-Butadiene-Styrene (ABS) material using controlled atmosphere cone calorimeter. Fire Saf. J. 2021, 121, 103291. [Google Scholar] [CrossRef]
- Meinier, R.; Sonnier, R.; Zavaleta, P.; Suard, S.; Ferry, L. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J. Hazard. Mater. 2018, 342, 306–316. [Google Scholar] [CrossRef]
- Wang, S.; Ding, H.; Xie, J.; Chen, Y.; Wang, C.; Liu, C.; Huang, Q. A review on the suppression mechanism of typical flame retardants on the explosion of mine dust. Powder Technol. 2023, 427, 118762. [Google Scholar] [CrossRef]
- ISO 5660-1; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate—Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Standards Organization: Geneva, Switzerland, 2002.
- Hohenwarter, D.; Mattausch, H.; Fischer, C.; Berger, M.; Haar, B. Analysis of the Fire Behavior of Polymers (PP, PA 6 and PE-LD) and Their Improvement Using Various Flame Retardants. Materials 2020, 13, 5756. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q. Phase change materials application in battery thermal management system: A review. Materials 2020, 13, 4622. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Ding, H.; Xie, J.; Jiang, X.; Chen, Q.; Chen, Y.; Liu, C.; Huang, Q. A review on the transport law and control method of fire smoke from energy storage system in tunnels. J. Energy Storage 2023, 73, 108929. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, S.; He, J.; Xu, D.; Abdou, S.N.; Ibrahim, M.M.; Sun, S.; Chen, Y.; Li, H.; Xu, B.B.; et al. Experimental design of paraffin/methylated melamine-formaldehyde microencapsulated composite phase change material and the application in battery thermal management system. J. Mater. Sci. Technol. 2023, 169, 124–136. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, C.; Wei, R.; Wang, J. Experimental study of polyethylene pyrolysis and combustion over HZSM-5, HUSY, and MCM-41. J. Hazard. Mater. 2017, 333, 10–22. [Google Scholar] [CrossRef]
- Quintiere, J.G. The application of flame spread theory to predict material performance. J. Res. Natl. Bur. Stand. 1988, 93, 61. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, J.; Wang, Q.; Huang, X.; Wang, Q.; Sun, J. Prediction of the critical condition for flame acceleration over wood surface with different sample orientations. Combust. Flame 2012, 159, 2999–3002. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Anabel, F.; Tareq, A.-A.; Mackey, H.R.; Rosa, R.; Gordon, M. Thermal degradation characteristics and gasification kinetics of camel manure using thermogravimetric analysis. J. Environ. Manag. 2021, 287, 112345. [Google Scholar] [CrossRef]
- Zheng, G.; Wichman, I.S.; Bénard, A. Opposed-flow ignition and flame spread over melting polymers with Navier-Stokes gas flow. Combust. Theory Model. 2002, 6, 317–337. [Google Scholar] [CrossRef]
- Zheng, G.; Wichman, I.S.; Bénard, A. Opposed-flow flame spread over polymeric materials: Influence of phase change. Combust. Flame 2001, 124, 387–408. [Google Scholar] [CrossRef]
- Kim, Y.; Hossain, A.; Nakamura, Y. Numerical modeling of melting and dripping process of polymeric material subjected to moving heat flux: Prediction of drop time. Proc. Combust. Inst. 2015, 35, 2555–2562. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Levendis, Y.A.; Delichatsios, M.A. A method to assess downward flame spread and dripping characteristics of fire-retardant polymer composites. Fire Mater. 2018, 42, 347–357. [Google Scholar] [CrossRef]
- Broido, A. A simple, sensitive graphical method of treating thermogravimetric analysis data. J. Polym. Sci. Part A2 Polym. Phys. 1969, 7, 1761–1773. [Google Scholar] [CrossRef]
- Gachot, G.; Ribière, P.; Mathiron, D.; Grugeon, S.; Armand, M.; Leriche, J.-B.; Pilard, S.; Laruelle, S. Gas Chromatography/Mass Spectrometry as a Suitable Tool for the Li-Ion Battery Electrolyte Degradation Mechanisms Study. Anal. Chem. 2011, 83, 478–485. [Google Scholar] [CrossRef]
- Nazaré, S.; Kandola, B.; Horrocks, A.R. Use of cone calorimetry to quantify the burning hazard of apparel fabrics. Fire Mater. 2002, 26, 191–199. [Google Scholar] [CrossRef]
- Oztekin, E.S.; Crowley, S.B.; Lyon, R.E.; Stoliarov, S.I.; Patel, P.; Hull, T.R. Sources of variability in fire test data: A case study on poly(aryl ether ether ketone) (PEEK). Combust. Flame 2012, 159, 1720–1731. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Ohlemiller, O.-T. A study of oxygen effects on nonflaming transient gasification of PMMA and PE during thermal irradiation. Symp. Int. Combust. 1982, 19, 815–823. [Google Scholar] [CrossRef]
- Liu, C.; Huang, Q.; Zheng, K.; Qin, J.; Zhou, D.; Wang, J. Impact of lithium salts on the combustion characteristics of electrolyte under diverse pressures. Energies 2020, 13, 5373. [Google Scholar] [CrossRef]
- Xu, D.; Huang, G.; Guo, L.; Chen, Y.; Ding, C.; Liu, C. Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv. Compos. Hybrid Mater. 2022, 5, 113–129. [Google Scholar] [CrossRef]
- Mastori, H.; Sonnier, R.; Ferry, L.; Coutin, M. Fire behavior of lead-containing PMMA based Kyowaglas. Polym. Degrad. Stab. 2021, 190, 109618. [Google Scholar] [CrossRef]
- Schartel, B.; Bartholmai, M.; Knoll, U. Some comments on the use of cone calorimeter data. Polym. Degrad. Stab. 2005, 88, 540–547. [Google Scholar] [CrossRef]
- Shi, L.; Michael-Yit-Lin, C. Fire behaviors of polymers under autoignition conditions in a cone calorimeter. Fire Saf. J. 2013, 61, 243–253. [Google Scholar] [CrossRef]
- Luche, J.; Rogaume, T.; Richard, F.; Guillaume, E. Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter. Fire Saf. J. 2011, 46, 451–461. [Google Scholar] [CrossRef]
- Ward, S.-M.; Braslaw, J. Experimental Weight Loss Kinetics of Wood Pyrolysis under Vacuum. Combust. Flame 1985, 61, 261–269. [Google Scholar] [CrossRef]
- Conesa, J.-A.; Caballero, J.A.; Marcilla, A. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim. Acta 1995, 254, 175–192. [Google Scholar] [CrossRef]
- Qin, J.; Liu, C.; Huang, Q. Simulation on fire emergency evacuation in special subway station based on Pathfinder. Case Stud. Therm. Eng. 2020, 21, 100677. [Google Scholar] [CrossRef]
- Li, D.; Hu, J.; Wang, C.; Guo, L.; Zhou, J. Metal-organic framework-induced edge-riched growth of layered Bi2Se3 towards ultrafast Na-ion storage. J. Power Source 2023, 555, 232387. [Google Scholar] [CrossRef]
- Jeske, H.; Arne, S.; Frauke, C. Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in wood plastic composites (WPC). Thermochim. Acta 2012, 543, 165–171. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, H.; Lei, S.; Xing, W.; Lu, H.; Lv, P.; Jie, G. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010, 51, 2435–2445. [Google Scholar] [CrossRef]
Sample | Density (g/cm3) |
---|---|
PI | 1.43 |
PPESK | 1.37 |
PVDF | 1.78 |
PPESK/PVDF | 1.26 |
PI/PVDF | 1.31 |
Heat Flux | Experimental Phenomena and Smoke/Ignition Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PVDF | PI | PPESK | PI/PVDF | PPESK/PVDF | ||||||
45 kW/m2 | fume | extinction | fume | extinction | fume | extinction | fume | extinction | fume | extinction |
37 s | 357 s | 87 s | 554 s | 301 s | 1200 s | 60 s | 435 s | 70 s | 520 s | |
60 kW/m2 | ignition | extinction | ignition | extinction | ignition | extinction | ignition | extinction | ignition | extinction |
240 s | 1300 s | 107 s | 1906 s | 166 s | 1800 s | 405 s | 1700 s | 234 s | 1142 s |
Heat Flux | Index Type | PI | PPESK | PVDF | PPESK/PVDF | PI/PVDF |
---|---|---|---|---|---|---|
60 kW/m2 | FPI (dimensionless parameter) | 0.56 | 0.50 | 2.5 | 0.53 | 0.62 |
FGI (dimensionless parameter) | 0.72 | 1.05 | 0.36 | 1.57 | 6.90 |
Temperature | 600 K | 700 K | 800 K | 900 K | 1000 K | |
---|---|---|---|---|---|---|
Sample | ||||||
PVDF | 0% | 1% | 68% | 92% | 100% | |
PI | 2.4% | 3% | 13% | 46% | 91% | |
PPESK | 0% | 0% | 1% | 35% | 58% | |
PPESK/PVDF | 0% | 1% | 24% | 46% | 66% | |
PI/PVDF | 0% | 1% | 18% | 46% | 73% |
Polymer Material | Pyrolysis Stage | The Starting Temperature of Pyrolysis Stage | Activation Energy |
---|---|---|---|
PVDF | Step 1 | 679 K | 30.83 ± 0.33 kJ/mol |
Step 2 | 770 K | 6.64 ± 0.21 kJ/mol | |
PI | Step 1 | 765 K | 27.88 ± 0.05 kJ/mol |
Step 2 | 830 K | 13.67 ± 0.15 kJ/mol | |
PPESK | Step 1 | 836 K | 42.37 ± 0.65 kJ/mol |
Step 2 | 891 K | 10.10 ± 0.16 kJ/mol | |
PPESK/PVDF | Step 1 | 702 K | 26.05 ± 0.69 kJ/mol |
Step 2 | 767 K | 2.68 ± 0.05 kJ/mol | |
Step 3 | 844 K | 13.70 ± 0.24 kJ/mol | |
Step 4 | 883 K | 7.74 ± 0.12 kJ/mol | |
PI/PVDF | Step 1 | 691 K | 19.82 ± 0.42 kJ/mol |
Step 2 | 783 K | 4.36 ± 0.05 kJ/mol | |
Step 3 | 850 K | 8.41 ± 0.11 kJ/mol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Li, X.; Han, P.; Li, Y.; Liu, C.; Chen, Q.; Li, Q. Research on the Fire Behaviors of Polymeric Separator Materials PI, PPESK, and PVDF. Fire 2023, 6, 386. https://doi.org/10.3390/fire6100386
Huang Q, Li X, Han P, Li Y, Liu C, Chen Q, Li Q. Research on the Fire Behaviors of Polymeric Separator Materials PI, PPESK, and PVDF. Fire. 2023; 6(10):386. https://doi.org/10.3390/fire6100386
Chicago/Turabian StyleHuang, Que, Xinxin Li, Peijie Han, Yang Li, Changcheng Liu, Qinpei Chen, and Qiyue Li. 2023. "Research on the Fire Behaviors of Polymeric Separator Materials PI, PPESK, and PVDF" Fire 6, no. 10: 386. https://doi.org/10.3390/fire6100386
APA StyleHuang, Q., Li, X., Han, P., Li, Y., Liu, C., Chen, Q., & Li, Q. (2023). Research on the Fire Behaviors of Polymeric Separator Materials PI, PPESK, and PVDF. Fire, 6(10), 386. https://doi.org/10.3390/fire6100386