Assessing Carbon Emissions from Biomass Burning in Croplands in Burkina Faso, West Africa
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Methodological Approach
2.3. Sampling Design for Biomass Assessment
2.4. Fuel Biomass Assessment
2.5. Burning Experimentation
2.6. Carbon Content Determination
2.7. Data Analysis
2.7.1. Tree Structural Parameters
2.7.2. Carbon Content and Fuel Characteristics Calculations
2.7.3. Fuel Characteristics Calculations
Calculation of Percentage of Biomass and Carbon Loss
Calculation of Percentage of Carbon Remaining in Post-Fire Sample
Calculation of Combustion Completeness
2.7.4. Carbon Budget Calculations
Calculation of Carbon Emissions
Estimation of Carbon Dioxide Equivalent from Carbon Emitted
2.7.5. Determination of Emission Factors
2.7.6. Statistical Analyses
3. Results
3.1. Effect of Climatic Zone and Cropland Category on Fuel Biomass, Carbon and CO2 Emissions
3.2. Effect of Climatic Zone and Cropland Category on Emission Factors of C, CO2, CO and CH4
4. Discussion
4.1. Effect of Climatic Zone on Carbon Emissions and Gas Emission Factors
4.2. Effect of Cropland Categories on Carbon Emissions and Emission Factors
5. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BB | Biomass burning |
C | Carbon |
CO2 | Carbon dioxide |
CO2eq | Carbon dioxide equivalent |
CO | Carbon monoxide |
CH4 | Methane |
CC | Cropland Remaining Cropland |
EFs | Emission factors |
GHG | Greenhouse gases |
GLM | General Linear Models |
IPCC | Intergovernmental Panel on Climate Change |
LC | Land Converted to Cropland |
NDCs | Nationally Determined Contributions |
References
- Yadav, I.C.; Devi, N.L. Biomass Burning, Regional Air Quality, and Climate Change. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 386–391. ISBN 9780444639523. [Google Scholar]
- Fajrini, R. Environmental Harm and Decriminalization of Traditional Slash-and-Burn Practices in Indonesia. Int. J. Crime Justice Soc. Democr. 2022, 11, 28–43. [Google Scholar] [CrossRef]
- Laris, P.; Koné, M.; Dembélé, F.; Rodrigue, C.M.; Yang, L.; Jacobs, R.; Laris, Q.; Camara, F. The Pyrogeography of Methane Emissions from Seasonal Mosaic Burning Regimes in a West African Landscape. Fire 2023, 6, 52. [Google Scholar] [CrossRef]
- Soro, T.D.; Koné, M.; N’Dri, A.B.; N’Datchoh, E.T. Identified Main Fire Hotspots and Seasons in Côte d’Ivoire (West Africa) Using MODIS Fire Data. S. Afr. J. Sci. 2021, 117. [Google Scholar] [CrossRef] [PubMed]
- Norgrove, L.; Hauser, S. Estimating the Consequences of Fire Exclusion for Food Crop Production, Soil Fertility, and Fallow Recovery in Shifting Cultivation Landscapes in the Humid Tropics. Environ. Manag. 2015, 55, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Carmenta, R.; Zabala, A.; Trihadmojo, B.; Gaveau, D.; Salim, M.A.; Phelps, J. Evaluating Bundles of Interventions to Prevent Peat-Fires in Indonesia. Glob. Environ. Change 2021, 67, 102154. [Google Scholar] [CrossRef]
- NFMS. Fire Management on Rural Lands in Burkina Faso. A Community-Based Approach; Ministry for Foreign Affairs of Finland: Helsinki, Finland, 2006.
- FAO. State of Food and Agriculture: Climate Change, Agriculture and Food Security; FAO: Rome, Italy, 2016; ISBN 9789251093740. [Google Scholar]
- Eames, T.; Russell-Smith, J.; Yates, C.; Edwards, A.; Vernooij, R.; Ribeiro, N.; Steinbruch, F.; van der Werf, G.R. Instantaneous Pre-Fire Biomass and Fuel Load Measurements from Multi-Spectral UAS Mapping in Southern African Savannas. Fire 2021, 4, 2. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT Database of Greenhouse Gas Emissions from Agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Cassou, E. Field Burning. Agricultural Pollution; World Group Bank: Washington, DC, USA, 2018. [Google Scholar]
- FAO. Available online: https://www.fao.org/faostat/en/#data/GT (accessed on 29 August 2023).
- Andreae, M.O. Emission of Trace Gases and Aerosols from Biomass Burning—An Updated Assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Burling, I.R.; Gilman, J.B.; Warneke, C.; Stockwell, C.E.; De Gouw, J.; Akagi, S.K.; Urbanski, S.P.; Veres, P.; Roberts, J.M.; et al. Atmospheric Chemistry and Physics Discussions Coupling Field and Laboratory Measurements to Estimate the Emission Factors of Identified and Unidentified Trace Gases for Prescribed Fires. Atmos. Chem. Phys. Discuss. 2012, 12, 21517–21578. [Google Scholar] [CrossRef]
- Abdulraheem, K.A.; Adeniran, J.A.; Aremu, A.S.; Yusuf, M.-N.O.; Adebisi, J.A.; Sadiku, N.A.; Olofintoye, O.O.; Ismail, A.; Sonibare, J.A. Emission Factors of Some Common Grass Species in West Africa. Environ. Monit. Assess. 2020, 192, 758. [Google Scholar] [CrossRef]
- Koné, M.; Bassett, T.J.; Nkem, J.N. Changing Fire Regimes in the Cote d’Ivoire Savanna: Implications for Greenhouse Emissions and Carbon Sequestration. In Sustainable Forest Management in Africa: Some Solutions to Natural Forest Management Problems in Africa, Proceedings of the Sustainable Forest Management in Africa Symposium, Stellenbosch, South Africa, 3–7 November 2008; Geldenhuys, C.J., Ham, C., Ham, H., Eds.; Department of Forest and Wood Science, Stellenbosch University: Stellenbosch, South Africa, 2011; pp. 441–453. [Google Scholar]
- Shukla, P.R.; Skea, J.; Reisinger, A.; Slade, R.; Fradera, R.; Pathak, M.; Al, A.; Malek, K.; Renée Van Diemen, B.; Hasija, A.; et al. Climate Change 2022. Mitigation of Climate Change. In Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; ISBN 9789291691609. [Google Scholar]
- IPCC. Climate Change 2007: Synthesis Report. In Contribution of Working Groups I, II and III to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; ISBN 9291691224. [Google Scholar]
- Li, J.; Bo, Y.; Xie, S. Estimating Emissions from Crop Residue Open Burning in China Based on Statistics and MODIS Fire Products. J. Environ. Sci. 2016, 44, 158–170. [Google Scholar] [CrossRef]
- N’Dri, A.Y.A.B.; Kone, A.W.; Loukou, S.K.K.; Barot, S.; Gignoux, J. Carbon and Nutrient Losses through Biomass Burning, and Links with Soil Fertility and Yam (Dioscorea Alata) Production. Exp. Agric. 2019, 55, 738–751. [Google Scholar] [CrossRef]
- Santin, C.; Doerr, S.H.; Jones, M.W.; Merino, A.; Warneke, C.; Roberts, J.M. The Relevance of Pyrogenic Carbon for Carbon Budgets From Fires: Insights From the FIREX Experiment. Glob. Biogeochem. Cycles 2020, 34, e2020GB006647. [Google Scholar] [CrossRef]
- Vernooij, R.; Giongo, M.; Borges, M.A.; Costa, M.M.; Barradas, A.C.S.; van der Werf, G.R. Intraseasonal Variability of Greenhouse Gas Emission Factors from Biomass Burning in the Brazilian Cerrado. Biogeosciences 2021, 18, 1375–1393. [Google Scholar] [CrossRef]
- Yona, L.; Cashore, B.; Jackson, R.B.; Ometto, J.; Bradford, M.A. Refining National Greenhouse Gas Inventories. Ambio 2020, 49, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- UNFCCC. Report of the Conference of the Parties Serving as the Meeting of the Parties to the Paris Agreement on the Third Part of Its First Session, Held in Katowice from 2 to 15 December 2018; PA/CMA/2018/3/Add. 2; UNFCCC: New York, NY, USA, 2018. [Google Scholar]
- INSD. Cinquième Recensement Général de La Population et de l’habitation Burkina Faso. In Synthèse Des Résultats Définitifs; INSD: Burkina Faso, Ouagadougou, 2022. [Google Scholar]
- Neya, T.; Neya, O.; Abunyewa, A.A. Agroforestry Parkland Profiles in Three Climatic Zones of Burkina Faso. Int. J. Biol. Chem. Sci. 2019, 12, 2119. [Google Scholar] [CrossRef]
- Balima, L.H.; Nacoulma, B.M.I.; Bayen, P.; Kouamé, F.N.G.; Thiombiano, A. Agricultural Land Use Reduces Plant Biodiversity and Carbon Storage in Tropical West African Savanna Ecosystems: Implications for Sustainability. Glob. Ecol. Conserv. 2020, 21, e00875. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Volkova, L.; Meyer, C.P.; Murphy, S.; Fairman, T.; Reisen, F.; Weston, C. Fuel Reduction Burning Mitigates Wildfire Effects on Forest Carbon and Greenhouse Gas Emission. Int. J. Wildland Fire 2014, 23, 771–780. [Google Scholar] [CrossRef]
- IPCC. Guidelines for National Greenhouse Gas Inventories. In Guidelines for National Greenhouse Gas Inventories; Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Agriculture, Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2006; Volume 4. [Google Scholar]
- Saharjo, B.H.; Munoz, C.P. Controlled Burning in Peat Lands Owned by Small Farmers: A Case Study in Land Preparation. Wetl. Ecol. Manag. 2005, 13, 105–110. [Google Scholar] [CrossRef]
- Surawski, N.C.; Sullivan, A.L.; Meyer, C.P.; Roxburgh, S.H.; Polglase, P.J. Greenhouse Gas Emissions from Laboratory-Scale Fires in Wildland Fuels Depend on Fire Spread Mode and Phase of Combustion. Atmos. Chem. Phys. 2015, 15, 5259–5273. [Google Scholar] [CrossRef]
- Allen, S.E.; Grimshaw, H.M.; Rowland, A.P. Chemical analysis. In Methods in Plant Ecology; Moore, P.D., Chapman, S.B., Eds.; Blackwell Scientific Publication: Oxford, UK, 1986; pp. 285–344. [Google Scholar]
- Victor, A.D.; Valery, N.N.; Francois, A.I.; Vanissa, T.D.C.; Paulidore, M.; Louis, Z. Dynamics of Soil Organic Carbon Stock under Different Types of Savannah Agrosystems in the Sudano-Sahelian Zone of Cameroon. Eurasian J. Soil Sci. 2021, 10, 51–60. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C.; Merino, A.; Belcher, C.M.; Baxter, G. Fire as a Removal Mechanism of Pyrogenic Carbon from the Environment: Effects of Fire and Pyrogenic Carbon Characteristics. Front. Earth Sci. 2018, 6, 127. [Google Scholar] [CrossRef]
- Van Straaten, O.; Doamba, S.W.M.F.; Corre, M.D.; Veldkamp, E. Impacts of Burning on Soil Trace Gas Fluxes in Two Wooded Savanna Sites in Burkina Faso. J. Arid Environ. 2019, 165, 132–140. [Google Scholar] [CrossRef]
- Surawski, N.C.; Sullivan, A.L.; Roxburgh, S.H.; Meyer, C.P.M.; Polglase, P.J. Incorrect Interpretation of Carbon Mass Balance Biases Global Vegetation Fire Emission Estimates. Nat. Commun. 2016, 7, 11536. [Google Scholar] [CrossRef] [PubMed]
- Nassar, R.; Jones, D.B.A.; Suntharalingam, P.; Chen, J.M.; Andres, R.J.; Wecht, K.J.; Yantosca, R.M.; Kulawik, S.S.; Bowman, K.W.; Worden, J.R.; et al. Modeling Global Atmospheric CO2 with Improved Emission Inventories and CO2 Production from the Oxidation of Other Carbon Species. Geosci. Model Dev. 2010, 3, 689–716. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of Trace Gases and Aerosols from Biomass Burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
- Hurst, D.F.; Griffith, D.W.T.; Cook, G.D. Trace Gas Emissions from Biomass Burning in Tropical Australian Savannas. J. Geophys. Res. 1994, 99, 16441–16456. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Veres, P.R.; Williams, J.; Yokelson, R.J. Characterization of Biomass Burning Emissions from Cooking Fires, Peat, Crop Residue, and Other Fuels with High-Resolution Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry. Atmos. Chem. Phys. 2015, 15, 845–865. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.r-project.org/ (accessed on 17 August 2018).
- Rahimi, J.; Ago, E.E.; Ayantunde, A.; Berger, S.; Bogaert, J.; Butterbach-Bahl, K.; Cappelaere, B.; Cohard, J.M.; Demarty, J.; Diouf, A.A.; et al. Modeling Gas Exchange and Biomass Production in West African Sahelian and Sudanian Ecological Zones. Geosci. Model Dev. 2021, 14, 3789–3812. [Google Scholar] [CrossRef]
- Sawadogo, L.; Tiveau, D.; Nygård, R. Influence of Selective Tree Cutting, Livestock and Prescribed Fire on Herbaceous Biomass in the Savannah Woodlands of Burkina Faso, West Africa. Agric. Ecosyst. Environ. 2005, 105, 335–345. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Archibald, S.; Nickless, A.; Govender, N.; Scholes, R.J.; Lehsten, V. Climate and the Inter-Annual Variability of Fire in Southern Africa: A Meta-Analysis Using Long-Term Field Data and Satellite-Derived Burnt Area Data. Glob. Ecol. Biogeogr. 2010, 19, 794–809. [Google Scholar] [CrossRef]
- Spawn, S.A.; Lark, T.J.; Gibbs, H.K. Carbon Emissions from Cropland Expansion in the United States. Environ. Res. Lett. 2019, 14, 045009. [Google Scholar] [CrossRef]
- Kotto-Same, J.; Woomer, P.L.; Appolinaire, M.; Louis, Z. Carbon Dynamics in Slash-and-Burn Agriculture and Land Use Alternatives of the Humid Forest Zone in Cameroon. Agric. Ecosyst. Environ. 1997, 65, 245–256. [Google Scholar] [CrossRef]
- Zerbo, I.; Salako, K.V.; Hounkpèvi, A.; Zozoda, D.; Kakaï, R.G.; Thiombiano, A. Impact of Climate Patterns, Land-Use Types and Exploitation on the Population Structure of Bombax Costatum Pellegr. and Vuillet in West African Semi-Arid Savannas. Glob. Ecol. Conserv. 2023, 43, e02434. [Google Scholar] [CrossRef]
- Kabré, B.; Belem Ouédraogo, M.; Lankoandé, B.; Ouédraogo, A. Demographic Variability of Saba Senegalensis (A. Dc.) Pichon According to the Climate Gradient in Burkina Faso. Bois For. Trop. 2020, 345, 73–83. [Google Scholar] [CrossRef]
- Noojipady, P.; Morton, C.D.; Macedo, N.M.; Victoria, C.D.; Huang, C.; Gibbs, K.H.; Bolfe, L.E. Forest Carbon Emissions from Cropland Expansion in the Brazilian Cerrado Biome. Environ. Res. Lett. 2017, 12, 025004. [Google Scholar] [CrossRef]
- Sylla, M.B.; Nikiema, P.M.; Gibba, P.; Kebe, I.; Klutse, N.A.B. Climate Change over West Africa: Recent Trends and Future Projections. In Adaptation to Climate Change and Variability in Rural West Africa; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 25–40. ISBN 9783319314990. [Google Scholar]
- Wittig, R.; König, K.; Schmidt, M.; Szarzynski, J. A Study of Climate Change and Anthropogenic Impacts in West Africa. Environ. Sci. Pollut. Res. 2007, 14, 182–189. [Google Scholar] [CrossRef]
- Lehsten, V.; Tansey, K.; Balzter, H.; Thonicke, K.; Spessa, A.; Weber, U.; Smith, B.; Arneth, A. Estimating Carbon Emissions from African Wildfires; EGU: Munich, Germany, 2009; Volume 6. [Google Scholar]
- Savadogo, P.; Sawadogo, L.; Tiveau, D. Effects of Grazing Intensity and Prescribed Fire on Soil Physical and Hydrological Properties and Pasture Yield in the Savanna Woodlands of Burkina Faso. Agric. Ecosyst. Environ. 2007, 118, 80–92. [Google Scholar] [CrossRef]
- Eckmeier, E.; Rösch, M.; Ehrmann, O.; Schmidt, M.W.I.; Schier, W.; Gerlach, R. Conversion of Biomass to Charcoal and the Carbon Mass Balance from a Slash-and-Burn Experiment in a Temperate Deciduous Forest. Holocene 2007, 17, 539–542. [Google Scholar] [CrossRef]
- Barker, P.A.; Allen, G.; Gallagher, M.; Pitt, J.R.; Fisher, R.E.; Bannan, T.; Nisbet, E.G.; Bauguitte, S.J.B.; Pasternak, D.; Cliff, S.; et al. Airborne Measurements of Fire Emission Factors for African Biomass Burning Sampled during the MOYA Campaign. Atmos. Chem. Phys. 2020, 20, 15443–15459. [Google Scholar] [CrossRef]
- Laris, P.; Koné, M.; Dembélé, F.; Rodrigue, C.M.; Yang, L.; Jacobs, R.; Laris, Q. Methane Gas Emissions from Savanna Fires: What Analysis of Local Burning Regimes in a Working West African Landscape Tell Us. Biogeosciences 2021, 18, 6229–6244. [Google Scholar] [CrossRef]
- Pokhrel, R.P.; Gordon, J.; Fiddler, M.N.; Bililign, S. Determination of Emission Factors of Pollutants from Biomass Burning of African Fuels in Laboratory Measurements. J. Geophys. Res. Atmos. 2021, 126, e2021JD034731. [Google Scholar] [CrossRef]
- Wooster, M.J.; Freeborn, P.H.; Archibald, S.; Oppenheimer, C.; Roberts, G.J.; Smith, T.E.L.; Govender, N.; Burton, M.; Palumbo, I. Field Determination of Biomass Burning Emission Ratios and Factors via Open-Path FTIR Spectroscopy and Fire Radiative Power Assessment: Headfire, Backfire and Residual Smouldering Combustion in African Savannahs. Atmos. Chem. Phys. 2011, 11, 11591–11615. [Google Scholar] [CrossRef]
CO2 | CO | CH4 | NMOGS | OC | EC/BC | Total | |
---|---|---|---|---|---|---|---|
Emission factors (g kg−1) | 1430 | 76 | 5.7 | 51 | 4.9 | 0.42 | 1568.02 |
Number of studies (n) | 29 | 39 | 20 | 0 | 20 | 24 | |
% of species mass | 91.20 | 4.85 | 0.36 | 3.25 | 0.31 | 0.03 | 100 |
Molar mass of species | 44 | 28 | 16 | Undefined | Undefined | Undefined | - |
Number of mole species | 32.50 | 2.71 | 0.36 | - | - | - | - |
Mass of carbon (g) | 390 | 32.57 | 4.28 | - | - | - | 426.85 |
% carbon of species | 91.37 | 7.63 | 1.00 | - | - | - | 100 |
Predictors | Estimates | Standard Error | t-Value | Pr(>|t|) |
---|---|---|---|---|
Biomass | ||||
Intercept | 0.658 | 0.040 | 16.477 | <0.0001 |
Climatic zones | −0.160 | 0.032 | −4.886 | <0.0001 |
Cropland categories | −0.280 | 0.038 | −7.248 | <0.0001 |
Carbon emission | ||||
Intercept | 0.314 | 0.019 | 16.073 | <0.0001 |
Climatic zones | −0.070 | 0.016 | −4.225 | <0.0001 |
Cropland categories | −0.131 | 0.020 | −6.829 | <0.0001 |
CO2 eq emission | ||||
Intercept | 1.153 | 0.071 | 16.075 | <0.0001 |
Climatic zones | −0.253 | 0.060 | −4.227 | <0.0001 |
Cropland categories | −0.481 | 0.070 | −6.829 | <0.0001 |
Characteristics | Climatic Zones | Cropland Categories | ||
---|---|---|---|---|
Sudanian | Sudano-Sahelian | LC | CC | |
n = 45 | n = 47 | n = 43 | n = 49 | |
Biomass (t ha−1) | 0.50 ± 0.02 a | 0.34 ± 0.02 b | 0.57 ± 0.03 a | 0.29 ± 0.01 b |
Carbon emission (t ha−1) | 0.24 ± 0.01 a | 0.17 ± 0.01 b | 0.27 ± 0.01 a | 0.14 ± 0.01 b |
CO2 eq emitted (t ha−1) | 0.89 ± 0.05 a | 0.63 ± 0.04 b | 1.02 ± 0.06 a | 0.53 ± 0.03 b |
Predictors | Estimates | Standard Error | t-Value | Pr(>|t|) |
---|---|---|---|---|
Carbon emission factor | ||||
Intercept | 894.574 | 0.60 | 1492.15 | <0.0001 |
Climatic zones | 8.180 | 0.725 | 11.27 | <0.0001 |
Cropland categories | 60.606 | 0.725 | 83.5 | <0.0001 |
CO2 emission factor | ||||
Intercept | 1613.47 | 1.844 | 875.12 | <0.0001 |
Climatic zones | 41.964 | 2.242 | 18.72 | <0.0001 |
Cropland categories | 102.633 | 2.242 | 45.78 | <0.0001 |
CO emission factor | ||||
Intercept | 134.42 | 0.153 | 875.12 | <0.0001 |
Climatic zones | 3.496 | 0.186 | 18.72 | <0.0001 |
Cropland categories | 8.550 | 0.186 | 45.78 | <0.0001 |
CH4 emission factor | ||||
Intercept | 17.598 | 0.020 | 875.12 | <0.0001 |
Climatic zones | 0.457 | 0.024 | 18.72 | <0.0001 |
Cropland categories | 1.119 | 0.024 | 45.78 | <0.0001 |
Fuel Characteristics | Climatic Zones | Cropland Categories | ||
---|---|---|---|---|
Sudanian | Sudano-Sahelian | LC | CC | |
n = 45 | n = 47 | n = 43 | n = 49 | |
Carbon emission factor (g kg−1) | 922.85 ± 1.93 a | 938.86 ± 1.82 b | 898.18 ± 0.57 a | 959.85 ± 0.55 b |
CO2 emission factor (g kg−1) | 1661.44 ± 3.63 a | 1716.51 ± 3.24 b | 1632.04± 2.15 a | 1740.06± 1.86 b |
CO emission factor (g kg−1) | 138.41 ± 0.3 a | 143.01 ± 0.27 b | 135.96± 0.17 a | 144.96± 0.15 b |
CH4 emission factor (g kg−1) | 18.12 ± 0.03 a | 18.72 ± 0.03 b | 17.80 ± 0.02 a | 18.97± 0.02 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bougma, P.-t.C.; Bondé, L.; Yaro, V.S.O.; Gebremichael, A.W.; Ouédraogo, O. Assessing Carbon Emissions from Biomass Burning in Croplands in Burkina Faso, West Africa. Fire 2023, 6, 402. https://doi.org/10.3390/fire6100402
Bougma P-tC, Bondé L, Yaro VSO, Gebremichael AW, Ouédraogo O. Assessing Carbon Emissions from Biomass Burning in Croplands in Burkina Faso, West Africa. Fire. 2023; 6(10):402. https://doi.org/10.3390/fire6100402
Chicago/Turabian StyleBougma, Pawend-taoré Christian, Loyapin Bondé, Valaire Séraphin Ouehoudja Yaro, Amanuel Woldeselassie Gebremichael, and Oumarou Ouédraogo. 2023. "Assessing Carbon Emissions from Biomass Burning in Croplands in Burkina Faso, West Africa" Fire 6, no. 10: 402. https://doi.org/10.3390/fire6100402
APA StyleBougma, P. -t. C., Bondé, L., Yaro, V. S. O., Gebremichael, A. W., & Ouédraogo, O. (2023). Assessing Carbon Emissions from Biomass Burning in Croplands in Burkina Faso, West Africa. Fire, 6(10), 402. https://doi.org/10.3390/fire6100402