Simulation of Soil Organic Carbon Dynamics in Postfire Boreal Forests of China by Incorporating High-Resolution Remote Sensing Data and Field Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Imagery Preprocessing and Fire Severity Classification
2.3. Soil Sampling and Analysis
2.4. CENTURY Model Description
2.5. CENTURY Model Calibration and Validation
2.6. Simulation and Data Analysis
3. Results
3.1. Model Validation
3.2. Differential Responses of SOC to Fire Severities
3.3. Effect of Different Fire Severities on SOC
3.4. Dynamics of Postfire SOC in Different Future Climate Scenarios
3.5. Spatial Pattern of SOC over Time
4. Discussion
4.1. Effect of Fire Disturbance on SOC
4.2. Effect of Climate Change on SOC
4.3. Uncertainty of SOC Spatial Distribution
4.4. Summary and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar] [CrossRef]
- Güner, Ş.T.; Güner, D. Changes in carbon stocks of soil and forest floor in black pine plantations in Turkey. J. For. Res. 2020, 32, 339–347. [Google Scholar] [CrossRef]
- Certini, G.; Nocentini, C.; Knicker, H.; Arfaioli, P.; Rumpel, C. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 2011, 167, 191–199. [Google Scholar] [CrossRef]
- Han, C.-L.; Sun, Z.-X.; Shao, S.; Wang, Q.-B.; Libohova, Z.; Owens, P.R. Changes of Soil Organic Carbon after Wildfire in a Boreal Forest, Northeast CHINA. Agronomy 2021, 11, 1925. [Google Scholar] [CrossRef]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Ebert, C.; Goetz, S.; Johnstone, J.F.; Potter, S.; Rogers, B.M.; Schuur, E.A.G.; et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 2019, 572, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Rojas, M.; Doro, L.; Ledda, L.; Francaviglia, R. Application of CarboSOIL model to predict the effects of climate change on soil organic carbon stocks in agro-silvo-pastoral Mediterranean management systems. Agric. Ecosyst. Environ. 2015, 202, 8–16. [Google Scholar] [CrossRef]
- Jebari, A.; Del Prado, A.; Pardo, G.; Rodriguez Martin, J.A.; Alvaro-Fuentes, J. Modeling Regional Effects of Climate Change on Soil Organic Carbon in Spain. J. Environ. Qual. 2018, 47, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Genet, H.; McGuire, A.D.; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; et al. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska. Environ. Res. Lett. 2013, 8, 045016. [Google Scholar] [CrossRef]
- Li, X.; Jin, H.; Wang, H.; Wu, X.; Huang, Y.; He, R.; Luo, D.; Jin, X. Distributive features of soil carbon and nutrients in permafrost regions affected by forest fires in northern Da Xing’anling (Hinggan) Mountains, NE China. Catena 2020, 185, 104304. [Google Scholar] [CrossRef]
- Mekonnen, Z.A.; Riley, W.J.; Randerson, J.T.; Shirley, I.A.; Bouskill, N.J.; Grant, R.F. Wildfire exacerbates high-latitude soil carbon losses from climate warming. Environ. Res. Lett. 2022, 17, 094037. [Google Scholar] [CrossRef]
- Deluca, T.H.; Boisvenue, C. Boreal forest soil carbon: Distribution, function and modelling. Forestry 2012, 85, 161–184. [Google Scholar] [CrossRef]
- Gao, B.; Taylor, A.R.; Chen, H.Y.H.; Wang, J. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. For. Ecol. Manag. 2016, 375, 191–199. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Chang. 2015, 128, 24–30. [Google Scholar] [CrossRef]
- van Bellen, S.; Garneau, M.; Bergeron, Y. Impact of Climate Change on Forest Fire Severity and Consequences for Carbon Stocks in Boreal Forest Stands of Quebec, Canada: A Synthesis. Fire Ecol. 2010, 6, 16–44. [Google Scholar] [CrossRef]
- Richardson, D.; Black, A.S.; Irving, D.; Matear, R.J.; Monselesan, D.P.; Risbey, J.S.; Squire, D.T.; Tozer, C.R. Global increase in wildfire potential from compound fire weather and drought. npj Clim. Atmos. Sci. 2022, 5, 23. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Harden, J.; Georgiou, K.; Hemes, K.S.; Malhotra, A.; Nolan, C.J.; Jackson, R.B. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 2021, 15, 5–13. [Google Scholar] [CrossRef]
- Mekonnen, Z.A.; Riley, W.J.; Randerson, J.T.; Grant, R.F.; Rogers, B.M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 2019, 5, 952–958. [Google Scholar] [CrossRef]
- Searle, E.B.; Chen, H.Y.H. Persistent and pervasive compositional shifts of western boreal forest plots in Canada. Glob. Chang. Biol. 2017, 23, 857–866. [Google Scholar] [CrossRef]
- Wang, M.; Guo, X.; Zhang, S.; Xiao, L.; Mishra, U.; Yang, Y.; Zhu, B.; Wang, G.; Mao, X.; Qian, T.; et al. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nat. Commun. 2022, 13, 5514. [Google Scholar] [CrossRef]
- Fu, Z.; Li, D.; Hararuk, O.; Schwalm, C.; Luo, Y.; Yan, L.; Niu, S. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ. Res. Lett. 2017, 12, 104004. [Google Scholar] [CrossRef]
- Smith, P. An overview of the permanence of soil organic carbon stocks: Influence of direct human-induced, indirect and natural effects. Eur. J. Soil Sci. 2005, 56, 673–680. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2014, 65, 10–21. [Google Scholar] [CrossRef]
- Ťupek, B.; Launiainen, S.; Peltoniemi, M.; Sievänen, R.; Perttunen, J.; Kulmala, L.; Penttilä, T.; Lindroos, A.J.; Hashimoto, S.; Lehtonen, A. Evaluating CENTURY and Yasso soil carbon models for CO2 emissions and organic carbon stocks of boreal forest soil with Bayesian multi-model inference. Eur. J. Soil Sci. 2019, 70, 847–858. [Google Scholar] [CrossRef]
- Song, X.; Kimberley, M.O.; Zhou, G.; Wang, H. Soil carbon dynamics in successional and plantation forests in subtropical China. J. Soils Sediments 2016, 17, 2250–2256. [Google Scholar] [CrossRef]
- Wu, M.; Pang, D.; Chen, L.; Li, X.; Liu, L.; Liu, B.; Li, J.; Wang, J.; Ma, L. Chemical composition of soil organic carbon and aggregate stability along an elevation gradient in Helan Mountains, northwest China. Ecol. Indic. 2021, 131, 108228. [Google Scholar] [CrossRef]
- Wang, B.; Gray, J.M.; Waters, C.M.; Rajin Anwar, M.; Orgill, S.E.; Cowie, A.L.; Feng, P.; Li Liu, D. Modelling and mapping soil organic carbon stocks under future climate change in south-eastern Australia. Geoderma 2022, 405, 115442. [Google Scholar] [CrossRef]
- Wang, H.; Ding, Y.; Zhang, Y.; Wang, J.; Freedman, Z.B.; Liu, P.; Cong, W.; Wang, J.; Zang, R.; Liu, S. Evenness of soil organic carbon chemical components changes with tree species richness, composition and functional diversity across forests in China. Glob. Chang. Biol. 2023, 29, 2852–2864. [Google Scholar] [CrossRef]
- Soverel, N.O.; Perrakis, D.D.B.; Coops, N.C. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens. Environ. 2010, 114, 1896–1909. [Google Scholar] [CrossRef]
- Giddey, B.L.; Baard, J.A.; Kraaij, T. Verification of the differenced Normalised Burn Ratio (dNBR) as an index of fire severity in Afrotemperate Forest. S. Afr. J. Bot. 2022, 146, 348–353. [Google Scholar] [CrossRef]
- Williamson, G.J.; Ellis, T.M.; Bowman, D.M.J.S. Double-Differenced dNBR: Combining MODIS and Landsat Imagery to Map Fine-Grained Fire MOSAICS in Lowland Eucalyptus Savanna in Kakadu National Park, Northern Australia. Fire 2022, 5, 160. [Google Scholar] [CrossRef]
- Konkathi, P.; Shetty, A. Inter comparison of post-fire burn severity indices of Landsat-8 and Sentinel-2 imagery using Google Earth Engine. Earth Sci. Inform. 2021, 14, 645–653. [Google Scholar] [CrossRef]
- Ippolito, T.; Balkovic, J.; Skalsky, R.; Folberth, C.; Krisztin, T.; Neff, J. Predicting spatiotemporal soil organic carbon responses to management using EPIC-IIASA meta-models. J. Environ. Manag. 2023, 344, 118532. [Google Scholar] [CrossRef] [PubMed]
- Mangan, J.M.; Overpeck, J.T.; Webb, R.S.; Wessman, C.; Goetz, A.F.H. Response of Nebraska Sand Hills Natural Vegetation to Drought, Fire, Grazing, and Plant Functional Type Shifts as Simulated by the Century Model. Clim. Chang. 2004, 63, 49–90. [Google Scholar] [CrossRef]
- Ming, F.D.; Sheng, Z.G.; Ling, J.Y.; Rui, J.B.; Zhu, X.Z.; Hua, S.X. Impact of fire on carbon dynamics of Larix gmelinii forest in Daxing’an Mountains of North-East China: A simulation with CENTURY model. Chin. J. Appl. Ecol. 2012, 23, 2411–2421. [Google Scholar] [CrossRef]
- Chiti, T.; Papale, D.; Smith, P.; Dalmonech, D.; Matteucci, G.; Yeluripati, J.; Rodeghiero, M.; Valentini, R. Predicting changes in soil organic carbon in mediterranean and alpine forests during the Kyoto Protocol commitment periods using the CENTURY model. Soil Use Manag. 2010, 26, 475–484. [Google Scholar] [CrossRef]
- Foereid, B.; Høgh-Jensen, H. Carbon sequestration potential of organic agriculture in northern Europe—A modelling approach. Nutr. Cycl. Agroecosyst. 2004, 68, 13–24. [Google Scholar] [CrossRef]
- Tang, M.; Wang, S.; Zhao, M.; Qin, F.; Liu, X. Simulated Soil Organic Carbon Density Changes from 1980 to 2016 in Shandong Province Dry Farmlands Using the CENTURY Model. Sustainability 2020, 12, 5384. [Google Scholar] [CrossRef]
- Zhang, M.; Nazieh, S.; Nkrumah, T.; Wang, X. Simulating Grassland Carbon Dynamics in Gansu for the Past Fifty (50) Years (1968–2018) Using the Century Model. Sustainability 2021, 13, 9434. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.; Liu, X. Simulation of Grassland SOC under Future-Climate Scenarios in Gansu, China. Land 2023, 12, 1244. [Google Scholar] [CrossRef]
- Wang, X.G.; Li, X.Z.; He, H.S. Long-term effects of different management strategies on Larix gmelinii forests in Great Hing’ an Mountains after the catastrophic fire in 1987. Chin. J. Appl. Ecol. 2008, 19, 915–921. [Google Scholar] [CrossRef]
- Liu, Z.; He, H.S.; Yang, J.; Collins, B. Emulating natural fire effects using harvesting in an eastern boreal forest landscape of northeast China. J. Veg. Sci. 2012, 23, 782–795. [Google Scholar] [CrossRef]
- Pu, F.; Ding, C.; Chao, Z.; Yu, Y.; Xu, X. Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks. Remote Sens. 2019, 11, 1674. [Google Scholar] [CrossRef]
- Chen, H.Y.H.; Lecina-Diaz, J.; Alvarez, A.; Retana, J. Extreme Fire Severity Patterns in Topographic, Convective and Wind-Driven Historical Wildfires of Mediterranean Pine Forests. PLoS ONE 2014, 9, e85127. [Google Scholar] [CrossRef]
- Shuchao, L.; Xiaozhong, C.; Xianlin, Q.; Guifen, S.; Xiaotong, L.I. Remote Sensing Assessment of Forest Fire Damage Degree in Bilahe Forest Farm, Inner Mongolia. For. Resour. Manag. 2018, 1, 90. [Google Scholar] [CrossRef]
- Papuga, K.; Kaszubkiewicz, J.; Wilczewski, W.; Staś, M.; Belowski, J.; Kawałko, D. Soil grain size analysis by the dynamometer method–a comparison to the pipette and hydrometer method. Soil Sci. Annu. 2018, 69, 17–27. [Google Scholar] [CrossRef]
- Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D.S. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands 1. Soil Sci. Soc. Am. J. 1987, 51, 1173–1179. [Google Scholar] [CrossRef]
- Parton, W.J.; Stewart, J.W.B.; Cole, C.V. Dynamics of C, N, P and S in Grassland Soils: A Model. Biogeochemistry 1988, 5, 109–131. [Google Scholar] [CrossRef]
- Meng, S.; Jia, Q.; Zhou, G.; Zhou, H.; Liu, Q.; Yu, J. Fine Root Biomass and Its Relationship with Aboveground Traits of Larix gmelinii Trees in Northeastern China. Forests 2018, 9, 35. [Google Scholar] [CrossRef]
- Widagdo, F.R.A.; Xie, L.; Dong, L.; Li, F. Origin-based biomass allometric equations, biomass partitioning, and carbon concentration variations of planted and natural Larix gmelinii in northeast China. Glob. Ecol. Conserv. 2020, 23, e01111. [Google Scholar] [CrossRef]
- Bellocchi, G.; Rivington, M.; Donatelli, M.; Matthews, K. Validation of biophysical models: Issues and methodologies. A review. Agron. Sustain. Dev. 2010, 30, 109–130. [Google Scholar] [CrossRef]
- Chunwei, T.; Chao, J.; Jianxin, S.; University, B.F. Evaluation of CMIP5 Models Performance on Climate Simulation in Northeast China. Clim. Environ. Res. 2016, 21, 357–366. [Google Scholar] [CrossRef]
- Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Chang. 2011, 109, 117–161. [Google Scholar] [CrossRef]
- Huang, C.; He, H.S.; Hawbaker, T.J.; Liang, Y.; Gong, P.; Wu, Z.; Zhu, Z. A coupled modeling framework for predicting ecosystem carbon dynamics in boreal forests. Environ. Model. Softw. 2017, 93, 332–343. [Google Scholar] [CrossRef]
- Ginestet, C. ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2011, 174, 245. [Google Scholar] [CrossRef]
- Bowden, R.D.; Deem, L.; Plante, A.F.; Peltre, C.; Nadelhoffer, K.; Lajtha, K. Litter Input Controls on Soil Carbon in a Temperate Deciduous Forest. Soil Sci. Soc. Am. J. 2014, 78, S66–S75. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Dong, L.; Li, J.; Wang, X.; Shangguan, Z.; Qu, B.; Deng, L. Dynamics of litter decomposition rate and soil organic carbon sequestration following vegetation succession on the Loess Plateau, China. Catena 2023, 229, 107225. [Google Scholar] [CrossRef]
- Zhou, Y.; Bomfim, B.; Bond, W.J.; Boutton, T.W.; Case, M.F.; Coetsee, C.; Davies, A.B.; February, E.C.; Gray, E.F.; Silva, L.C.R.; et al. Soil carbon in tropical savannas mostly derived from grasses. Nat. Geosci. 2023, 16, 710–716. [Google Scholar] [CrossRef]
- Feng, J.; He, K.; Zhang, Q.; Han, M.; Zhu, B. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Glob. Chang. Biol. 2022, 28, 3426–3440. [Google Scholar] [CrossRef]
- Ahirwal, J.; Gogoi, A.; Sahoo, U.K. Stability of soil organic carbon pools affected by land use and land cover changes in forests of eastern Himalayan region, India. Catena 2022, 215, 106308. [Google Scholar] [CrossRef]
- Wan, Y.; Lin, E.; Xiong, W.; Li, Y.E.; Guo, L. Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agric. Ecosyst. Environ. 2011, 141, 23–31. [Google Scholar] [CrossRef]
- Murphy, B.P.; Russell-Smith, J.; Prior, L.D. Frequent fires reduce tree growth in northern Australian savannas: Implications for tree demography and carbon sequestration. Glob. Chang. Biol. 2010, 16, 331–343. [Google Scholar] [CrossRef]
- Shanin, V.; Komarov, A.; Mäkipää, R. Tree species composition affects productivity and carbon dynamics of different site types in boreal forests. Eur. J. For. Res. 2013, 133, 273–286. [Google Scholar] [CrossRef]
- Schoennagel, T.; Turner, M.G.; Kashian, D.M.; Fall, A. Influence of fire regimes on lodgepole pine stand age and density across the Yellowstone National Park (USA) landscape. Landsc. Ecol. 2006, 21, 1281–1296. [Google Scholar] [CrossRef]
- GonzÁLez, M.E.; Veblen, T.T.; Sibold, J.S. Influence of fire severity on stand development of Araucaria araucana-Nothofagus pumilio stands in the Andean cordillera of south-central Chile. Austral Ecol. 2010, 35, 597–615. [Google Scholar] [CrossRef]
- Hou, G.; Delang, C.O.; Lu, X.; Gao, L. Soil organic carbon storage varies with stand ages and soil depths following afforestation. Ann. For. Res. 2019, 62, 3–20. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
- Liu, T.; Peng, D.; Tan, Z.; Guo, J.; Zhang, Y. Effects of stand density on soil respiration and labile organic carbon in different aged Larix principis-rupprechtii plantations. Ecol. Process. 2021, 10, 1–15. [Google Scholar] [CrossRef]
- Deng, W.; Wang, X.; Hu, H.; Zhu, M.; Chen, J.; Zhang, S.; Cheng, C.; Zhu, Z.; Wu, C.; Zhu, L. Variation Characteristics of Soil Organic Carbon Storage and Fractions with Stand Age in North Subtropical Quercus acutissima Carruth. Forest in China. Forests 2022, 13, 1649. [Google Scholar] [CrossRef]
- Huang, Z.; Clinton, P.W.; Davis, M.R.; Yang, Y. Impacts of plantation forest management on soil organic matter quality. J. Soils Sediments 2011, 11, 1309–1316. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Shi, W.; Yang, H. Litter quality modifies soil organic carbon mineralization in an ecological restoration area. Land Degrad. Dev. 2023, 34, 1806–1819. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Zhang, Y.; He, G.; Wen, S. Spatial distribution of soil organic carbon and its response to forest growth and soil layer in Cunninghamia lanceolata plantations in mid-subtropical China. For. Ecol. Manag. 2023, 545, 121302. [Google Scholar] [CrossRef]
- Chen, F.-S.; Zeng, D.-H.; Fahey, T.J.; Liao, P.-F. Organic carbon in soil physical fractions under different-aged plantations of Mongolian pine in semi-arid region of Northeast China. Appl. Soil Ecol. 2010, 44, 42–48. [Google Scholar] [CrossRef]
- Laganière, J.; Boča, A.; Van Miegroet, H.; Paré, D. A Tree Species Effect on Soil That Is Consistent Across the Species’ Range: The Case of Aspen and Soil Carbon in North America. Forests 2017, 8, 113. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, Y.; Finzi, A.C. Carbon and nitrogen dynamics during forest stand development: A global synthesis. New Phytol. 2011, 190, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Marrs, R.H.; Marsland, E.L.; Lingard, R.; Appleby, P.G.; Piliposyan, G.T.; Rose, R.J.; O’Reilly, J.; Milligan, G.; Allen, K.A.; Alday, J.G.; et al. Experimental evidence for sustained carbon sequestration in fire-managed, peat moorlands. Nat. Geosci. 2018, 12, 108–112. [Google Scholar] [CrossRef]
- Jones, H.P.; Schmitz, O.J. Rapid recovery of damaged ecosystems. PLoS ONE 2009, 4, e5653. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Keenan, T.F.; Smith, M. Predictability of the terrestrial carbon cycle. Glob. Chang. Biol. 2014, 21, 1737–1751. [Google Scholar] [CrossRef]
- Magnani, F.; Mencuccini, M.; Borghetti, M.; Berbigier, P.; Berninger, F.; Delzon, S.; Grelle, A.; Hari, P.; Jarvis, P.G.; Kolari, P.; et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 2007, 447, 849–851. [Google Scholar] [CrossRef]
- Assefa, D.; Rewald, B.; Sandén, H.; Rosinger, C.; Abiyu, A.; Yitaferu, B.; Godbold, D.L. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena 2017, 153, 89–99. [Google Scholar] [CrossRef]
- Li, D.; Niu, S.; Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol. 2012, 195, 172–181. [Google Scholar] [CrossRef]
- Song, X.; Peng, C.; Zhou, G.; Jiang, H.; Wang, W. Chinese Grain for Green Program led to highly increased soil organic carbon levels: A meta-analysis. Sci. Rep. 2014, 4, 4460. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, A.; Hosseini, S.M.; Massah Bavani, A.R.; Jafari, M.; Francaviglia, R. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Sci. Total Environ. 2017, 599–600, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
- Mondini, C.; Coleman, K.; Whitmore, A.P. Spatially explicit modelling of changes in soil organic C in agricultural soils in Italy, 2001–2100: Potential for compost amendment. Agric. Ecosyst. Environ. 2012, 153, 24–32. [Google Scholar] [CrossRef]
- Volk, M.; Suter, M.; Wahl, A.-L.; Bassin, S. Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment. Biogeosciences 2022, 19, 2921–2937. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Kiely, G. Modeling the change in soil organic carbon of grassland in response to climate change: Effects of measured versus modelled carbon pools for initializing the Rothamsted Carbon model. Agric. Ecosyst. Environ. 2011, 140, 372–381. [Google Scholar] [CrossRef]
- Wu, C.; Coffield, S.R.; Goulden, M.L.; Randerson, J.T.; Trugman, A.T.; Anderegg, W.R.L. Uncertainty in US forest carbon storage potential due to climate risks. Nat. Geosci. 2023, 16, 422–429. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, F.; Qi, J.; Hou, F. Modeling impacts of climate change and grazing effects on plant biomass and soil organic carbon in the Qinghai–Tibetan grasslands. Biogeosciences 2017, 14, 5455–5470. [Google Scholar] [CrossRef]
- Kim, H.-R.; Kim, K.-H.; Yu, S.; Moniruzzaman, M.; Hwang, S.-I.; Lee, G.-T.; Yun, S.-T. Better assessment of the distribution of As and Pb in soils in a former smelting area, using ordinary co-kriging and sequential Gaussian co-simulation of portable X-ray fluorescence (PXRF) and ICP-AES data. Geoderma 2019, 341, 26–38. [Google Scholar] [CrossRef]
- Ceddia, M.B.; Villela, A.L.O.; Pinheiro, É.F.M.; Wendroth, O. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil. Sci. Total Environ. 2015, 526, 58–69. [Google Scholar] [CrossRef]
- Tziachris, P.; Metaxa, E.; Papadopoulos, F.; Papadopoulou, M. Spatial Modelling and Prediction Assessment of Soil Iron Using Kriging Interpolation with pH as Auxiliary Information. ISPRS Int. J. Geo-Inf. 2017, 6, 283. [Google Scholar] [CrossRef]
- Johnson, K.D.; Harden, J.; McGuire, A.D.; Bliss, N.B.; Bockheim, J.G.; Clark, M.; Nettleton-Hollingsworth, T.; Jorgenson, M.T.; Kane, E.S.; Mack, M.; et al. Soil carbon distribution in Alaska in relation to soil-forming factors. Geoderma 2011, 167–168, 71–84. [Google Scholar] [CrossRef]
- Dieleman, W.I.J.; Venter, M.; Ramachandra, A.; Krockenberger, A.K.; Bird, M.I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 2013, 204–205, 59–67. [Google Scholar] [CrossRef]
- Smith, J.U.; Smith, P.; Monaghan, R.; MacDonald, A.J. When is a measured soil organic matter fraction equivalent to a model pool? Eur. J. Soil Sci. 2002, 53, 405–416. [Google Scholar] [CrossRef]
- Sohi, S.P.; Mahieu, N.; Arah, J.R.M.; Powlson, D.S.; Madari, B.; Gaunt, J.L. A Procedure for Isolating Soil Organic Matter Fractions Suitable for Modeling. Soil Sci. Soc. Am. J. 2001, 65, 1121–1128. [Google Scholar] [CrossRef]
Severity | ||||
---|---|---|---|---|
Unburned | Low | Medium | High | |
SOC (t/ha) | 62.01 ± 4.18 | 63.71 ± 3.94 | 64.41 ± 2.62 | 65.52 ± 1.62 |
pH | 5.74 ± 0.17 | 5.64 ± 0.18 | 5.65 ± 0.22 | 5.83 ± 0.19 |
Density (g/cm3) | 1.09 ± 0.07 | 1.07 ± 0.08 | 1.11 ± 0.10 | 1.08 ± 0.08 |
Parameters | Parameters Value | Description |
---|---|---|
PRDX (1) | 350.000 | Monthly potential maximum productivity (g/m2) |
PPDF (1) | 15.000 | Optimum temperature for production (°C) |
PPDF (2) | 36.000 | Maximum temperature for production (°C) |
PPDF (3) | 1.000 | Left arc of temperature response curve |
PPDF (4) | 3.500 | Right arc of temperature response curve |
Fire Severity | Ratio of Aboveground Live Tissues Removed | Ratio of Underground Live Tissues Removed | Ratio of Dead Tissues Removed | ||||
---|---|---|---|---|---|---|---|
Leaves | Fine Branch | Large Wood | Coarse Root | Fine Root | Dead Fine Branch | Dead Large Wood | |
Low | 0.350 | 0.300 | 0.325 | 0.325 | 0.325 | 0.350 | 0.325 |
Medium | 0.700 | 0.650 | 0.525 | 0.525 | 0.525 | 0.700 | 0.525 |
High | 0.950 | 0.900 | 0.825 | 0.825 | 0.825 | 0.950 | 0.825 |
Fire Severity | Ratio of Organics Removed | Enhanced Effect of Fire to C/N of the Above- and Underground Live Tissues | Enhanced Effect of Fire to the Root/Stem Ratio | |||
---|---|---|---|---|---|---|
Standing Wood | Surface Litter | Aboveground Live Tissues | Aboveground | Fine Root | Underground | |
Low | 0.350 | 0.300 | 0.325 | 0.325 | 0.325 | 0.350 |
Medium | 0.700 | 0.650 | 0.525 | 0.525 | 0.525 | 0.700 |
High | 0.950 | 0.900 | 0.825 | 0.825 | 0.825 | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Yu, C.; Dou, X.; Zhang, Y.; Li, G.; Sun, L. Simulation of Soil Organic Carbon Dynamics in Postfire Boreal Forests of China by Incorporating High-Resolution Remote Sensing Data and Field Measurement. Fire 2023, 6, 414. https://doi.org/10.3390/fire6110414
Hu T, Yu C, Dou X, Zhang Y, Li G, Sun L. Simulation of Soil Organic Carbon Dynamics in Postfire Boreal Forests of China by Incorporating High-Resolution Remote Sensing Data and Field Measurement. Fire. 2023; 6(11):414. https://doi.org/10.3390/fire6110414
Chicago/Turabian StyleHu, Tongxin, Cheng Yu, Xu Dou, Yujing Zhang, Guangxin Li, and Long Sun. 2023. "Simulation of Soil Organic Carbon Dynamics in Postfire Boreal Forests of China by Incorporating High-Resolution Remote Sensing Data and Field Measurement" Fire 6, no. 11: 414. https://doi.org/10.3390/fire6110414
APA StyleHu, T., Yu, C., Dou, X., Zhang, Y., Li, G., & Sun, L. (2023). Simulation of Soil Organic Carbon Dynamics in Postfire Boreal Forests of China by Incorporating High-Resolution Remote Sensing Data and Field Measurement. Fire, 6(11), 414. https://doi.org/10.3390/fire6110414