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Abstract: Background-oriented Schlieren tomography (BOST) is widely used for 3D reconstruction
of turbulent flames. Two major concerns are associated with 3D reconstruction. One is the time asyn-
chrony within the data acquisition of the high-speed camera. The other is that the ray tracing process
requires significant computational consumption. This study proposes a ray tracing optimization
method based on the k-d tree. The study results show that the average search nodes for each ray are
only 0.018% of 3D flame with 3.07 million grid nodes. In addition, a parameter estimation method
of the unknown azimuth power spectrum function is proposed. First, a typical Sandia turbulent
jet diffusion flame dataset was built and validated accordingly, with experiments. The algorithm’s
applicability to the 3D reconstruction of temperature and density fields is discussed on this basis. The
root-mean-square error (RMSE) of the cross-section density for 3D reconstruction is below 0.1 kg/m3.
In addition, the RMSE of the cross-section temperature is below 270 K. Finally, an uncertainty analysis
of the flame reconstruction based on a physical model is performed by optimizing the ray tracing
method. For the time asynchronous variance of 1 ms, the density uncertainty of the 3D reconstruction
is below 1.6 × 10−2 kg/m3, and the temperature uncertainty is below 70 K. The method can provide
an essential basis for the design of BOST systems and the 3D reconstruction of turbulent flames.

Keywords: background-oriented Schlieren tomography (BOST); time asynchrony; ray tracing; mea-
surement uncertainty; flame 3D reconstruction

1. Introduction

There are many flame measurement aspects in gas turbines [1], combustors [2], engine
combustion chambers [3,4], and other devices, including the density [5], temperature [6],
and composition [2] fields. Commonly used methods include physical measurement and
optical measurement methods. Optical imaging measurements do not alter the flame
structure and reaction processes [5] because of the non-invasive, global measurement, and
real-time character. Therefore, optical measurement methods are widely used in large-scale
three-dimensional (3D) multi-physics reconstruction [5].

Three-dimensional (3D) flame reconstruction using optical methods has been famous
for decades, including the scanning laser sheet [7], light field imaging [8–11], volume
tomography (VT) [12,13] and background-oriented Schlieren tomography (BOST) [2,5]. In
these methods, BOST can obtain multi-position and multi-angle flame imaging information.
Therefore, it is widely used to reconstruct 3D flame fields with high spatial resolution [6,14]
and continuous tomography [15,16]. Cost-effective BOST systems [2,5,16,17] and high-
efficiency 3D reconstruction algorithms [2,6,14,18] have become the leading research trends
in previous BOST studies. For the cost-effective BOST system, they aimed to obtain a reliable
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3D reconstruction of the flow field using a few cameras. Due to the reduction of cameras
in the observation circle, the 3D reconstruction of unknown directions is unsatisfactory.
Some studies use regularization and least squares methods to overcome shortcomings. The
essence of these methods is to estimate the parameters of unknown orientations. Therefore,
it is necessary to develop estimation methods for unknown orientation parameters, as this
determines the accuracy of the three-dimensional reconstruction results. In addition, the
turbulent flames have high order and strong fluctuations [3], leading to the time asynchrony
for the flame field inversion with multi-cameras. Several methods have been applied to
overcome the time asynchronous problems, including the Tikhonov, total variation priors,
and regularization methods under the Bayesian framework [2]. However, a physical model
for investigating the uncertainties of flame reconstruction induced by the time asynchrony
is still lacking. This mainly originated from the vast computational consumption of forward
ray tracing processes in the current 3D reconstruction algorithms, including the algebraic
reconstruction technology [2,5,13] and Radon transform [19]. For example, a single 3D
reconstruction calculation requires around 60 min [5]. Therefore, the optimization of the
forward ray tracing process is an urgent problem.

For the above two problems, we present (1) a bicubic interpolation method for polar
coordinate systems to realize unknown orientation parameters estimation in 3D flame
reconstruction with the low number of cameras and (2) perform an uncertainty analysis
of flame reconstruction based on the physical model though the k-d tree accelerating
ray tracing.

The organization of this study is as follows: Section 2 presents the detailed principles
and procedures of the model. Section 3 describes the turbulent flame dataset and performs
the corresponding validation. In Section 4, first, the efficiency of the ray tracing algorithm
is evaluated. The acceleration of its algorithm is discussed using time complexity. Then, the
accuracy and reliability of the power spectral function estimation method with unknown
orientation are verified. Finally, the influence of measurement uncertainty due to detector
time asynchrony for a typical BOST system is discussed.

2. Model
2.1. Tomography System Based on Background Schlieren Technology

The background-oriented Schlieren tomography system reconstructs the refractive
index field n based on the refractive index gradient ∇n of the medium. The temperature
and composition of the medium determine the refractive index. By measuring the distortion
effect of the image, the optical flow algorithm is used to infer the light deflection in a fixed
direction in the flow field.

Based on the above principles, the background-oriented Schlieren tomography system
can be divided into three aspects, including the Gladstone–Dale relation, the ray equation
in inhomogeneous media, and the measurement model. A typical BOST system is shown
in Figure 1.
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Figure 1. Schematic diagram of 3D reconstruction of background-oriented Schlieren tomography
system.

2.1.1. Gladstone–Dale Relation

The refractive index and density of gas are determined by the Gladstone–Dale rela-
tionship [20],

n = 1 + KGDρ, (1)

where, n is the refractive index of the gas. KGD is the Gladstone–Dale coefficients. The
values for different gases are shown in Table 1. ρ is the gas density.

Table 1. Molecular weights and Gladstone–Dale coefficients of typical gases [2].

Species Molecular Weight [kg/kmol] KGD×10−4 [m3/kg]

CO 28.00 2.67
CO2 44.01 2.26
H2O 18.02 3.12
O2 32.00 1.89
N2 28.01 2.38
Air 28.96 2.26

2.1.2. Ray Equation in Inhomogeneous Media

The flame flow field is a non-uniform medium. Its internal ray path is determined
by the refractive index and the refractive index gradient. During background-oriented
Schlieren measurement, the ray transmission path of the camera can be determined by the
light equation [20],

d
ds

(n(r)
dr
ds

) = ∇n(r), (2)

where r represents the position vector of the unit light path. n(r) and ∇n(r) represent the
refractive index and the refractive index gradient at the position vector r, respectively. ds
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represents the increment on the ray propagation path. dr/ds is the unit vector of the light
transmission direction. With n(r) ' 1, the above formula can be simplified to,

ε =
∫
∇n(r)ds, (3)

where ε =
[
εx, εy, εz

]T is the deflection of the ray trace in the inhomogeneous medium.
This is also the basis for reconstructing the flame temperature and the density field based
on the BOST system.

2.1.3. Measurement Model

Through the correlation between the standard background and the flame background
Schlieren background plane, the light displacement of the camera coordinate system in a
fixed direction can be calculated. According to the displacement vector ∆sc of the fixed
pixel in the camera CCD plane, the ray deflection angle εc =

[
εxc, εyc

]T in the camera
system can be determined by the following formula [5],

εc =

(
Lc

Lb
+ 1
)

∆sc

f
, (4)

where Lc is the distance between the flame and the entrance pupil surface of the detector.
Lb is the distance between the background plate and the flame. ∆sc = [∆x, ∆y]T is the
displacement vector on the CCD plane. f is the focal length of the detector. The relevant
parameter descriptions are shown in Figure 1.

2.2. Three-Dimensional Reconstruction

The three-dimensional reconstruction of the flow field based on the image information
obtained by the BOST system is mainly divided into two categories of methods. One is
the voxel-based algebraic inversion method. The other is the inversion method based
on Radon transform. The voxel-based algebraic inversion method has problems such
as discrete underdetermination and insufficient matrix rank [13]. Therefore, it is often
necessary to use a regularization method to smooth the inversion space. The inversion
method based on Radon transform has strict mathematical proof and the algebraic solution
space is closed [19]. Radon transform can obtain more refined turbulence physics [19], but
it has higher requirements on the number of cameras collected. Overall, these two types of
methods need to involve four steps: a ray tracing algorithm in the flow field, a coordinate
system transformation, inversion boundary conditions, and an algebraic solution model.

2.2.1. Ray Tracing Algorithm in 3D Flame Flow Field Based on kd Tree

Ray tracing within a flow field is the basis for 3D reconstruction. For the 3D reconstruc-
tion of the flame flow field, the ray traces in the flow field occupy most of the time in the
inversion process. Therefore, to improve the efficiency of 3D reconstruction, a ray tracing
model based on the kd tree method is adopted. This method can improve the efficiency
of ray tracing in the flow field. The specific schematic diagram is shown in Figure 1. The
following mapping fkd is established for spatially discrete node numbers ni,

fkd :
[
nil nir nip nic

]
= f ni

kd(ni), (5)

where f ni
kd is the kd tree mapping corresponding to the node number ni. nil and nir are the

left and right node numbers of the next layer. nip is the number of the parent node of the
previous layer. nic is the space cutting direction of the current node, and its values are 1,
2, and 3. They represent space cuts along the x-axis, y-axis, and z-axis, respectively. The
overall search algorithm process is shown in Table 2.
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Table 2. Kd tree search algorithm.

Kd Tree Search Algorithm

(1) Query the coordinates to be measured starting from the entry root node, and access the
Kd-Tree downwards according to the comparison results of the coordinates to be measured
and each node until the end of the Kd tree is reached.

(2) Perform a backtracking operation, which is to find the “nearest neighbor” that is closer to
the coordinates to be measured. That is to judge whether there are points closer to the
coordinates to be measured in the branch that has not been visited, and the distance
between them is smaller than the minimum value of the current node.

(3) If the space distance on the other side of the backtracking branch to the current node is less
than the current minimum value, the backtracking calculation will stop.

2.2.2. Coordinate System Transformation

The vector radius rp of the CCD plane in the global coordinate system is represented
as follows:

rp =
[
(Lc + Lp) · cos θ, (Lc + Lp) · sin θ, zp

]T, (6)

where Lc is the distance between the flame and the entrance pupil of the detector. Lp
is the distance between the CCD plane and the detector entrance pupil plane. θ is the
detector observation azimuth. zp is the height of the detector. The conversion relationship
in Figure 1 between the coordinates Xp : xpypzp in the CCD plane and the global coordinate
system X : xyz is as follows:

Xp = M
(
X− rp

)
, (7)

where M is the coordinate transformation matrix, which is defined as follows:

M =

 sin θ − cos θ 0
0 0 1

− cos θ − sin θ 0

, M−1 = MT. (8)

In the same way, the conversion relationship of the ray deflection vector between the
CCD plane and the global coordinate system is as follows:

εp = Mε, (9)

where εp =
[
εpx εpy εpz

]T , according to the imaging relationship εcx = εpx and εcy = εpy.

2.2.3. Algebraic Reconstruction Method Based on Radon Transform

The BOST system can obtain the deflection information in the circumferential observa-
tion at any height layer. When the observation camera is far enough away from the flame
and the diameter of the flame is small enough, the overall observation system satisfies
the paraxial condition. The deflection information of any pixel in the flow field satisfies
the approximately parallel condition. Therefore, the deflection signal obtained by the
corresponding pixel number (i, j) under the detector azimuth angle θ can be expressed
as follows:

εz = εcy
(
i, j, zj, θ

)
=
∫

∂n
∂z

ds, (10)

where zj is the height values of slices at different heights. According to the deflection angle
information obtained by slices at different heights and viewing directions, the refractive in-
dex gradient power spectral density F

(
kx, ky, zj

)
, in different height layers can be obtained,

which can be expressed as follows:

F
(
kx, ky, zj

)
=
∫ ∞

−∞
εz(s, α)e−iksds, (11)
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where k =
[
kx ky

]T is the spatial wave number corresponding to the power spectral
density function with kx = k cos α and ky = k cos α. s represents the integration path
perpendicular to the ray direction. α is the azimuth angle corresponding to the integration
path, and the relationship between it and the azimuth angle of the camera is α = θ − π/2.
Then the refractive index gradient value on any height slice can be expressed as:

∂n
(

x, y, zj
)

∂z
=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
F
(
kx, ky, zj

)
ei(kx x+kyy)dkxdky. (12)

Note that the integral of the Equation (11) is the integral in the rectangular coordinate
system. For Equation (11), the power spectral density function in polar coordinates can be
obtained. In order to obtain the power spectral density corresponding to different spatial
wave numbers in the Descartes coordinate system, the grid data needs to be interpolated
accordingly. In order to ensure the continuity of the power spectral density field, this article
uses bicubic interpolation,

F
(
kx, ky, zj

)
=

3

∑
i=0

3

∑
j=0

a(k, α)ijkx
iky

j, (13)

where a(k, α)ij is the bicubic interpolation coefficient in the grid interval where the spatial
wave number is k and the integrated azimuth angle is α. According to the data in the
interpolation interval, the interpolation coefficient matrix A = a(k, α)ij can be defined to
satisfy the following relationship:

F
(
kx, ky, zj

)
=
[

1 kx kx
2 kx

3 ]A[1 ky ky
2 ky

3]T

Fkx

(
kx, ky, zj

)
=
[

0 kx 2kx 3kx
2 ]A[1 ky ky

2 ky
3]T

Fky

(
kx, ky, zj

)
=
[

1 kx kx
2 kx

3 ]A[0 ky 2ky 3ky
2]T

Fkxkx

(
kx, ky, zj

)
=
[

0 0 2 6kx
]
A
[
1 ky ky

2 ky
3]T

Fkxky

(
kx, ky, zj

)
=
[

0 kx 2kx 3kx
2 ]A[0 1 2y 3y2]T

Fkyky

(
kx, ky, zj

)
=
[

1 kx kx
2 kx

3 ]A[ 0 0 2 6ky
]T

, (14)

where F is the power spectrum function on the height slice. Fkx and Fky are the first
derivatives of the power spectral density function. Fkxkx , Fkxky , and Fkyky are the second
derivatives of the power spectral density function. For a grid interval with four nodes,
there are 24 equations. It is necessary to use the pseudo-inverse method to solve the
undetermined coefficient matrix. In addition, since the power spectrum function described
by Equation (11) has the form of polar coordinates, it needs to be converted into the
corresponding rectangular coordinate form as follows:

Fkx = Fk cos α− Fα
sin α

k
Fky = Fk sin α + Fα

cos θ
k

Fkxkx = Fkk cos2 α− Fkα
sin 2α

k + Fαα
sin2 α

k2 + Fα
sin 2α

k2 + Fk
sin2 α

k
Fkxky = Fkk cos α sin α− Fkα

sin2 α
k + Fα

sin2 α
k2 + Fkα

cos2 α
k

−Fk
sin α cos α

k − Fαα
sin α cos α

k2 − Fα
cos2 α

k2

Fkyky = Fkk sin2 α + Fkα
sin 2α

k + Fαα
cos2 α

k2 − Fα
sin 2α

k2 + Fk
cos2 α

k

, (15)

where Fk and Fα are the first derivatives of the power spectral density function. Fkk, Fkα,
and Fαα are the second derivatives of the power spectral density function.
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2.2.4. Reconstruction of 3D Flame Field

According to the refractive index gradients in different height layers obtained by
inversion, given the initial boundary conditions, the refractive index at different positions
can be obtained,

n(x, y, z) = n0(x, y, z0) +
∫ z

z0

∂n(x, y, z)
∂z

dz, (16)

where n0(x, y, z0) is the initial value of the inverted flame refractive index field under the
condition of height z0. From the refractive index field n(x, y, z) in three-dimensional space,
the density field ρ(x, y, z) at any position can be reconstructed. The conditions of the ideal
gas assumption, the temperature field is determined by the following formula [5]:

T = PM/ρR, (17)

where P is the pressure of the gas. M is molar mass. R is the specific gas constant.

2.3. Time Complexity of Ray Tracing

The ray tracing process involves many physical parameter searches, which involves
the search process of the grid where the node is located or the nearby nodes. The average
time complexity of the algorithm is defined as [21]:

ω =
1

Nr

Nr

∑
s=1

ns, (18)

where ns is the number of grids or nodes when each ray searches the physical parameters
on the ray path. Nr is the number of nodes on the ray path.

2.4. Uncertainty Evaluation of 3D Reconstruction

In past 3D reconstruction studies, in order to evaluate the accuracy of 3D reconstruction
models, relative error (RE), mean absolute error (MAE), mean squared error (MSE), root
mean square error (RMSE), and type A uncertainty (uA) is widely used as an indicator
to evaluate model accuracy. The flame flow field is characterized by a small span of
density values and a large range of temperature field values. Therefore, RE and MAE
are not objective indicators for evaluating 3D reconstruction results. In addition, type A
uncertainty is often used to describe the estimate of the variance of a random process with
a normal distribution. In addition, to describe the reconstruction of slices in the flow field,
the RMSE and MSE are often used. Therefore, the RMSE was chosen as the evaluation
metric when assessing the reconstruction of the density and temperature fields,

RMSE(ρ̃) =

√
1
m

m

∑
i=1

(ρi − ρ̃i)
2 (19)

RMSE
(

T̃
)
=

√
1
m

m

∑
i=1

(
Ti − T̃i

)2
, (20)

where RMSE(ρ̃) and RMSE
(

T̃
)

are the reconstructed root mean square errors of the 3D
density and temperature fields. m is the number of sample points in the observation
area. ρi and Ti are the true values of the density and temperature fields. ρ̃i and T̃i are the
reconstructed values of density and temperature fields. During the sample measurement
process, the data acquisition camera time is asynchronous. Therefore, the acquisition
moments of different cameras often have the characteristics of normal distribution. To
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describe the uncertainty impact of camera time asynchrony, type A uncertainty is used as
an evaluation parameter for this process [21],

uA(ρ) =

√√√√ 1
N(N − 1)

N

∑
i=1

[ρi − ρi]
2 (21)

uA(T) =

√√√√ 1
N(N − 1)

N

∑
i=1

[
Ti − Ti

]2, (22)

where uA(ρ) and uA(T) are the uncertainty of the 3D reconstruction due to the time
asynchrony of the camera. N is the number of experiments. ρi and Ti are the density
and temperature field values obtained by the reconstruction. ρi and Ti are the average of
multiple three-dimensional reconstructions.

3. Turbulent Flame Dataset

To investigate the effect of camera time asynchrony on the 3D reconstruction of a BOST
system, the Sandia turbulent jet diffusion flame [22,23] was chosen in this paper. It is an
unrestricted turbulent diffusion flame under standard atmospheric conditions [23]. The
fuel used was pure ethylene [23]. The radius of the main jet pipe was D = 3.2 mm, and the
corresponding flow rate was 54.7 m/s. The radius of the surrounding companion flow pipe
was 7.6 mm. for the pilot flame, a flame temperature equivalent to 2296 K was applied and
the corresponding flow rate was 7.04 m/s [24–26]. The flow field computational domain is
discretized into 3.06 million cells and 3.07 million nodes. The flame flow field in this paper
is based on coupled large eddy simulation (LES). The calculated time step is 0.1 ms. The
time range considered is 0~0.1 s. The use of a free-space jet turbulent flame dataset is used
to analyze the effect of time asynchrony on the reconstruction of the BOST system.

Figure 2 shows the results of instantaneous flame field with respect to temperature and
density for a typical combustion time. Figure 2a is the temperature field and Figure 2b is the
density field. Typical combustion times considered in Figure 2 are 0.05 s, 0.075 s, and 0.1 s.
The results show that the values of the overall temperature are in the range of 300 to 2200 K,
which is consistent with the reference [23]. In order to verify the accuracy of our simulation
dataset, we validated the dataset by comparing experiments [27] and simulations [26].
Figure 3 compares experimental and simulation results with the simulation dataset for
radial mean and RMS temperature distributions at z/D = 134 and z/D = 165. The selected
combustion time was 0.09~0.1 s with a time step of 1 ms and 11-time sampling points.
The flame is already in a dynamic flame quasi-steady state on a time-averaged scale. In
addition, the spatial step is D. Overall, the dataset has good predictions of mean and RMS
temperature at both height sections. It is noted that the mean value of the temperature is
low in the off-radial direction of the temperature. The reason is that we have chosen a low
premixed flame flow rate compared to the experimental conditions, as it is vital for the
time-averaged results of the temperature calculations. In addition, the RMS temperature
of the dataset in this paper is much closer to that of the experiment [27]. A good RMS
temperature agreement is essential for the time asynchronous analysis.
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Figure 3. Comparison of mean and RMS temperature with experiment [27] and simulation [26].
(a) mean temperature, z/D = 134. (b) RMS temperature, z/D = 134. (c) mean temperature, z/D = 165.
(d) RMS temperature, z/D = 165.

4. Results and Discussion

The corresponding 3D reconstruction algorithms are introduced in Section 2. For the
BOST system, it is reported that the current primary hardware system includes 8~23 cam-
eras [2,5,13] with a time resolution of 300~1000 µs [2,5,13]. A typical circular array camera
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distribution is selected for corresponding data acquisition in this study, and the specific
camera parameters are shown in Table 3. The circumferential angular separation of neigh-
boring cameras is 10◦. The circumferential radius of the camera array is 5 m. Combined
with the BOST deflection information of different cameras, the 3D reconstruction of the
turbulent flame density and temperature field can be performed.

Table 3. BOST system parameters.

Parameter Value

camera frequency 104 Hz Aperture F number 2
Number of cameras 18 Circumferential radius 5 m

number of pixels 640, 480 focal length 50 mm
pixel size 4.4 µm, 4.4 µm Field of view 14.7◦, 11.0◦

4.1. Time Complexity of Ray Tracing in 3D Flame Field

A central aspect of the 3D reconstruction of the flow field by the BOST system is
the calculation of ray tracing around the flow field. This process consumes most of the
computational time to determine the angle of deflection of the BOST system obtained by the
camera. In Section 2.2.1, the kd-tree based ray tracing algorithm is introduced in this work.
To evaluate the computational acceleration effect of this algorithm on the reconstruction
process, in Section 2.3, the evaluation model for analyzing the acceleration effect in a 3D
flame flow field is developed, i.e., the time complexity. The flame dataset which is described
in Section 3 is selected. The time complexity of ray tracing in different regions of a 3D flame
is discussed. The results of the time complexity study are shown in Figure 4. Figure 4a
shows the distribution of time complexity corresponding to different regions of the BOST
system in a 3D flame. For the 3D flame field reconstruction process with 3.07 million grid
nodes, the time complexity per ray is below 2300. This indicates that the average number
of spatial nodes searched per ray is less than 2300 in this process. In addition, in order to
analyze the distribution of time complexity in the global ray, a regression in the form of a
normalized probability density distribution function was performed, and the results of the
statistics are shown in Figure 4b. The results of the regression show that the probability
density distribution of time complexity conforms to a distribution with a mean of 557.7 and
a variance of 87.3. Overall, the average number of nodes per ray search is only 0.018% of
the global number of nodes. This is significantly better than unoptimized search algorithms
such as linear search methods. In addition, in some other studies of background ripple
shadowing algorithms. For example, the research in [28] used the corresponding k-d tree
algorithm to accelerate the cone-winding ripple shadow calculation, which confirms the
accelerating effect of the k-d tree on the ray tracing. Based on the above analysis, the kd-
tree search algorithm is an important optimization aspect for the 3D flame reconstruction
process; it can significantly improve the computational efficiency of the ray tracing link in
the 3D reconstruction process.

4.2. 3D Reconstruction of Turbulent Flames Using the BOST System

Based on the Sandia turbulent jet diffusion flame, an accuracy study of the 3D recon-
struction algorithm is carried out in this paper to illustrate the unknown azimuthal power
spectrum estimation method. The combustion times of the flames were chosen to be 0.055 s,
0.075 s, and 0.095 s, respectively. Slices of the original flame at different heights are shown
in Figure 5. Among them, the whole is divided into 7 layers, and the heights of the selected
slices correspond to 0.1~0.7 m, with a step size of 0.1 m. The overall density distribution is
demonstrated in Figure 5a. The overall temperature distribution is shown in Figure 5b.
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Based on the information of the density field distribution in Figure 5, the correspond-
ing simulation calculation of the background-oriented Schlieren is carried out. The results
of the specific background-oriented Schlieren simulation calculation are shown in Figure 6.
Figure 6 illustrates the amount of background-oriented Schlieren deflection of the Sandia
turbulent jet diffusion flame obtained from different azimuthal cameras, where the corre-
sponding jet time is 0.075 s. The overall total is divided into 18 observation directions with
azimuths corresponding to 0~170◦ in 10◦ steps. All cameras are coplanar in the primary
view direction. εx and εy represent the amount of deflection in both directions of the camera
body coordinate system, with values in the range −1.5× 10−3~1.5× 10−3.
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Figure 6. Camera’s background-oriented Schlieren deflection angle for different viewing azimuths.

Based on the background-oriented Schlieren deflection information in Figure 6. The
corresponding 3D reconstruction calculations of the flame density and temperature field
were carried out using the 3D reconstruction method of Section 2. The 3D reconstruction re-
sults are shown in Figure 7. Figure 7 shows the results of the density and temperature fields
of the Sandia turbulent jet diffusion flame obtained using the Radon transform. Figure 7a
shows the density field information of the 3D reconstruction. Comparison with Figure 5
shows that the reconstruction results are good. Figure 7b shows the temperature field
information of 3D reconstruction. Comparing with Figure 5, the temperature distribution is
basically the same. However, there are large fluctuations within the reconstructed tempera-
ture field, which is caused by the truncated spatial wave number of the Radon transform
neglecting a portion of the low frequency features. However, there are large fluctuations
within the reconstructed temperature field, and these results have a similar phenomenon to
the previous study [2,5,13,16], i.e., there are still some fluctuations in unknown directions
and different circumferences. This phenomenon occurs because the truncated spatial wave
number of the Radon transform neglects some of the low-frequency features. Overall, the
results show that the 3D reconstruction algorithm in this study can successfully reconstruct
the main characteristics of the 3D flow field.
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Figure 7. Three-dimensional (3D) reconstruction of the temperature and density fields of the Sandia
flame based on a power spectral density estimation method in a polar coordinate system. Height
layers 1 to 7 correspond to heights of 0.1 to 0.7 m, respectively, in steps of 0.1 m. (a) Density field,
(b) temperature field.

To analyze the accuracy of the reconstruction algorithm on slices of different heights.
In this study, the average RMSE of the slices is used as an index to evaluate the accuracy
of 3D reconstruction. Figure 8 shows the RMSE of the density and the temperature corre-
sponding to combustion times of 0.055 s, 0.065 s, 0.075 s, 0.085 s and 0.095 s, respectively.
Figure 8a shows the RMSE of the cross-section-averaged density corresponding to different
combustion times. Figure 8b shows the RMSE of the cross-section-averaged temperature
corresponding to different combustion times. The RMSE of the density is below 0.1 kg/m3.
The RMSE of the temperature is below 270 K. Overall, the relative error of the density
reconstruction is below 8.67%, and the relative error of the temperature is below 11.42%,
the same order of magnitude as the existing studies [5,29]. The results indicate the good
applicability of the unknown orientation estimation method. Based on these results, it
is overall shown that the reconstructed and original values of the flame flow field are in
good agreement.
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4.3. Uncertainty of 3D Reconstruction with Time Asynchrony

When using the BOST system for the 3D reconstruction of the flow field, the number
of cameras is often increased to obtain higher dimensional information to obtain more
information about the deflection angle. One concern is that increasing the number of
cameras increases the time-asynchronous characteristics of the BOST system. To analyze
the impact on the 3D reconstruction’s accuracy due to the camera time asynchrony, the
flame flow field with a combustion center moment of 0.075 s is selected in this section for
the corresponding reconstruction error mechanism analysis, which is due to the relatively
stable combustion state at this time. There are fluctuations in the flame. Commonly used
data acquisition intervals range from 300 to 1000 µs [2,5,13]. The period for performing
data acquisition was 0.1 ms. It is assumed that the camera’s observation time asynchrony
satisfies a normal distribution. The standard deviations of the normal distribution are
0.1 ms, 0.5 ms and 1 ms. The overall 3D reconstruction was performed in 50 sessions. There
are 18 cameras for data acquisition with a total of 900 camera data. Figure 9 illustrates the 3D
reconstruction uncertainty due to camera time asynchrony in 3D reconstruction. Figure 9a,b
show the mean deviation of the slices in the result of 3D reconstruction by comparing
different temporal variances with zero variance. Figure 9c,d show the average uncertainty
at different height slices for different time variances. The mean uncertainty of the slices
for density is below 8× 10−3kg/m3. The mean uncertainty of the slice for temperature
is below 20 K. Figure 9e shows the uncertainty distribution of the 3D reconstruction
results at different height, where the height slices correspond to 0.1 m, 0.3 m and 0.5 m,
respectively. In addition, the selected time variance is 1 ms. Overall, the uncertainty in
density is within the range 0~1.6× 10−2kg/m3. The uncertainty of the temperature is
within the range 0~70 K. This order of magnitude is a significant source of error compared
to existing experimental measurements [5]. Figure 9f shows the frequency distribution data
of off-center moments during the 3D reconstruction process. Overall, the different time
variances satisfy the normal distribution characteristics. The results show that, as the time
variance increases, the uncertainty in the 3D reconstruction starts to increase due to the
fluctuation effect of the flame. For most of the 3D reconstructed locations, the effect of a
time-asynchronous variance of 1 ms is, overall, acceptable. For some of the temperature 3D
reconstruction results, the time asynchrony leads to a sharp increase in the uncertainty. The
3D reconstruction error increases significantly.
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Figure 9. Effect of time asynchrony on 3D reconstruction in the BOST system with a combustion time
of 0.075 s. (a) Density reconstruction compared to fully time-synchronized slice-averaged deviation
values. (b) Temperature reconstruction compared to fully time-synchronized slice-averaged deviation
values. (c) Mean density uncertainty for different slices. (d) Mean temperature uncertainty for
different slices. (e) Density and temperature reconstruction uncertainties for height layers 1 to 3
corresponding to heights of 0.1 m, 0.3 m and 0.5 m, respectively. The selected time variance is 1 ms.
(f) Frequency distribution plot of camera time asynchrony over 50 measurements.
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5. Conclusions

In this study, the problems of the inefficiency of the ray tracing process, the esti-
mation of unknown orientation parameters, and the time-asynchrony of multi-cameras
are addressed for a typical BOST system in the 3D flame reconstruction process. The
corresponding method optimization and mechanism studies are carried out. The main
conclusions of this paper are as follows:

(1) The efficiency of ray tracing is accelerated by k-d trees in the 3D flame reconstruction
process. The average number of nodes searched per ray is only 0.018% of the global
number of nodes in a 3D flame system with 3.07 million grid nodes.

(2) A double-cubic interpolation method for estimating the unknown orientation power
spectral function in a polar coordinate system is proposed. The method’s applicability
to 3D reconstruction performance is evaluated in terms of temperature and density
fields, respectively, using the Sandia turbulent jet-diffusion flame as the study object.
The results show that this method’s RMSE of the cross-section density for 3D recon-
struction is below 0.1 kg/m3. In addition, the RMSE of the cross-section temperature
is below 270 K.

(3) Uncertainty analysis is performed by physical model-based flame reconstruction
through k-d tree accelerated ray tracing. The relationship between the uncertainty
of the 3D reconstructed temperature and density fields with the variance of the
measurement is discussed for time asynchronous variance of 0.1 ms, 0.5 ms, and
1 ms, respectively. Overall, the uncertainties are positively correlated with the time
asynchronous variance. For the time asynchronous variance of 1 ms, the density
uncertainty of the 3D reconstruction is below 1.6 × 10−2 kg/m3, and the temperature
uncertainty is below 70 K, which means that the time asynchronous effect must be
considered in experimental measurements.

Two aspects will be evaluated in the next study:

(a) These preliminary results need to be further validated with more significant and more
types of meshes. The current geometric model includes only standard flame CFD
meshes. More orders of magnitude of grid parameters should be considered. Future
work will address the accelerating effect of the k-d tree on the ray tracing process
based on different orders of magnitude of nodes.

(b) The flame model used in this paper is a standard Sandia turbulent jet diffusion flame.
This is a common type of burner. Further discussion is needed to analyze the effects of
time asynchrony for different types of combustors and at different Reynolds numbers.
The analytical mechanism of these time asynchronies is a significant concern in the 3D
reconstruction process. We will focus on the results of time asynchrony for different
fuels, combustors, and Reynolds numbers.
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