Enhanced Electrochemical and Safety Performance of Electrocatalytic Synthesis of NH3 with Walnut Shell-Derived Carbon by Introducing Sulfur
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Materials
2.2. Preparation of Porous Carbon in Walnut Shell
2.3. Preparation of Sulfur-Modified Walnut Shell Porous Carbon Catalyst
2.4. Electrocatalytic Performance Test
2.5. Calculation Method of Ammonia Yield and Faraday Efficiency
- (1)
- Detection of NH4+ and N2H4
- (2)
- Faraday efficiency
2.6. Material Characterization
3. Experimental Results and Discussion
3.1. Material Characterization
3.1.1. SEM and EDS Characterization
3.1.2. TEM
3.1.3. XRD and Raman
3.1.4. XPS analysis
3.1.5. Thermogravimetric (TG) Characterization, CHN Element Analysis and Contact Angle Test
3.1.6. Nitrogen Isothermal Adsorption–Desorption Characterization
3.2. Electrochemical Catalytic Performance Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, A.J.; Tatsuya, S.; Javier, P.-R. Electrocatalytic Reduction of Nitrogen, From Haber-Bosch to Ammonia Artificial Leaf. Chem 2019, 5, 263–283. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, K.; Liang, Z.; Zou, R.; Xu, Q. Electrochemical nitrogen fixation and utilization, theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716. [Google Scholar] [CrossRef]
- Suryanto Bryan, H.R.; Du, H.-L.; Wang, D.; Chen, J.; Alexandr, N.S.; Douglas, R.M. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Yao, D.; Zheng, Y.; Qiao, S.-Z. Electrochemical Nitrogen Reduction, Identification and Elimination of Contamination in Electrolyte. ACS Energy Lett. 2019, 4, 2111–2116. [Google Scholar] [CrossRef]
- Yang, X.; Shreya, M.; Thomas, O.; Hou, Y.; Meenesh, S.R.; Joseph, A.G.; Wu, G. Achievements, Challenges, and Perspectives on Nitrogen Electrochemistry for Carbon-Neutral Energy Technologies. Angew. Chem. Int. Ed. 2023, 62, e202215938. [Google Scholar] [CrossRef] [PubMed]
- Muhammad Lbrar, A.; Aya, A.; Brynn, H.D.; Zhao, C. Li-Mediated Electrochemical Nitrogen Fixation, Key Advances and Future Perspectives. Small 2023, 2305616. [Google Scholar]
- Chen, G.-F.; Ren, S.; Zhang, L.; Cheng, H.; Luo, Y.; Ding, L.-X.; Wang, H. Advances in Electrocatalytic N2 Reduction—Strategies to Tackle the Selectivity Challenge. Small Methods 2018, 3, 1800337. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Du, X.; Zeng, Y.; Gong, C.; Huang, J.; Fan, C.; Wang, X.; Xiong, J. Atomic Structure Modification for Electrochemical Nitrogen Reduction to Ammonia. Adv. Energy Mater. 2019, 10, 1903172. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, G.; Ding, L.-X.; Wang, H. Advanced Non-metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions. Chemistry 2019, 25, 12464–12485. [Google Scholar] [CrossRef]
- Chen, S.; Siglinda, P.; Claudio, A.; Chalachew, M.; Su, D.; Gabriele, C. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst. Angew. Chem. Int. Ed. 2017, 56, 2699–2703. [Google Scholar] [CrossRef]
- Qiu, W.; Xie, X.; Qiu, J.; Fang, W.; Liang, R.; Ren, X.; Ji, X.; Cui, G.; Abdullah, A.M.; Cui, G.; et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhang, W.; Alhebshi, N.A.; Numan, S.; Alshareef, H.N. Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods 2020, 4, 1900853. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, J.; Liu, Z.; Zhang, J. Non-noble metal-based catalysts for acetylene semihydrogenation: From thermocatalysis to sustainable catalysis. Sci. China Chem. 2023, 66, 1963–1974. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Zhou, Z. Carbon-Based Substrates for Highly Dispersed Nanoparticle and Even Single-Atom Electrocatalysts. Small Methods 2019, 3, 1900050. [Google Scholar] [CrossRef]
- Fu, A.; Wang, C.; Pei, F.; Cui, J.; Fang, X.; Zheng, N. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries. Small 2019, 15, e1804786. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Wang, Q.; Ye, S.; Sun, W.; Shao, Y.; Jiang, Z.; Qiao, Q.; Zhu, Y.; Song, P.; et al. Ambient Electrosynthesis of Ammonia, Electrode Porosity and Composition Engineering. Angew. Chem. Int. Ed. 2018, 57, 12360–12364. [Google Scholar] [CrossRef]
- Jin, H.; Kim, S.S.; Sandhya, V.; Jeseok, L.; Kwangyeol, L.; Kyoungsuk, J. Electrochemical Nitrogen Fixation for Green Ammonia: Recent Progress and Challenges. Adv. Sci. 2023, 10, 2300951. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Liang, H.; Gao, H.; Yu, S. Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors. Adv. Funct. Mater. 2014, 24, 5104–5111. [Google Scholar] [CrossRef]
- Shehman, A.; Tayyeba, T.; Zaeem, I.M.; Mannan, B.A.; Khush, B.; Umair, S. Recent progress in Pd based electrocatalysts for electrochemical nitrogen reduction to ammonia. J. Electroanal. Chem. 2023, 931, 117174. [Google Scholar]
- Wang, J.; Huang, H.; Wang, P.; Wang, S.; Li, J. N, S synergistic effect in hierarchical porous carbon for enhanced NRR performance. Carbon 2021, 179, 358–364. [Google Scholar] [CrossRef]
- Cong, L.; Yu, Z.; Liu, F.; Huang, W. Electrochemical synthesis of ammonia from N2 and H2O using a typical non noble metal carbon based catalyst under ambient conditions. Catal. Sci. Technol. 2019, 9, 1208–1214. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, L.; Song, X.; Zhao, L.; Yu, Z.; Xiao, Z.; Wang, X.; Li, S.; Cao, Y.; Ning, G.; et al. Production of S-doped porous graphene via post-treatment with MgSO4 as sulphur source. Chem. Eng. J. 2019, 359, 801–809. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, J.; Wang, P.; Wang, S.; Li, J. One-step synthesis of N, P co-doped porous carbon electrocatalyst for highly efficient nitrogen fixation. Nano Res. 2021, 15, 1779–1785. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Guo, X. Ternary boron-, phosphorus- and oxygen-doped amorphous nickel nanoalloys for enhanced activity towards the oxygen evolution reaction. Electrochem. Commun. 2020, 111, 106649. [Google Scholar] [CrossRef]
- Xia, L.; Wu, X.; Wang, Y.; Niu, Z.; Liu, Q.; Li, T.; Shi, X.; Asiri, A.M.; Sun, X. S-Doped Carbon Nanospheres, An Efficient Electrocatalyst toward Artificial N2 Fixation to NH3. Small Methods 2018, 3, 1800251. [Google Scholar] [CrossRef]
- Shi, Z.; Yang, W.; Gu, Y.; Ting, L.; Sun, Z. Metal-Nitrogen-Doped Carbon Materials as Highly Efficient Catalysts, Progress and Rational Design. Adv. Sci. 2020, 7, 2001069. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, D.; Chu, K.; Wei, Z.; Liu, W. Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction. J. Mater. Sci. 2019, 54, 9088–9097. [Google Scholar] [CrossRef]
- Xia, L.; Yang, J.; Wang, H.; Zhao, R.; Chen, H.; Fang, W.; Asiri, A.M.; Xie, F.; Cui, G.; Sun, X. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Chem. Commun. 2019, 55, 3371–3374. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, J. S-Doped three-dimensional graphene (S-3DG), a metal-free electrocatalyst for the electrochemical synthesis of ammonia under ambient conditions. Dalton Trans. 2020, 49, 2258–2263. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, J. A metal-free catalyst, sulfur-doped and sulfur nanoparticle-modified CMK-3 as an electrocatalyst for enhanced N2-fixation. New J. Chem. 2020, 44, 20935–20939. [Google Scholar] [CrossRef]
- Song, P.; Kang, L.; Wang, H.; Guo, R.; Wang, R. Nitrogen (N), Phosphorus (P)-Codoped Porous Carbon as a Metal-Free Electrocatalyst for N2 Reduction under Ambient Conditions. ACS Appl. Mater. Interfaces 2019, 11, 12408–12414. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Luo, F.; Hu, H.; Yang, Z. Boron and nitrogen dual-doped carbon nanospheres for efficient electrochemical reduction of N2 to NH3. Chem. Commun. 2020, 56, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Chen, C.; Yan, D.; Wang, Y.; Zhou, Y.; Zou, Y.; Li, Y.; Wang, S. B-N Pairs Enriched Defective Carbon Nanosheets for Ammonia Synthesis with High Efficiency. Small 2019, 15, e1805029. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, T.; Wang, H.; Zhao, R.; Chen, H.; Wang, T.; Wei, P.; Luo, Y.; Zhang, Y.; Sun, X. Boron Nanosheet: An Elemental Two-Dimensional (2D) Material for Ambient Electrocatalytic N2-to-NH3 Fixation in Neutral Media. ACS Catal. 2019, 9, 4609–4615. [Google Scholar] [CrossRef]
- Yang, X.; Li, K.; Cheng, D.; Pang, W.; Lv, J.; Chen, X.; Zang, H.Y.; Wu, X.; Tan, H.; Wang, Y.; et al. Nitrogen-doped porous carbon: Highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. J. Mater. Chem. A 2018, 6, 7762–7769. [Google Scholar] [CrossRef]
- Aykut, C.; Berdan, U.; Ozlem, S.; Hilal, K. Synthesis of in situ N-, S-, and B-doped few-layer graphene by chemical vapor deposition technique and their superior glucose electrooxidation activity. Int. J. Energy Res. 2019, 43, 8204–8216. [Google Scholar]
Element (wt%) | C | H | N | S |
---|---|---|---|---|
WSPC | 91.125 | 0.589 | 2.562 | 0.000 |
S/WSPC | 48.814 | 0.412 | 2.284 | 43.112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zheng, Z.; Liu, B.; Wang, Z.; Wang, S. Enhanced Electrochemical and Safety Performance of Electrocatalytic Synthesis of NH3 with Walnut Shell-Derived Carbon by Introducing Sulfur. Fire 2023, 6, 456. https://doi.org/10.3390/fire6120456
Wang J, Zheng Z, Liu B, Wang Z, Wang S. Enhanced Electrochemical and Safety Performance of Electrocatalytic Synthesis of NH3 with Walnut Shell-Derived Carbon by Introducing Sulfur. Fire. 2023; 6(12):456. https://doi.org/10.3390/fire6120456
Chicago/Turabian StyleWang, Jin, Zhichao Zheng, Bin Liu, Ziwei Wang, and Shuang Wang. 2023. "Enhanced Electrochemical and Safety Performance of Electrocatalytic Synthesis of NH3 with Walnut Shell-Derived Carbon by Introducing Sulfur" Fire 6, no. 12: 456. https://doi.org/10.3390/fire6120456
APA StyleWang, J., Zheng, Z., Liu, B., Wang, Z., & Wang, S. (2023). Enhanced Electrochemical and Safety Performance of Electrocatalytic Synthesis of NH3 with Walnut Shell-Derived Carbon by Introducing Sulfur. Fire, 6(12), 456. https://doi.org/10.3390/fire6120456