Optimizing Wildfire Prevention through the Integration of Prescribed Burning into ‘Fire-Smart’ Land-Use Policies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modeling Framework and Management Scenarios
2.2.1. Conceptual Framework
2.2.2. The REMAINS Model
2.2.3. Prescribed Fire Scenarios
2.2.4. Land-Use Policy Scenarios
3. Results
3.1. Prescribed Fire Use in the Current Context of Rural Abandoment
3.2. Prescribed Fire under Land-Use Policy Scenarios
4. Discussion
4.1. Effectiveness of Prescribed Fire Planning at Reducing Future Wildfires
4.2. The Integration of Prescribed Fire Planning into Land-Use Policies
4.3. Fire Policy Insights under Changing Landscape
4.4. Future Perspective and Challenges
5. Conclusions
- (1)
- Prescribed Fire: Its implementation stands out as an effective strategy for reducing future wildfires in our region. Although this approach demands the annual management of a substantial portion of the landscape (5%/year), its wildfire prevention benefits are substantial.
- (2)
- Strategic Spatial Allocation: Areas where fuel has built up (those that did not burn within a specific time frame—hazard areas) should be considered in integrated fire management processes. Continuing to create black corridors with the aim of creating fuel breaks may not be the most effective solution. Landscape-scale management, on the other hand, has shown great promise.
- (3)
- Fire-Smart Land-Use Policies: Combining prescribed burning with “fire-smart” land-use policies, such as the promotion of High Nature Value farming and the restoration of native woodlands, can significantly enhance efficiency. This synergistic approach can reduce the area requiring annual treatment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Tedim, F.; Xanthopoulos, G.; Leone, V. Forest Fires in Europe: Facts and Challenges. In Wildfire Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2014; pp. 77–99. ISBN 9780124096011. [Google Scholar]
- McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.; Adalsteinsson, S.A.; et al. Fire as a Fundamental Ecological Process: Research Advances and Frontiers. J. Ecol. 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire Regime Changes in the Western Mediterranean Basin: From Fuel-Limited to Drought-Driven Fire Regime. Clim. Change 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.C.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire Management in Mediterranean-Type Regions: Paradigm Change Needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Morgan, G.W.; Tolhurst, K.G.; Poynter, M.W.; Cooper, N.; McGuffog, T.; Ryan, R.; Wouters, M.A.; Stephens, N.; Black, P.; Sheehan, D.; et al. Prescribed Burning in South-Eastern Australia: History and Future Directions. Aust. For. 2020, 83, 4–28. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of Large Fires in European Mediterranean Landscapes: Lessons Learned and Perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Sebastián-López, A.; Salvador-Civil, R.; Gonzalo-Jiménez, J.; SanMiguel-Ayanz, J. Integration of Socio-Economic and Environmental Variables for Modelling Long-Term Fire Danger in Southern Europe. Eur. J. For. Res. 2008, 127, 149–163. [Google Scholar] [CrossRef]
- Collins, R.D.; de Neufville, R.; Claro, J.; Oliveira, T.; Pacheco, A.P. Forest Fire Management to Avoid Unintended Consequences: A Case Study of Portugal Using System Dynamics. J. Environ. Manag. 2013, 130, 1–9. [Google Scholar] [CrossRef]
- Curt, T.; Frejaville, T. Wildfire Policy in Mediterranean France: How Far Is It Efficient and Sustainable? Risk Anal. 2018, 38, 472–488. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Taboada, A.; Fernández-Manso, A.; Quintano, C.; Fernández-García, V.; Fernández-Guisuraga, J.M.; Marcos, E.; Calvo, L. Environmental Drivers of Fire Severity in Extreme Fire Events That Affect Mediterranean Pine Forest Ecosystems. For. Ecol. Manag. 2019, 433, 24–32. [Google Scholar] [CrossRef]
- Pais, S.; Aquilué, N.; Campos, J.; Sil, Â.; Marcos, B.; Martínez-Freiría, F.; Domínguez, J.; Brotons, L.; Honrado, J.P.; Regos, A. Mountain Farmland Protection and Fire-Smart Management Jointly Reduce Fire Hazard and Enhance Biodiversity and Carbon Sequestration. Ecosyst. Serv. 2020, 44, 101143. [Google Scholar] [CrossRef]
- Dupuy, J.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate Change Impact on Future Wildfire Danger and Activity in Southern Europe: A Review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Change 2017, 7, 395–402. [Google Scholar] [CrossRef]
- Miezïte, L.E.; Ameztegui, A.; de Cáceres, M.; Coll, L.; Morán-Ordóñez, A.; Vega-García, C.; Rodrigues, M. Trajectories of Wildfire Behavior under Climate Change. Can Forest Management Mitigate the Increasing Hazard? J. Environ. Manag. 2022, 322, 116134. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire Interactions in Southern Europe: Implications for Landscape Management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef]
- Loepfe, L.; Martinez-Vilalta, J.; Oliveres, J.; Piñol, J.; Lloret, F. Feedbacks between Fuel Reduction and Landscape Homogenisation Determine Fire Regimes in Three Mediterranean Areas. For. Ecol. Manag. 2010, 259, 2366–2374. [Google Scholar] [CrossRef]
- Estoque, R.C.; Gomi, K.; Togawa, T.; Ooba, M.; Hijioka, Y.; Akiyama, C.M.; Nakamura, S.; Yoshioka, A.; Kuroda, K. Scenario-Based Land Abandonment Projections: Method, Application and Implications. Sci. Total Environ. 2019, 692, 903–916. [Google Scholar] [CrossRef]
- Fayet, C.M.J.; Reilly, K.H.; van Ham, C.; Verburg, P.H. What Is the Future of Abandoned Agricultural Lands? A Systematic Review of Alternative Trajectories in Europe. Land Use Policy 2022, 112, 105833. [Google Scholar] [CrossRef]
- Rouet-Leduc, J.; Pe’er, G.; Moreira, F.; Bonn, A.; Helmer, W.; Shahsavan Zadeh, S.A.A.; Zizka, A.; van der Plas, F. Effects of Large Herbivores on Fire Regimes and Wildfire Mitigation. J. Appl. Ecol. 2021, 58, 2690–2702. [Google Scholar] [CrossRef]
- Minnich, R.; Chou, Y. Wildland Fire Patch Dynamics in the Chaparral of Southern California and Northern Baja California. Int. J. Wildl. Fire 1997, 7, 221–248. [Google Scholar] [CrossRef]
- Mclver, J.D.; Stephens, S.L.; Agee, J.K.; Barbour, J.; Boerner, R.E.J.; Edminster, C.B.; Erickson, K.L.; Farris, K.L.; Fettig, C.J.; Fiedler, C.E.; et al. Ecological Effects of Alternative Fuel-Reduction Treatments: Highlights of the National Fire and Fire Surrogate Study (FFS). Int. J. Wildl. Fire 2013, 22, 63–82. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Caballero, D.; Galante, M.; Alexandrian, D.; Rigolot, E.; Marzano, R. Forest Fuels Management in Europe. In Fuels Management—How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 29–46. [Google Scholar]
- Thompson, M.P.; Calkin, D.E. Uncertainty and Risk in Wildland Fire Management: A Review. J. Environ. Manag. 2011, 92, 1895–1909. [Google Scholar] [CrossRef]
- Khabarov, N.; Krasovskii, A.; Obersteiner, M.; Swart, R.; Dosio, A.; San-Miguel-Ayanz, J.; Durrant, T.; Camia, A.; Migliavacca, M. Forest Fires and Adaptation Options in Europe. Reg. Environ. Change 2016, 16, 21–30. [Google Scholar] [CrossRef]
- Hirsch, K.; Kafka, V.; Tymstra, C.; McAlpine, R.; Hawkes, B.; Stegehuis, H.; Quintilio, S.; Gauthier, S.; Peck, K. Fire-Smart Forest Management: A Pragmatic Approach to Sustainable Forest Management in Fire-Dominated Ecosystems. For. Chron. 2001, 77, 357–363. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Xanthopoulos, G. A Wildfire Risk Management Concept Based on a Social-Ecological Approach in the European Union: Fire Smart Territory. Int. J. Disaster Risk Reduct. 2016, 18, 138–153. [Google Scholar] [CrossRef]
- Fernandes, P.M. Empirical Support for the Use of Prescribed Burning as a Fuel Treatment. Curr. For. Rep. 2015, 1, 118–127. [Google Scholar] [CrossRef]
- Agee, J.K.; Skinner, C.N. Basic Principles of Forest Fuel Reduction Treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Casals, P.; Valor, T.; Besalú, A.; Molina-Terrén, D. Understory Fuel Load and Structure Eight to Nine Years after Prescribed Burning in Mediterranean Pine Forests. For. Ecol. Manag. 2016, 362, 156–168. [Google Scholar] [CrossRef]
- Stephens, S.L. Evaluation of the Effects of Silvicultural and Fuels Treatments on Potential Fire Behaviour in Sierra Nevada Mixed-Conifer Forests. For. Ecol. Manag. 1998, 105, 21–35. [Google Scholar] [CrossRef]
- Duane, A.; Aquilué, N.; Canelles, Q.; Morán-Ordoñez, A.; de Cáceres, M.; Brotons, L. Adapting Prescribed Burns to Future Climate Change in Mediterranean Landscapes. Sci. Total Environ. 2019, 677, 68–83. [Google Scholar] [CrossRef]
- Castellnou, M.; Kraus, D.; Miralles, M. Prescribed Burning and Suppression Fire Techniques: From Fuel to Landscape Management. In Best Practices of Fire Use Prescribed Burning and Suppression Fire Programmes in Selected Case-Study Regions in Europe; European Forest Institute: Joensuu, Finland, 2010; pp. 3–16. [Google Scholar]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed Burning in Southern Europe: Developing Fire Management in a Dynamic Landscape. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef]
- Davim, D.A.; Rossa, C.G.; Pereira, J.M.C.; Fernandes, P.M. Evaluating the Effect of Prescribed Burning on the Reduction of Wildfire Extent in Portugal. For. Ecol. Manag. 2022, 519, 120302. [Google Scholar] [CrossRef]
- Oliveira, E.; Fernandes, P.M. Pastoral Burning and Its Contribution to the Fire Regime of Alto Minho, Portugal. Fire 2023, 6, 210. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Ager, A.A.; Salis, M.; Day, M.A.; Vega-Garcia, C. Optimizing Prescribed Fire Allocation for Managing Fire Risk in Central Catalonia. Sci. Total Environ. 2018, 621, 872–885. [Google Scholar] [CrossRef] [PubMed]
- Hiers, J.K.; O’Brien, J.J.; Varner, J.M.; Butler, B.W.; Dickinson, M.; Furman, J.; Gallagher, M.; Godwin, D.; Goodrick, S.L.; Hood, S.M.; et al. Prescribed Fire Science: The Case for a Refined Research Agenda. Fire Ecol. 2020, 16, 11. [Google Scholar] [CrossRef]
- Stevens, J.T.; Collins, B.M.; Long, J.W.; North, M.P.; Prichard, S.J.; Tarnay, L.W.; White, A.M. Evaluating Potential Trade-offs among Fuel Treatment Strategies in Mixed-conifer Forests of the Sierra Nevada. Ecosphere 2016, 7, e01445. [Google Scholar] [CrossRef]
- Davim, D.A.; Rossa, C.G.; Fernandes, P.M. Survival of Prescribed Burning Treatments to Wildfire in Portugal. For. Ecol. Manag. 2021, 493, 119250. [Google Scholar] [CrossRef]
- Van Wilgen, B.W. Fire Management in Species-rich Cape Fynbos Shrublands. Front. Ecol. Environ. 2013, 11, e35–e44. [Google Scholar] [CrossRef]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed Fire in North American Forests and Woodlands: History, Current Practice, and Challenges. Front. Ecol. Environ. 2013, 11, e15–e24. [Google Scholar] [CrossRef]
- Burrows, N.; McCaw, L. Prescribed Burning in Southwestern Australian Forests. Front. Ecol. Environ. 2013, 11, e25–e34. [Google Scholar] [CrossRef]
- McCaw, W.L. Managing Forest Fuels Using Prescribed Fire—A Perspective from Southern Australia. For. Ecol. Manag. 2013, 294, 217–224. [Google Scholar] [CrossRef]
- Fontaine, J.B.; Kennedy, P.L. Meta-Analysis of Avian and Small-Mammal Response to Fire Severity and Fire Surrogate Treatments in U.S. Fire-Prone Forests. Ecol. Appl. 2012, 22, 1547–1561. [Google Scholar] [CrossRef] [PubMed]
- White, A.M.; Zipkin, E.F.; Manley, P.N.; Schlesinger, M.D. Simulating Avian Species and Foraging Group Responses to Fuel Reduction Treatments in Coniferous Forests. For. Ecol. Manag. 2013, 304, 261–274. [Google Scholar] [CrossRef]
- Halme, P.; Allen, K.A.; Auniņš, A.; Bradshaw, R.H.W.; Brūmelis, G.; Čada, V.; Clear, J.L.; Eriksson, A.-M.; Hannon, G.; Hyvärinen, E.; et al. Challenges of Ecological Restoration: Lessons from Forests in Northern Europe. Biol. Conserv. 2013, 167, 248–256. [Google Scholar] [CrossRef]
- Fernandes, P. Silvicultura Preventiva e Gestão de Combustíveis: Opções e Optimização. In Incêndios Florestais em Portugal-Caracterização, Impactes e Prevenção; ISApress: Lisbon, Portugal, 2006; pp. 327–354. [Google Scholar]
- Pais, S.; Aquilué, N.; Brotons, L.; Honrado, J.P.; Fernandes, P.M.; Regos, A. The REMAINS R-Package: Paving the Way for Fire-Landscape Modeling and Management. Environ. Model. Softw. 2023, 168, 105801. [Google Scholar] [CrossRef]
- MAPAMA. Estadística General de Incendios Forestales; National Forest Corporation: Santiago, Chile, 2018. [Google Scholar]
- ICNF. Incêndios Rurais—ICNF. Available online: http://www2.icnf.pt/portal/florestas/dfci/inc (accessed on 4 March 2020).
- Campos, J.; Bernhardt, J.; Aquilué, N.; Brotons, L.; Domínguez, J.; Lomba, Â.; Marcos, B.; Martínez-Freiría, F.; Moreira, F.; Pais, S.; et al. Using Fire to Enhance Rewilding When Agricultural Policies Fail. Sci. Total Environ. 2021, 755, 142897. [Google Scholar] [CrossRef] [PubMed]
- Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.D.; Touza, J. Wildfire Risk Associated with Different Vegetation Types within and Outside Wildland-Urban Interfaces. For. Ecol. Manag. 2016, 372, 1–9. [Google Scholar] [CrossRef]
- Chas-Amil, M.L.; Prestemon, J.P.; McClean, C.J.; Touza, J. Human-Ignited Wildfire Patterns and Responses to Policy Shifts. Appl. Geogr. 2015, 56, 164–176. [Google Scholar] [CrossRef]
- Chas-Amil, M.L.; Touza, J.; Prestemon, J.P. Spatial Distribution of Human-Caused Forest Fires in Galicia (NW Spain). In Modelling, Monitoring and Management of Forest Fires II; Perona, G., Brebbia, C.A., Eds.; WIT Press: Southampton, UK, 2010; pp. 247–258. [Google Scholar]
- Pereira, P.; Mierauskas, P.; Ubeda, X.; Mataix-Solera, J.; Cerda, A. Fire in Protected Areas—The Effect of Protection and Importance of Fire Management. Environ. Res. Eng. Manag. 2012, 59, 52–62. [Google Scholar] [CrossRef]
- Fernandes, P.M. Fire-Smart Management of Forest Landscapes in the Mediterranean Basin under Global Change. Landsc. Urban Plan. 2013, 110, 175–182. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; McMahan, A. Restoration of Fire in Managed Forests: A Model to Prioritize Landscapes and Analyze Tradeoffs. Ecosphere 2013, 4, art29. [Google Scholar] [CrossRef]
- Botequim, B.; Zubizarreta-Gerendiain, A.; Garcia-Gonzalo, J.; Silva, A.; Marques, S.; Fernandes, P.; Pereira, J.; Tomé, M. A Model of Shrub Biomass Accumulation as a Tool to Support Management of Portuguese Forests. iForest—Biogeosci. For. 2015, 8, 114–125. [Google Scholar] [CrossRef]
- Gould, J.S.; Lachlan McCaw, W.; Cheney, N.P. Quantifying Fine Fuel Dynamics and Structure in Dry Eucalypt Forest (Eucalyptus marginata) in Western Australia for Fire Management. For. Ecol. Manag. 2011, 262, 531–546. [Google Scholar] [CrossRef]
- Loehle, C. Applying Landscape Principles to Fire Hazard Reduction. For. Ecol. Manag. 2004, 198, 261–267. [Google Scholar] [CrossRef]
- Price, O.F.; Bradstock, R.A. Quantifying the Influence of Fuel Age and Weather on the Annual Extent of Unplanned Fires in the Sydney Region of Australia. Int. J. Wildl. Fire 2011, 20, 142–151. [Google Scholar] [CrossRef]
- Price, O.F.; Pausas, J.G.; Govender, N.; Flannigan, M.; Fernandes, P.M.; Brooks, M.L.; Bird, R.B. Global Patterns in Fire Leverage: The Response of Annual Area Burnt to Previous Fire. Int. J. Wildl. Fire 2015, 24, 297–306. [Google Scholar] [CrossRef]
- Lomba, A.; Alves, P.; Jongman, R.H.G.; McCracken, D.I. Reconciling Nature Conservation and Traditional Farming Practices: A Spatially Explicit Framework to Assess the Extent of High Nature Value Farmlands in the European Countryside. Ecol. Evol. 2015, 5, 1031–1044. [Google Scholar] [CrossRef]
- Moreira, F.; Pe’er, G. Agricultural Policy Can Reduce Wildfires. Science 2018, 359, 1001. [Google Scholar] [CrossRef]
- Aparício, B.A.; Pereira, J.M.C.; Santos, F.C.; Bruni, C.; Sá, A.C.L. Combining Wildfire Behaviour Simulations and Network Analysis to Support Wildfire Management: A Mediterranean Landscape Case Study. Ecol. Indic. 2022, 137, 108726. [Google Scholar] [CrossRef]
- Boer, M.M.; Sadler, R.J.; Wittkuhn, R.S.; McCaw, L.; Grierson, P.F. Long-Term Impacts of Prescribed Burning on Regional Extent and Incidence of Wildfires—Evidence from 50 Years of Active Fire Management in SW Australian Forests. For. Ecol. Manag. 2009, 259, 132–142. [Google Scholar] [CrossRef]
- Finney, M.A. Design of Regular Landscape Fuel Treatment Patterns for Modifying Fire Growth and Behavior. For. Sci. 2001, 47, 219–228. [Google Scholar]
- Lotan, J.E. Integrating Fire Management into Land-Use Planning: A Multiple-Use Management Research, Development, and Applications Program. Environ. Manag. 1979, 3, 7–14. [Google Scholar] [CrossRef]
- Francos, M.; Úbeda, X. Prescribed Fire Management. Curr. Opin. Environ. Sci. Health 2021, 21, 100250. [Google Scholar] [CrossRef]
- Varela, E.; Jacobsen, J.B.; Soliño, M. Understanding the Heterogeneity of Social Preferences for Fire Prevention Management. Ecol. Econ. 2014, 106, 91–104. [Google Scholar] [CrossRef]
- Turco, M.; Bedia, J.; di Liberto, F.; Fiorucci, P.; von Hardenberg, J.; Koutsias, N.; Llasat, M.-C.; Xystrakis, F.; Provenzale, A. Decreasing Fires in Mediterranean Europe. PLoS ONE 2016, 11, e0150663. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to Coexist with Wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Meigs, G.W.; Cartwright, J.M.; Coop, J.D.; Davis, R.; Holz, A.; Kolden, C.; Meddens, A.J. Disturbance Refugia within Mosaics of Forest Fire, Drought, and Insect Outbreaks. Front. Ecol. Environ. 2020, 18, 235–244. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Ferreira, B.H.S.; Souza, E.B.; Lopes, A.A.; Bolzan, F.P.; Roque, F.O.; Pott, A.; Pereira, A.M.M.; Garcia, L.C.; Damasceno, G.A.; et al. Indigenous Brigades Change the Spatial Patterns of Wildfires, and the Influence of Climate on Fire Regimes. J. Appl. Ecol. 2022, 59, 1279–1290. [Google Scholar] [CrossRef]
- Lecina-Diaz, J.; Campos, J.; Pais, S.; Carvalho-Santos, C.; Azevedo, J.; Fernandes, P.; Gonçalves, J.; Aquilué, N.; Roces-Díaz, J.V.; Agrelo de la Torre, M.; et al. Stakeholder Perceptions of Wildfire Management Strategies as Nature-Based Solutions in Two Iberian Biosphere Reserves. Ecol. Soc. 2023, 28, art39. [Google Scholar] [CrossRef]
- Toledo, D.; Kreuter, U.P.; Sorice, M.G.; Taylor, C.A. The Role of Prescribed Burn Associations in the Application of Prescribed Fires in Rangeland Ecosystems. J. Environ. Manag. 2014, 132, 323–328. [Google Scholar] [CrossRef]
- Wonkka, C.L.; Rogers, W.E.; Kreuter, U.P. Legal Barriers to Effective Ecosystem Management: Exploring Linkages between Liability, Regulations, and Prescribed Fire. Ecol. Appl. 2015, 25, 2382–2393. [Google Scholar] [CrossRef] [PubMed]
- Vukomanovic, J.; Steelman, T. A Systematic Review of Relationships Between Mountain Wildfire and Ecosystem Services. Landsc. Ecol. 2019, 34, 1179–1194. [Google Scholar] [CrossRef]
- Chuvieco, E.; Yebra, M.; Martino, S.; Thonicke, K.; Gómez-Giménez, M.; San-Miguel, J.; Oom, D.; Velea, R.; Mouillot, F.; Molina, J.R.; et al. Towards an Integrated Approach to Wildfire Risk Assessment: When, Where, What and How May the Landscapes Burn. Fire 2023, 6, 215. [Google Scholar] [CrossRef]
- Duane, A.; Kelly, L.; Giljohann, K.; Batllori, E.; McCarthy, M.; Brotons, L. Disentangling the Influence of Past Fires on Subsequent Fires in Mediterranean Landscapes. Ecosystems 2019, 22, 1338–1351. [Google Scholar] [CrossRef]
- Pandey, P.; Huidobro, G.; Lopes, L.F.; Ganteaume, A.; Ascoli, D.; Colaco, C.; Xanthopoulos, G.; Giannaros, T.M.; Gazzard, R.; Boustras, G.; et al. A Global Outlook on Increasing Wildfire Risk: Current Policy Situation and Future Pathways. Trees For. People 2023, 14, 100431. [Google Scholar] [CrossRef]
Spatial Strategies for Prescribed Fire | |||
---|---|---|---|
Landscape Mosaics | Hazard Management | Strategic Containment | |
Scenario | PF_rnd | PF_hzd | PF_road |
Landscape goal | Disrupt wildfire spread and facilitate containment | Local protection of assets | Contain large wildfires at defensible locations |
Performance measure | Reduction in landscape burn probability | Reduction in high fuel load | Area burned by prescribed fire |
Burning objective | Reduce fire-spread rate | Reduce fire hazard and facilitate suppression | Establishes locations for containment and facilitates suppression |
Treatment strategy | Landscape-oriented approach | Fire hazard-oriented approach | Firefighting-oriented approach |
Example map | (1) | (2) | (3) |
Scenario | RateOak | RAb | PAb | AgriConv | PastureConv | ActFireSmart | PF | Strategy |
---|---|---|---|---|---|---|---|---|
Rural abandonment | ||||||||
BAU | 1.6 | 200 | 180 | 0 | 0 | 0 | 0 | Null |
PF0.5_rnd_BAU | 1.6 | 200 | 180 | 0 | 0 | 0 | 1000 | Random |
PF5_rnd_BAU | 1.6 | 200 | 180 | 0 | 0 | 0 | 10,000 | Random |
PF10_rnd_BAU | 1.6 | 200 | 180 | 0 | 0 | 0 | 20,000 | Random |
PF0.5_hzd_BAU | 1.6 | 200 | 180 | 0 | 0 | 0 | 1000 | Fire hazard |
PF5_hzd_BAU | 1.6 | 200 | 180 | 0 | 0 | 0 | 10,000 | Fire hazard |
PF10_hzd_BAU | 1.6 | 200 | 180 | 0 | 0 | 0 | 20,000 | Fire hazard |
PF0.5_road_BAU | 1.6 | 200 | 180 | 0 | 0 | 0 | 1000 | Road network |
PF5_road_BAU | 1.6 | 200 | 180 | 0 | 0 | 0 | 10,000 | Road network |
PF10_road_BAU | 1.6 | 200 | 180 | 0 | 0 | 0 | 20,000 | Road network |
High Natural Value farmland | ||||||||
PF0.5_rnd_HNVf | 1.6 | 0 | 0 | 250 | 800 | 0 | 1000 | Random |
PF5_rnd_HNVf | 1.6 | 0 | 0 | 250 | 800 | 0 | 10,000 | Random |
PF0.5_hzd_HNVf | 1.6 | 0 | 0 | 250 | 800 | 0 | 1000 | Fire hazard |
PF5_hzd_HNVf | 1.6 | 0 | 0 | 250 | 800 | 0 | 10,000 | Fire hazard |
PF0.5_road_HNVf | 1.6 | 0 | 0 | 250 | 800 | 0 | 1000 | Road network |
PF5_road_HNVf | 1.6 | 0 | 0 | 250 | 800 | 0 | 10,000 | Road network |
Fire-Smart | ||||||||
PF0.5_rnd_FS | 2.4 | 200 | 180 | 0 | 0 | 1 | 1000 | Random |
PF5_rnd_FS | 2.4 | 200 | 180 | 0 | 0 | 1 | 10,000 | Random |
PF0.5_hzd_FS | 2.4 | 200 | 180 | 0 | 0 | 1 | 1000 | Fire hazard |
PF5_hzd_FS | 2.4 | 200 | 180 | 0 | 0 | 1 | 10,000 | Fire hazard |
PF0.5_road_FS | 2.4 | 200 | 180 | 0 | 0 | 1 | 1000 | Road network |
PF5_road_FS | 2.4 | 200 | 180 | 0 | 0 | 1 | 10,000 | Road network |
High Natural Value farmland + Fire-Smart | ||||||||
PF0.5_rnd_HNVf_FS | 2.4 | 0 | 0 | 250 | 800 | 1 | 1000 | Random |
PF5_rnd_HNVf_FS | 2.4 | 0 | 0 | 250 | 800 | 1 | 10,000 | Random |
PF0.5_hzd_HNVf_FS | 2.4 | 0 | 0 | 250 | 800 | 1 | 1000 | Fire hazard |
PF5_hzd_HNVf_FS | 2.4 | 0 | 0 | 250 | 800 | 1 | 10,000 | Fire hazard |
PF0.5_road_HNVf_FS | 2.4 | 0 | 0 | 250 | 800 | 1 | 1000 | Road network |
PF5_road_HNVf_FS | 2.4 | 0 | 0 | 250 | 800 | 1 | 10,000 | Road network |
Spatial Strategy | Scenario | Area Treated (ha/Year) | Annual Reduction in Wildfire Area (ha) | % Annual Reduction (30-Year Period) | Leverage |
---|---|---|---|---|---|
Random | PF0.5_rnd_BAU | 1000 | - | - | - |
Road | PF10_road_BAU | 20,000 | 1376.7 | 14 | 0.07 |
Road | PF5_road_BAU | 10,000 | 1086.7 | 11 | 0.11 |
Random | PF10_rnd_BAU | 20,000 | 3406.7 | 34 | 0.17 |
Hazard | PF10_hzd_BAU | 20,000 | 3576.7 | 35.6 | 0.18 |
Random | PF5_rnd_BAU | 10,000 | 2010 | 20 | 0.2 |
Hazard | PF5_hzd_BAU | 10,000 | 2106.7 | 21 | 0.21 |
Hazard | PF0.5_hzd_BAU | 1000 | 320 | 3 | 0.32 |
Road | PF0.5_road_BAU | 1000 | 453.3 | 4.5 | 0.45 |
Spatial Strategy | Scenario | Area Treated (ha/Year) | Annual Reduction in Wildfire Area (ha) | % Annual Reduction 30-Year Period | Leverage |
---|---|---|---|---|---|
Road | PF0.5_road_FS | 1000 | 133.3 | 1 | 0.13 |
Road | PF5_road_FS | 10,000 | 1300 | 13 | 0.13 |
Random | PF5_rnd_FS | 10,000 | 2140 | 21 | 0.21 |
Hazard | PF5_hzd_FS | 10,000 | 2140 | 21 | 0.21 |
Road | PF5_road_HNVf | 10,000 | 2343.3 | 23 | 0.23 |
Road | PF5_road_HNVf_FS | 10,000 | 2616.7 | 26 | 0.26 |
Random | PF5_rnd_HNVf | 10,000 | 2773.3 | 28 | 0.28 |
Random | PF5_rnd_HNVf_FS | 10,000 | 2943.3 | 29 | 0.29 |
Hazard | PF5_hzd_HNVf | 10,000 | 3146.7 | 31 | 0.31 |
Hazard | PF5_hzd_HNVf_FS | 10,000 | 3173.3 | 32 | 0.32 |
Hazard | PF0.5_hzd_FS | 1000 | 406.7 | 4 | 0.41 |
Random | PF0.5_rnd_FS | 1000 | 706.7 | 7 | 0.71 |
Road | PF0.5_road_HNVf | 1000 | 1300 | 13 | 1.3 |
Hazard | PF0.5_hzd_HNVf | 1000 | 1316.7 | 13 | 1.32 |
Random | PF0.5_rnd_HNVf | 1000 | 1330 | 13 | 1.33 |
Random | PF0.5_rnd_HNVf_FS | 1000 | 1493.3 | 15 | 1.49 |
Hazard | PF0.5_hzd_HNVf_FS | 1000 | 1580 | 16 | 1.58 |
Road | PF0.5_road_HNVf_FS | 1000 | 1780 | 18 | 1.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pais, S.; Aquilué, N.; Honrado, J.P.; Fernandes, P.M.; Regos, A. Optimizing Wildfire Prevention through the Integration of Prescribed Burning into ‘Fire-Smart’ Land-Use Policies. Fire 2023, 6, 457. https://doi.org/10.3390/fire6120457
Pais S, Aquilué N, Honrado JP, Fernandes PM, Regos A. Optimizing Wildfire Prevention through the Integration of Prescribed Burning into ‘Fire-Smart’ Land-Use Policies. Fire. 2023; 6(12):457. https://doi.org/10.3390/fire6120457
Chicago/Turabian StylePais, Silvana, Núria Aquilué, João P. Honrado, Paulo M. Fernandes, and Adrián Regos. 2023. "Optimizing Wildfire Prevention through the Integration of Prescribed Burning into ‘Fire-Smart’ Land-Use Policies" Fire 6, no. 12: 457. https://doi.org/10.3390/fire6120457
APA StylePais, S., Aquilué, N., Honrado, J. P., Fernandes, P. M., & Regos, A. (2023). Optimizing Wildfire Prevention through the Integration of Prescribed Burning into ‘Fire-Smart’ Land-Use Policies. Fire, 6(12), 457. https://doi.org/10.3390/fire6120457