Modeling and Complex Analysis of the Topology Parameters of Ventilation Networks When Ensuring Fire Safety While Developing Coal and Gas Deposits
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Interrelation between the Transition Function of the Methane Concentration and the Functional of the Influencing Parameters of the Ventilation Network Topology
3.2. The Relationship between the Change of the Air Flow in the Working Area and the Transition Function of the Methane Concentration
3.3. Assessment of the Aerogas-Dynamic Parameters of the Topology of Mine Workings at Mine 31
4. Conclusions
- -
- the stability of gas and explosion safety and air supply of coal mines is significantly affected by diagonal connections, which have their own peculiarities and have different effects on the distribution of air flows and methane emissions in mine workings, influencing fire safety in general. Therefore, building a spherical scheme of the ventilation network using the projections of the response surface will increase the accuracy of identifying diagonal sections to increase the safety of mining operations.
- -
- the most acceptable existing method is that of decomposition, which differs through high accuracy (5–10%), as compared to the previously known ones, by the quality of the search for diagonals of varying complexity and the efficiency of the solution, which is required to control the aerologic safety in coalmines.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miao, D.; Lv, Y.; Yu, K.; Liu, L.; Jiang, J. Research on coal mine hidden danger analysis and risk early warning technology based on data mining in China. Process. Saf. Environ. Prot. 2023, 171, 1–17. [Google Scholar] [CrossRef]
- Gu, Z.; Liu, Z.; Wang, Z.; Shen, R.; Qian, J.; Lin, S. Study on characteristics of methane explosion flame and pressure wave propagation to the non-methane area in a connected chamber. Fire Mater. 2022, 46, 639–650. [Google Scholar] [CrossRef]
- De Silva, D.; Gallo, M.; De Falco, L.; Nigro, E. Fire risk assessment of bridges: From state of the art to structural vulnerability mitigation. J. Civ. Struct. Health Monit. 2023, 13, 351–367. [Google Scholar] [CrossRef]
- Chai, J. Investigation of Spontaneous Combustion Zones and Index Gas Prediction System in Goaf of “Isolated Island” Working Face. Fire 2022, 5, 67. [Google Scholar] [CrossRef]
- Wang, H.; Fan, C.; Li, J.; Wu, Y.; Xing, S.; Wang, W. A Field Study of Coal Fire Areas Re-Burning Behavior Assessment and Related Carbon Emissions. Fire 2022, 5, 186. [Google Scholar] [CrossRef]
- Singh, A.K. Subchapter 1.9: Evolution and future prospects for coalbed methane and coal mine methane in India: Approaches for addressing mine safety, climate change, and energy security. In Innovative Exploration Methods for Minerals, Oil, Gas, and Groundwater for Sustainable Development; Elsevier: Amsterdam, The Netherlands, 2021; pp. 101–126. [Google Scholar] [CrossRef]
- Li, L.; Qin, B.; Liu, J.; Leong, Y.-K. Integrated experimentation and modeling of the formation processes underlying coal combustion-triggered methane explosions in a mined-out area. Energy 2020, 203, 117855. [Google Scholar] [CrossRef]
- Brigida, V.S.; Dmitrak, Y.V.; Gabaraev, O.Z.; Golik, V.I. Use of Destressing Drilling to Ensure Safety of Donbass Gas-bearing Coal Seams Extraction. Occup. Saf. Ind. 2019, 3, 7–11. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Du, J. Prevention Technology of Coal Spontaneous Combustion Induced by Gas Drainage in Deep Coal Seam Mining. Fire 2022, 5, 65. [Google Scholar] [CrossRef]
- Brigida, V.; Golik, V.I.; Dmitrak, Y.; Gabaraev, O.Z. Ensuring Stability of Undermining Inclined Drainage Holes during Intensive Development of Multiple Gas-Bearing Coal Layers. J. Min. Inst. 2019, 239, 497–501. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, G.; Wang, B. Study and Application of High-Level Directional Extraction Borehole Based on Mining Fracture Evolution Law of Overburden Strata. Sustainability 2023, 15, 2806. [Google Scholar] [CrossRef]
- Hosseini, A.; Najafi, M.; Morshedy, A.H. Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation. J. Min. Inst. 2022, 258, 1050–1060. [Google Scholar] [CrossRef]
- Jamalan, S.; Sereshki, F.; Ataei, M.; Najafi, M. Numerical modeling of coal gas drainage in a three-dimensional framework. Arab. J. Geosci. 2022, 15, 826. [Google Scholar] [CrossRef]
- Lin, S.; Liu, Z.; Wang, Z.; Qian, J.; Gu, Z. Flame Characteristics in a Coal Dust Explosion Induced by a Methane Explosion in a Horizontal Pipeline. Combust. Sci. Technol. 2020, 194, 622–635. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Dong, Z.; Fan, C.; Zhang, Y.; Chen, X. Effect of thermal damage on the pore–fracture system during coal spontaneous combustion. Fuel 2023, 339, 127439. [Google Scholar] [CrossRef]
- Ganova, S.D.; Skopintseva, O.V.; Isaev, O.N. On the issue of studying the composition of hydrocarbon gases of coals and dust to predict their potential hazard. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2019, 330, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Zhang, Y.; Qi, Q.; Qin, Y.; Zhou, T.; Sun, Z. Optimization of Numerical Simulation Algorithm for Spontaneous Combustion in Goaf via a Compression Storage and Solution Method of Coefficient Matrix. Fire 2022, 5, 71. [Google Scholar] [CrossRef]
- Różański, Z.; Wrona, P.; Pach, G.; Niewiadomski, A.P.; Markowska, M.; Wrana, A.; Frączek, R.; Balcarczyk, L.; Quintana, G.V.; Ruiz, D.d.P. Influence of water erosion on fire hazards in a coal waste dump—A case study. Sci. Total Environ. 2022, 834, 155350. [Google Scholar] [CrossRef]
- Lei, B.; He, B.; Zhao, Z.; Xu, G.; Wu, B. A method for identifying the fire status through ventilation systems using tracer gas for improved rescue effectiveness in roadway drivage of coal mines. Process. Saf. Environ. Prot. 2021, 151, 151–157. [Google Scholar] [CrossRef]
- Roy, D.; Singh, G.; Seo, Y.-C. Coal mine fire effects on carcinogenicity and non-carcinogenicity human health risks. Environ. Pollut. 2019, 254, 113091. [Google Scholar] [CrossRef]
- Kordos, J. Tests of new method of monitoring endogenous fire hazard in hard coal mines. J. Sustain. Min. 2019, 18, 134–141. [Google Scholar] [CrossRef]
- Tarasenko, I.A.; Kulikova, A.A.; Kovaleva, A.M. On the issue of assessing the automation of control of the parameters of the methane-air mixture. Ugol 2022, 11, 84–88. [Google Scholar] [CrossRef]
- Prusek, S.; Krause, E.; Skiba, J. Designing coal panels in the conditions of associated methane and spontaneous fire hazards. Int. J. Min. Sci. Technol. 2020, 30, 525–531. [Google Scholar] [CrossRef]
- Li, F.; Zhang, C.; He, X.; Duan, B.; Wang, C.; Yan, Z. Superposition Risk Assessment and Calculation Model of the Working Position of Coal-Seam Fire Accidents in China. Fire 2023, 6, 7. [Google Scholar] [CrossRef]
- Danish, E.; Onder, M. Application of Fuzzy Logic for Predicting of Mine Fire in Underground Coal Mine. Saf. Health Work 2020, 11, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Muduli, L.; Jana, P.K.; Mishra, D.P. Wireless sensor network based fire monitoring in underground coal mines: A fuzzy logic approach. Process. Saf. Environ. Prot. 2018, 113, 435–447. [Google Scholar] [CrossRef]
- De Silva, D.; Nuzzo, I.; Nigro, E.; Occhiuzzi, A. Intumescent Coatings for Fire Resistance of Steel Structures: Current Approaches for Qualification and Design. Coatings 2022, 12, 696. [Google Scholar] [CrossRef]
- De Silva, D.; Andreini, M.; Bilotta, A.; De Rosa, G.; La Mendola, S.; Nigro, E.; Rios, O. Structural safety assessment of concrete tunnel lining subjected to fire. Fire Saf. J. 2022, 134, 103697. [Google Scholar] [CrossRef]
- Iang, J.; Miao, D. 2021 Research on Coal Mine Risk Control Technology and Platform Base on Big Data. IOP Conf. Ser. Earth Environ. Sci. 2021, 647, 012057. [Google Scholar] [CrossRef]
- Luhar, A.K.; Emmerson, K.M.; Reisen, F.; Williamson, G.J.; Cope, M.E. Modelling smoke distribution in the vicinity of a large and prolonged fire from an open-cut coal mine. Atmos. Environ. 2020, 229, 117471. [Google Scholar] [CrossRef]
- Wang, G.-Q.; Shi, G.-Q.; Wang, Y.-M.; Shen, H.-Y. Numerical study on the evolution of methane explosion regions in the process of coal mine fire zone sealing. Fuel 2020, 289, 119744. [Google Scholar] [CrossRef]
- Kim, J.; Lin, S.-Y.; Singh, R.P.; Lan, C.-W.; Yun, H.-W. Underground burning of Jharia coal mine (India) and associated surface deformation using InSAR data. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102524. [Google Scholar] [CrossRef]
- Bosikov, I.; North Caucasian Institute of Mining and Metallurgy (State Technological University); Klyuev, R.; Khetagurov, V.; Moscow Polytechnic University. Analysis and comprehensive evaluation of gas-dynamic processes in coal mines using the methods of the theory of probability and math statistics analysis. Sustain. Dev. Mt. Territ. 2022, 14, 461–467. [Google Scholar] [CrossRef]
- Shinkevich, M.V.; Kozyreva, E. Specifics of Geomechanical Processes in the Rock Mass when Mining the Coal Seam. Occup. Saf. Ind. 2019, 5, 33–39. [Google Scholar] [CrossRef]
- Kolesnichenko, I.E.; Kolesnichenko, E.A.; Lyubomishchenko, E.I.; Kolesnichenko, E.I. Quantum fundamentals of coal bed methane hazards. Gornayapromyshlennost 2021, 1, 91–97. [Google Scholar] [CrossRef]
- Kudryashov, V.V.; Kobylkin, A.S. Mine air dustiness measurement techniques: Review. Min. Inf. Anal. Bull. 2021, 10-1, 29–44. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Zhang, X.; Xiao, Y.; Ren, C. The Design and Implementation of AR Glass for Coal Mine Application. Procedia Comput. Sci. 2022, 214, 1617–1623. [Google Scholar] [CrossRef]
- Ray, S.K.; Khan, A.M.; Mohalik, N.K.; Mishra, D.; Mandal, S.; Pandey, J.K. Review of preventive and constructive measures for coal mine explosions: An Indian perspective. Int. J. Min. Sci. Technol. 2022, 32, 471–485. [Google Scholar] [CrossRef]
- Shi, G.-Q.; Wang, G.-Q.; Ding, P.-X.; Wang, Y.-M. Model and simulation analysis of fire development and gas flowing influenced by fire zone sealing in coal mine. Process. Saf. Environ. Prot. 2021, 149, 631–642. [Google Scholar] [CrossRef]
- Balovtsev, S.V. Higher rank aerological risks in coal mines. Min. Sci. Technol. 2022, 7, 310–319. [Google Scholar] [CrossRef]
- Balovtsev, S.V. Comparative assessment of aerological risks at operating coal mines. MIAB Min. Inf. Anal. Bull. 2021, 5–17. [Google Scholar] [CrossRef]
- Golik, V.I.; Klyuev, R.V.; Martyushev, N.V.; Brigida, V.; Efremenkov, E.A.; Sorokova, S.N.; Mengxu, Q. Tailings Utilization and Zinc Extraction Based on Mechanochemical Activation. Materials 2023, 16, 726. [Google Scholar] [CrossRef] [PubMed]
- Bosikov, I.; Klyuev, R.; Mayer, A.; Stas, G. Development of a method for analyzing and evaluating the optimal state of aerogasodynamic processes in coal mines. Sustain. Dev. Mt. Territ. 2022, 14, 97–106. [Google Scholar] [CrossRef]
- Puchkov, L.A.; Kaledina, N.O.; Kobylkin, S.S. Systemic approach to reducing methane explosion hazard in coal mines. Eurasian Min. 2015, 2, 3–6. [Google Scholar] [CrossRef]
- Myasnikov, S.V.; Korshunov, G.I.; Kabanov, E.I. The Method of the Comprehensive Assessment and the Forecast of the Occupational Risk of Injury to Coal Mine Personnel during Methane and Dust Explosions. Occup. Saf. Ind. 2018, 10, 0409–2961. [Google Scholar] [CrossRef]
- Yaitskaya, N.A.; Brigida, V.S. Geoinformation technologies in solving three-dimensional geoecological problems. Spatial data interpolation. Geol. Geophys. Russ. South 2022, 12, 162–173. (In Russian) [Google Scholar] [CrossRef]
- Brigida, V.S.; Golik, V.I.; Dzeranov, B.V. Modeling of Coalmine Methane Flows to Estimate the Spacing of Primary Roof Breaks. Mining 2022, 2, 45. [Google Scholar] [CrossRef]
Branch | Parameters | Branch | Parameters | Branch | Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R, kµ | Q, m3/s | h, Pa | R, kµ | Q, m3/s | h, Pa | R, kµ | Q, m3/s | h, Pa | |||
1–3 | 0.0004 | 60.03 | 1.44 | 62–74 | 0.0018 | 39.85 | 2.86 | 69–71 | 0.0605 | 2.78 | 9.88 |
3–5 | 0.0013 | 59.59 | 4.62 | 22–26 | 0.1 | 10.41 | 1.08 | 71–73 | 0.0054 | 9.92 | 0.53 |
5–7 | 0.00313 | 35.12 | 3.86 | 30–34 | 0.01 | 2.88 | 0.08 | 71–75 | 0.066 | 2.07 | 0.28 |
7–9 | 0.0005 | 34.73 | 0.6 | 46–50 | 0.0025 | 0.52 | 0.0007 | 75–73 | 0.0895 | 1.87 | 0.2 |
9–11 | 0.00313 | 6.59 | 0.14 | 62–66 | 0.0025 | 2.07 | 0.01 | 73–14 | 0.2919 | 11.58 | 39.16 |
11–13 | 0.005 | 6.19 | 0.019 | 13–22 | 800 | 0.27 | 59.71 | 14–16 | 0.0044 | 23.69 | 2.47 |
13–17 | 0.00363 | 5.92 | 0.13 | 17–30 | 88.888 | 0.84 | 62.39 | 47–10 | 350 | 0.39 | 52.31 |
17–25 | 0.00726 | 5.07 | 0.19 | 25–46 | 43.75 | 1.24 | 67.28 | 49–20 | 50 | 0.87 | 38.05 |
25–33 | 0.00726 | 3.83 | 0.11 | 33–62 | 37.5 | 1.39 | 72.44 | 45–61 | 0.0011 | 13.49 | 0.20 |
33–37 | 0.004 | 2.45 | 0.02 | 37–76 | 350 | 0.46 | 75.62 | 61–63 | 0.0605 | 12.89 | 10.05 |
37–74 | 19.05 | 1.99 | 75.27 | 5–39 | 0.0075 | 24.47 | 4.49 | 63–65 | 0.0054 | 10.01 | 0.54 |
74–76 | 0.0002 | 41.84 | 0.35 | 39–41 | 0.0039 | 22.96 | 0.65 | 63–67 | 0.066 | 2.08 | 0.29 |
76–78 | 0.0002 | 42.30 | 0.36 | 41–43 | 0.0021 | 12.56 | 0.33 | 67–65 | 0.0895 | 1.89 | 0.26 |
1–18 | 3.19 | 4.20 | 56.23 | 43–84 | 0.2455 | 11.60 | 33.06 | 65–12 | 0.2925 | 11.7 | 40.05 |
18–20 | 0.0194 | 5.14 | 0.51 | 84–86 | 0.0635 | 12.80 | 10.4 | 12–14 | 0.0066 | 12.08 | 0.96 |
20–26 | 0.435 | 6.01 | 15.70 | 86–6 | 0.0623 | 13.41 | 11.21 | 69–86 | 100 | 0.6 | 36.31 |
26–34 | 0.0067 | 16.42 | 1.81 | 6–8 | 0.0044 | 27.10 | 3.23 | 71–84 | 25 | 0.8 | 16.01 |
34–50 | 0.0134 | 19.31 | 5.0 | 41–2 | 350 | 0.41 | 58.23 | 75–84 | 100 | 0.4 | 15.73 |
50–66 | 0.0134 | 19.84 | 5.27 | 43–18 | 50 | 0.94 | 44.7 | 61–82 | 100 | 0.6 | 36.04 |
66–78 | 0.0074 | 21.93 | 3.56 | 39–80 | 0.2412 | 11.50 | 31.92 | 63–80 | 25 | 0.79 | 15.76 |
3–2 | 350 | 0.44 | 67.99 | 80–82 | 0.0635 | 12.69 | 10.23 | 67–80 | 100 | 0.39 | 15.48 |
2–8 | 0.0014 | 0.85 | 0.001 | 82–4 | 0.1694 | 13.29 | 12.26 | 11–12 | 350 | 0.4 | 56.64 |
8–10 | 0.00023 | 27.95 | 0.18 | 4–6 | 0.0066 | 13.69 | 1.24 | 22–30 | 0.0016 | 41.88 | 2.81 |
10–16 | 0.0004 | 28.33 | 0.222 | 7–4 | 350 | 0.40 | 55.04 | 45–47 | 0.0039 | 14.65 | 0.84 |
16–22 | 0.00023 | 52.04 | 0.62 | 9–45 | 0.0075 | 28.14 | 5.94 | 30–46 | 0.0032 | 39.84 | 5.08 |
47–49 | 0.0021 | 14.26 | 0.43 | 46–62 | 0.0032 | 40.55 | 5.26 | 49–69 | 0.00535 | 13.39 | 0.96 |
Branch Number | Number of the Section of the Same Length | Sections on the Diagram (Figure 1) | Q | R |
---|---|---|---|---|
(M) | (N) | m3/s | kμ | |
1 | 1 | 1–3 | 60.03 | 0.0004 |
1 | 2 | 3–5 | 59.59 | 0.0013 |
1 | 3 | 5–7 | 35.12 | 0.00313 |
1 | 4 | 7–9 | 34.73 | 0.0005 |
1 | 5 | 9–11 | 6.59 | 0.00313 |
1 | 6 | 11–13 | 6.19 | 0.005 |
1 | 7 | 13–17 | 5.92 | 0.00363 |
1 | 8 | 17–25 | 5.07 | 0.00726 |
1 | 9 | 25–33 | 3.83 | 0.00726 |
1 | 10 | 33–37 | 2.45 | 0.004 |
1 | 11 | 37–74 | 1.99 | 19.05 |
1 | 12 | 74–76 | 41.84 | 0.0002 |
1 | 13 | 76–78 | 42.3 | 0.0002 |
2 | 3 | 1–18 | 4.2 | 3.19 |
2 | 6 | 18–20 | 5.14 | 0.0194 |
2 | 8 | 20–26 | 6.01 | 0.435 |
2 | 9 | 26–34 | 16.42 | 0.0067 |
2 | 10 | 34–50 | 19.31 | 0.0134 |
2 | 12 | 50–66 | 19.84 | 0.0134 |
2 | 13 | 66–78 | 21.93 | 0.0074 |
3 | 2 | 3–2 | 0.44 | 350 |
3 | 4 | 2–8 | 0.85 | 0.0014 |
3 | 5 | 8–10 | 27.95 | 0.00023 |
3 | 7 | 10–16 | 28.33 | 0.0004 |
3 | 8 | 16–22 | 52.04 | 0.00023 |
3 | 9 | 22–30 | 41.88 | 0.0016 |
3 | 9.5 | 30–46 | 39.84 | 0.0032 |
3 | 10 | 46–62 | 14.26 | 0.0021 |
3 | 11 | 62–74 | 39.85 | 0.0018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosikov, I.I.; Martyushev, N.V.; Klyuev, R.V.; Savchenko, I.A.; Kukartsev, V.V.; Kukartsev, V.A.; Tynchenko, Y.A. Modeling and Complex Analysis of the Topology Parameters of Ventilation Networks When Ensuring Fire Safety While Developing Coal and Gas Deposits. Fire 2023, 6, 95. https://doi.org/10.3390/fire6030095
Bosikov II, Martyushev NV, Klyuev RV, Savchenko IA, Kukartsev VV, Kukartsev VA, Tynchenko YA. Modeling and Complex Analysis of the Topology Parameters of Ventilation Networks When Ensuring Fire Safety While Developing Coal and Gas Deposits. Fire. 2023; 6(3):95. https://doi.org/10.3390/fire6030095
Chicago/Turabian StyleBosikov, Igor Ivanovich, Nikita V. Martyushev, Roman V. Klyuev, Irina A. Savchenko, Vladislav V. Kukartsev, Viktor A. Kukartsev, and Yadviga A. Tynchenko. 2023. "Modeling and Complex Analysis of the Topology Parameters of Ventilation Networks When Ensuring Fire Safety While Developing Coal and Gas Deposits" Fire 6, no. 3: 95. https://doi.org/10.3390/fire6030095
APA StyleBosikov, I. I., Martyushev, N. V., Klyuev, R. V., Savchenko, I. A., Kukartsev, V. V., Kukartsev, V. A., & Tynchenko, Y. A. (2023). Modeling and Complex Analysis of the Topology Parameters of Ventilation Networks When Ensuring Fire Safety While Developing Coal and Gas Deposits. Fire, 6(3), 95. https://doi.org/10.3390/fire6030095