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Abstract: The flow field driven by a compartment fire usually contains several flow zones with
different physical structures. As each type of turbulence model has its own predominant application
area, it is logical to apply two or more simple turbulence models to the same fire-induced flow field at
different locations according to their predominant features to yield a comparatively simple, accurate,
and stable zonal turbulence model. A zonal turbulence model, which is a hybrid of the standard
k-ε model and its modification, is developed in this paper. The model is tested and compared with
the experimental data. A promising improvement is observed when comparing it with the base
turbulence model, i.e., the standard k-ε model, especially in the recirculating region near the corners
of the compartment. This approach in having different zones in the plume region will be useful for
handling more scenarios at the initial stage of fire hazard assessments.

Keywords: computational fluid dynamics; field modeling simulation; zonal turbulence model;
compartment fire simulation

1. Introduction

In studying compartmental fires, the fire-induced flow is almost always turbulent.
That means the fluid motion is highly random, unsteady, and three-dimensional. Due to
these complexities, turbulent motion and heat, and the mass transfer associated with it, are
extremely difficult to describe and predict theoretically.

At present, in spite of all the recent advances in computer technology, turbulent flows
cannot be calculated with an exact method. Therefore, a numerical approach is required to
solve this type of problem.

Computational fluid dynamics or field modeling is one of the numerical methods
for predicting the fire-induced flow [1,2]. Field modeling is based on the conservation
laws for mass, momentum, and energy. The basic conservation laws are expressed by the
exact equations describing all the details of the fluid motion. The details of the fluctuating
motion are not the topic of interest. A statistical approach was taken and the equations
were averaged over a time scale which is long compared with that of the turbulent mo-
tion. The resulting equations describing the distribution of the mean velocity, pressure,
temperature, and species concentration in the flow and, thus, the quantities are of prime
interest. Unfortunately, the process of averaging has created a new problem. The set of
equations does not constitute a closed system since the equations contain unknown terms,
u′ iφ′ , representing the transport of mean momentum, heat, and mass by the turbulent
motion. The system can only be solved with the aid of a suitable turbulence model.

Turbulent transport processes are strongly dependent on the geometrical conditions,
fluid property, and flow pattern. Turbulence models can only give an approximate descrip-
tion with a particular set of empirical constants which are valid only for a certain flow, or
in some range of flows. In practical applications, the more universal turbulence models are
usually more complex and unstable, thus requiring more computing time.
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Computational fluid dynamics (CFD) with large-eddy simulation (LES) has been
used [3–14] in fire hazard assessments for many years. Most of the CFD fire models are
not properly validated with systematic large-scale fire tests with criticisms. Simulations
with LES will take a very long central processing unit (CPU) time even when linking with
a fast computer with expensive costs. This is not appropriate for a hazard assessment,
with thousands of scenarios to simulate. A zone model was then used for preliminary
studies before large-scale simulations and full-scale burning tests. Fire hazard assessments
in nuclear facilities involving a burning cable [15] is a good example. A modified Reynolds-
averaged Navier–Stokes (RANS) model with faster simulation times is then proposed,
which might be better than using the zone model through symbolic mathematics [16].

In a compartmental fire, the flow field can be divided into several regions by its own
distinct feature and property. Each region can be simulated successfully with a suitable
type of turbulence model. Theoretically, if several turbulence models are employed locally
to simulate the fire-induced flow field, according to the predominant feature of each model,
the predicted results should be good and computationally cheap.

In this paper, this zone-modeling approach is applied to study compartment fires using
CFD. It will be compared with the standard k-ε model for the application in fire-field mod-
eling. Their performance will be assessed in terms of the accuracy of the predicted results
of the air flow pattern and temperature distribution induced by a fire in a compartment.

2. Zonal Turbulence Model

A complex flow field usually contains several flow zones with different physical struc-
tures. Since the attempts to construct a universal turbulence model may cause convergence
problems and require much computational resources [17,18], it seems logical to construct a
zonal turbulence model in which each flow zone is modeled independently. In the zonal
modeling strategy, each different zone is identified separately, since it should be easier to
construct accurate models for a zone than for the flow field as a whole. As a result, a zonal
model can be much simpler than a universal turbulence model for achieving a given level
of accuracy.

2.1. Continuity Problem

When a flow field is decomposed into different zones, there exist regions between
the zones where one zone changes into another. Physically, the transition from one type
of structure to another may cause a discontinuity problem. In order to minimize the
difficulty of blending, the models for various zones should have the same form. From
Chow and Mok [19], a serious blending problem is identified between fundamentally
different turbulence models, such as the combination of a two-equation-type turbulence
model and a zero-equation-type turbulence model. However, the discontinuity problem
becomes insignificant when the combination of a modified form of the k-ε turbulence
models is applied.

2.2. Methodology

In order to construct a zonal turbulence model, a simple and stable turbulence model
was first used for the whole flow field. Such a model is called a base model. The standard
k-ε model was employed as the base turbulence model in this study since it is well-known
to be fast-running, simple, and stable with reasonable accuracy [20–23]. According to the
computed results, i.e., flow field and temperature field, different flow regions can be located
without difficulty. In each region, the flow structure was analyzed to understand why the
base turbulence model was inaccurate. Then, modification of the base turbulence model can
be targeted to different flow regions with respect to their distinct features. By combining all
different localized modifications, a suitable and comparatively simple zonal turbulence
model is formed. The methodology of zonal turbulence modeling is summarized as follows:

(a) Select a base turbulence model;
(b) Compute the flow field with the base turbulence model;
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(c) From the predicted results, such as flow field and temperature field, different flow
zones are identified;

(d) Modify the base model for these zones accordingly with a specific and simple turbu-
lence model;

(e) Compute the flow field with the proposed zonal turbulence model.

2.3. Different Flow Regions

From the fire anatomy, the flow field of most of the compartmental fires can be
divided into several regions [24], i.e., fire plume region, flow entrainment region, and
recirculating region. When studying the fire-induced flow field in more detail, the flow
regions are not limited to these three areas. However, these three regions are considered
more representative and can be described successfully by the available turbulence models
in the present paper.

The fire plume region is situated above the fire seat. A high velocity, temperature, and
Reynolds number are expected. This region is highly dependent on the position of the seat
of the fire source and the compartment geometry.

The flow entrainment region is situated beside the fire plume region. Due to the
velocity and pressure of the fire plume region, a lot of air is entrained into the fire plume
region. A great velocity difference and pressure difference are expected.

The recirculating region is highly related to the fire plume flow direction, fluid property,
compartment geometry, and position of the air inlet/outlet. The recirculating region always
appears in the cavity of the compartment just beside the entrainment region, at the sharp
corner of the compartment and near the air inlet/outlet.

Each region has its own characteristics which can be predicted with better accuracy
by a suitable turbulence model [25]. For example, the recirculating region should not be
classified as a region with isotropic turbulence. Otherwise, the values of the turbulence
viscosity would be overestimated [25–27]. Further, the reversed flow would make a positive
contribution to the turbulence shear stress [27]. Different turbulence models are proposed
to be used in different regions.

2.4. Fire Source

According to a review on the chemical reactions of burning Poly(methyl methacrylate)
(PMMA) with the simple kinetics of thermal decomposition [28], there are three stages in
the combustion process: PMMA decomposes to produce monomer methylmethacrylate
(MMA); monomer MMA decomposes to generate small gaseous molecules; and these small
molecules undergo combustion. Intermediate chemical reactions are very complex with
seven group reactions: thermal decomposition; thermal oxidative decomposition; decom-
position of monomer MMA; methane combustion; methanol combustion; formaldehyde
combustion; and acetylene combustion. There are thousands of reactions to model, for
example, 26 species and 77 elementary reactions in methane combustion. The reaction
mechanism of acetylene has 103 elementary reactions and 38 species. As combustion
chemistry is too complicated to be involved and this study is on turbulent flow, the fire
source is taken as a heat source with a specified thermal power.

3. Fire-Field Modeling

The technique of computational fluid dynamics (field modeling) is applied to simulate
fires in a compartment. The flow is turbulent in nature, and the values of the flow variables are
solved. The induced flow and temperature field can be described by a set of equations derived
from the law of conservation of mass, momentum, and enthalpy. There are eight variables to
be solved, i.e., the three velocity components u, v, and w (using a Cartesian co-ordinate system
in terms of x, y, and z, referring to Figure 1), air pressure p, enthalpy h, smoke concentration
f, turbulent kinetic energy k, and its dissipation rate ε. Except for pressure, these variables
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are described by conservation laws which appear in a similar form. Assuming the variable φ
stands for any one of the seven fluid variables, the equation for φ is

∂(ρφ)

∂t
+ div[ρVφ− Jφ] = Sφ (1)
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Figure 1. Configuration of the test chamber.

The variables ρ, V, Jφ, and Sφ are the density, velocity vector (with co-ordinate system
referring to Figure 1), diffusive flux vector, and source rate per unit volume, respectively.
The velocity V and diffusive flux Jφ are given by

V = ux̂ + vŷ + wẑ (2)

Jφ = −Γφgradφ (3)

where Γφ denotes the effective exchange coefficient of φ and is determined from the turbu-
lence parameters k and ε.

The above equations are generally applied to describe the instantaneous state of the
turbulent fire field. However, in an engineering application, the average behaviour of
the turbulent fire field is of more interest. Emphasis is therefore put on the mean flow
behaviours rather than the instantaneous properties of flow. Any instantaneous value of
those air flow variables φt (e.g., air velocity, pressure, and enthalpy) can be expressed as its
average value φ plus its fluctuation φ′:

φt = φ + φ′ (4)

Similarly, the time averaging of Equation (1) gives:

∂(ρφ)

∂
+ div

[
ρVφ− Jφ

]
=

[
−∂ρu′φ′

∂x
− ∂ρv′φ′

∂y
− ∂ρw′φ′

∂z

]
+ Sφ (5)

As a result, six additional unknowns, u′ iu′ j, the Reynolds stresses, are obtained in
the time-averaged momentum equations. Similarly, the time-averaged scalar transport
equations show extra terms containing u′ iφ′ . In this way, the set of equations is no longer
a closed set. A turbulence model is necessary to represent the Reynolds stresses and the
scalar transport terms with sufficient accuracy and generality.
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3.1. Turbulence Model with Isotropic Assumption

Those turbulence models are based on the presumption that the turbulent viscosity
µt is isotropic. In other words, the ratio between the Reynolds stress and the mean rate of
deformation is the same in all directions.

The standard k-ε model [2,29]:

The standard k-ε model [30] has two model equations, one for k and one for ε. The
effective viscosity µe f f due to turbulence is expressed in terms of two turbulence parameters
k and ε, as:

µe f f = µl +
0.09ρk2

ε
(6)

These turbulence parameters have to be solved by two additional transport equations
on k and ε, with empirical constants C1, C2, and CD:

Low Reynolds number (LRN) k-ε model [26,30–32]:

The k-ε model was extended by Jones and Launder [31] to low Reynolds numbers so
that the turbulence model equations can be valid throughout the laminar, transition, and
fully turbulent regions. The effective viscosity µe f f due to turbulence is expressed in terms
of two turbulence parameters k and ε, as:

µe f f = µl +
Cµρk2

ε
(7)

In these equations, most of the constants retain the values assigned to them for high
Reynolds numbers while C2 and Cµ vary with the turbulence Reynolds number Rt and are
shown as follows:

Cµ = Cµ∞ exp[−2.5/(1+ Rt/50)] (8)

C2 = C2∞ [1 − 0.3 exp(−Rt2 )] (9)

The subscript ∞ refers to fully turbulent values. Note that the laminar diffusive
transport here becomes more important in approaching the wall and the extra destruction
terms included are of some significance in the viscous and transitional regions.

3.2. Turbulence Model with Non-Isotropic Treatment

Standard k-ε model with second-order corrections [20,33]:

The k-ε model cannot produce the physical non-isotropic effects by amplifying the
turbulence fluctuating in one direction and damping in the other. An algebraic Reynolds
stress turbulence model can account for these non-isotropic effects. In this study, the standard
k-ε model and algebraic Reynolds stress are combined to form a hybrid to account for the
non-isotropic turbulence due to buoyancy. The theories of the algebraic Reynolds stress model
were well-described in the literature [20,22,26,34,35] and would not be repeated here.

Empirical parameters with appropriate assumptions are used [36,37].

LRN k-ε model with second-order corrections [20,33]:

This is a hybrid of the k-ε model (low Reynolds) and the algebraic Reynolds stresses
model. The theory behind it is similar to the hybrid of the standard k-εmodel and algebraic
Reynolds stresses model.

4. Numerical Methods

The set of equations given by (1) is solved by numerical methods as reported in the
literature [2,5,19,29,38]. The details would not be repeated here, but a brief summary is listed.
Integrating the continuity Equation (1) over the control volume as shown in Figure 1 gives:

apφp = aEφE + aWφW + aNφN + aSφS + aTφT + aBφB + b (10)
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aE = De A(|Pe|) + max(−Fe, 0) (11)

where I = E, W, N, S, T, and B; and i = e, w, n, s, t, and b.

aP = aE + aW + aN + aS + aT + aB + ρo ∆V
∆t
− SP∆V (12)

b = SC∆V +
ρo

pφo
P∆V

∆t
(13)

The power law scheme is used:

A(|P|) = max
(

0, (1− 0.1|P|)5
)

(14)

The discretization equation relates the global value of φ at the node P to its immediate
neighbouring nodes E, W, N, S, T, and B with local production terms. The coefficients aP, aE,
aW , aN , aS, aT , and aB reflect the contributions from distinct nodes due to the convective and
diffusive transport of φ along the direction joining with the node P the neighbours E, W, N,
S, T, and B. The equations are solved using the Semi-Implicit Method for Pressure-Linked
Equation Revised (SIMPLER).

The accuracy of the solutions of the differential equations is strongly influenced by the
boundary conditions. Therefore, the treatment of the boundary conditions, especially for
solid walls, should be considered carefully. There are two types of boundary conditions
used: solid wall boundary and free boundary. A summary is listed in Table 1.

Table 1. Summary of the boundary conditions.

k-ε Models and Its Modifications

Momentum equation u, v, and w
Free boundary: ∂u

∂x
= 0,

∂v
∂y

= 0,
∂w
∂z

= 0

Solid boundary: Velocity components normal to the solid wall are set to be zero.

Enthalpy equation h
Free boundary: ∂hx

∂x
= 0,

∂hy

∂y
= 0,

∂hz

∂z
= 0

Solid boundary: For adiabatic case, h f lux = 0

Turbulent parameter:
k-equation

Free boundary: ∂k
∂x

= 0

Solid boundary: Gk =
τsup

yp
, τs =

0.42× y+

In(Ey+)

ε-equation
Free boundary: ∂ε

∂x
= 0

Solid boundary: εp =
C3/4

d k3/2
p

kyp

For the enthalpy equation, an adiabatic wall condition is assumed for the solid wall.
The convective heat flux through the interior wall (h f lux) is equal to zero. The local
convection and diffusion of turbulent energy at a wall are assumed to be negligible. There
is no flux contributed from the wall. The flux expression for k is suppressed by setting the
coefficient as at the solid wall to be zero. The generation term Gk for kp on the solid wall
can be evaluated using the expression listed in Table 1.

The modified generation term is then incorporated into the source term of the k
equation to solve for kp at the wall boundary. The treatment of k and ε at the free boundary
is similar to the enthalpy equation.
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5. Numerical Experiments

A series of experiments had been carried out to study the fire-induced air flow in a
test compartment [39] for providing experimental data to validate the field models. The
data are now used in the present study for validating the computed results by using the
zonal turbulence model.

The geometrical configuration of the chamber used in the numerical study was of
length 3.6 m, width 2.4 m, and height 2.4 m as shown in Figure 1. A fire of size 0.117 m3 was
located at the corner of the chamber. The heat release rate followed the experimental result
from the Fire Test of University of Canterbury. The heat release rate was set to be increased
from 0 to 55 kW in 50 s. Four thermocouples were placed at the compartment ceiling on
the vertical mid-plane to study the variation of the temperature and one thermocouple was
placed on the top of the doorway.

The chamber is divided into a coarse grid system of 22 × 24 × 20 cells along the
directions x, y, and z, respectively, as shown in Figure 1. The grid boundary along each x, y,
and z direction are shown in lines Gx, Gy, and Gz in the figure. Note that the y co-ordinate
is taken to be the vertical direction. For a better simulation, the grid sizes are not uniform.
The fire source and some critical locations are modeled with smaller grids. The locations
of the monitoring points are shown clearly. A personal computer notebook can be used
for the simulation. The time step was 0.1 s. The convergence criterion for solving all flow
variables φ is:

Rφ = ∑
∣∣Rp
∣∣ < Rre f (15)

where Rre f is a chosen value and Rφ represents the sum of the absolute residual errors for
any variable φ. This condition must be satisfied before marching to the next time step. If
Rp <1 for all grid points, then the program can go to the next time step.

6. Development of Zonal Turbulence Model

In accordance with the zonal turbulence methodology outlined in Section 2, the fire-
induced flow is first computed with the base turbulence model, i.e., the standard k-ε model.
The flow field is presented in Figure 2, and the three distinct flow regions—fire plume
region, flow entrainment region, and recirculating region—are clearly identified. For the
sake of simplicity, two zones are addressed as Zone A and Zone B. The flow in Zone A, the
fire plume and entrainment regions are classified as a region with high mean-flow Reynolds
numbers, and isotropic (non-directional), whereas the flow characteristic of Zone B, the
recirculating region, is anisotropic (directional) with a relatively low Reynolds number. The
cells of Zone A are I: 9 to 23, J: 2 to 20, K: 9 to 14, and I: 9 to 16, J: 21 to 25, K: 7 to 16. The
rest of the cells belong to Zone B.
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Based on the specific properties of Zone A and B, modifications of the base turbulence
model can be applied, respectively. The theories behind this have already been explained
in Section 3, and are shown as follows:
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• Zone A: A high mean-flow Reynolds numbers and isotropic (directional) region where
the standard k-ε model was applied.

• Zone B: A relatively low mean-flow Reynolds numbers and anisotropic (non-directional)
region where the standard k-ε model and LRN k-ε model with second-order corrections
were applied.

The following two combinations of turbulence models were tested while using the
zonal turbulence modeling:

(a) Tu 2: Standard k-ε model and standard k-εmodel with second-order corrections;
(b) Tu 3: Standard k-ε model and LRN k-εmodel with second-order corrections.

7. Results

The predicted velocity and temperature fields on the vertical plane, k = 11, of the com-
partment at 100 s after starting the fire are calculated. Those predictions using the k-ε model
and two different combinations of zonal turbulence models are shown in Figures 3 and 4.
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The mass source error is defined as:

Mass source error = ∑
∣∣∣∣∆p

∆t
+

∆(ρu)
∆x

+
∆(ρv)

∆y
+

∆(ρw)

∆z

∣∣∣∣ (16)

The mass source errors at 100 s for Tu 1, Tu 2, and Tu 3 are 9.5, 9.1, and 13.6, respectively.
Higher mass sources are expected because combustion is not simulated. The turbulent flow
was still under transition. The transient values are plotted in Figure 5.

The percent deviation PD is given by:

PD = |(φSIM − φTu1 )/ φTu1)| × 100% (17)

The percentage deviation with respect to Tu 1 or Tu 2 is 4.2%, and 43.2% for Tu 3.
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The predicted transient temperature for the various monitoring points Pt1 to Pt5 are
shown in Figure 6a–e, and the numerical values are shown in Table 2. The CPU time
required for running the various turbulence models is roughly the same of less than 5 h in
the notebook.
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Table 2. Comparison of experimental and simulated results of temperature at 100 s.

Temp ◦C

Pt Measured Tu 1 Tu 2 Tu 3

Value k-ε Model k-ε Model + k-ε Model
with Second-Order Correction

k-ε Model + LRN k-ε Model
with Second-Order Correction

1 131 40.8 (68.8%) 40.3 (69.3%) 122.5 (6.5%)
2 135.1 78.8 (41.7%) 85.2 (36.9%) 143.4 (6.2%)
3 132 192.4 (45.8%) 216.3 (63.9%) 274.5 (108%)
4 126 59.3 (52.9%) 69.1 (45.2%) 110.3 (12.5%)
5 117.5 31 (73.6%) 31 (73.6%) 53.2 (54.7%)

Values in parentheses are percent deviation, = |(φSIM − φMEA )/ φMEA)| × 100%.

From the computed data of Pt 3, it is observed that there are significant differences
between the measured and simulated results as illustrated in Table 2 and Figure 6. Pt 3 was
located at the ceiling right above the fire source which was highly affected by the feature of
the heat source. The fire was described by a volumetric heat source that did not quite match
a real fire with combustion reactions modelled [28]. There are thousands of intermediate
reactions in the burning process; such discrepancy is expected for simulations without a
combustion model. Including a realistic combustion model might improve the results. In
addition, this study is focused on the comparison of different turbulence models rather
than the spread of fire.

When comparing the results of the standard k-ε model (Tu 1) and the zonal turbulence
model (Tu 2), which is a combination of the standard k-εmodel and the standard k-ε model
with a second-order correction, Tu 2 provided overall better predictions of temperature. At
monitoring points Pt 1 and Pt 5, similar results were predicted by both turbulence models.
However, at monitoring points Pt 2 and Pt 4, better predictions of temperature by Tu 2 were
recorded with an improvement of up to 4.8% and 7.7%, respectively, compared to Tu 1.
From the predicted flow field as shown in Figure 3, the recirculating regions located at both
the left and right top corners were found to be more developed in the simulation of Tu 2
than Tu 1. It can be one of the reasons for the improvement of the simulated temperature
at monitoring points Pt 2 and Pt 4 by Tu 2. By studying the predicted temperature fields
in Figure 4, it was observed that temperature layers were developed in the simulation of
Tu 2. Regarding the mass source error, both turbulence models Tu 1 and Tu 2 provided
reasonable and stable values, which were recorded as 9.5 and 9.1, respectively, at time 100 s.
The required CPU time for Tu 1 was 4.5 h and Tu 2 took 4.72 h to complete the program.
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The difference was small at only about 4.9%. It can be seen that the standard k-εmodel and
standard k-εmodel with a second-order correction (Tu 2) provided more accurate results
with only marginally more computational effort than the standard k-εmodel. It has been
explained [20] that the second-order correction is merely the redistribution of the turbulent
kinetic energy between the x-, y-, and z-directions. The ASM corrections of the normal
Reynolds stresses do not affect the total turbulent kinetic energy, since their sum equals
zero [20]. The contribution (u′iu

′
j)ASM to the total Reynolds stress can be seen as a linear

uncoupled ASM correction to the standard k-εmodel.
From the comparison between the standard k-ε model (Tu 1) and the zonal turbulence

model (Tu 3), which is the combination of the standard k-ε model and the LRN k-ε model
with a second-order correction, Tu 3 showed a significant improvement in the prediction
of temperature. At monitoring point Pt 1 on the left top corner of the compartment, the
simulated temperature by Tu 1 and Tu 3 were 40.8 ◦C and 122.5 ◦C, respectively, and the
measured temperature was 131 ◦C. The improvement made by Tu 3 was about 62.3% better
than the result by Tu 1. When studying the results at Pt 2, the percentage deviations from
the experiment on the average simulated temperature predicted by Tu 1 and Tu 3 were
about 41.7% and 6.2%, respectively. The recorded improvement was about 35.5%. From the
predicted flow fields as shown in Figure 3, the recirculating flow was developed up to the
left wall and the mixing of the flow was extensive in the simulation of Tu 3, whereas the
development of the recirculating flow by Tu 1 was confined. As a result, the temperature
predicted by Tu 3 was better than Tu 1. Similarly, Tu 3 performed better than Tu 1 at Pt 4
with up to a 40.4% improvement. The simulated temperature by Tu 1 and Tu 3 were 59.3 ◦C
and 110.3 ◦C, respectively, and the measured temperature was 126 ◦C.

At Pt 5, it can be seen that there are significant differences between the measured
and simulated results by all three turbulence models. One possible explanation is that
the monitoring location of Pt 5 is very close to the computational boundaries, where
the accuracy of the boundary conditions specified would affect the predicted results.
Accurate measurements on the free boundaries may improve the simulated results and are
recommended for further studies.

From Tu 1 and Tu 3, the simulated data were 31 ◦C and 53.2 ◦C, respectively at Pt 5.
By comparing with the measured temperature at Pt 5, the deviations were 73.6% for Tu 1
and 53.2% for Tu 3. Although the results by both models had a rather great discrepancy
with the experimental results, it was clear that Tu 3 provided better predictions than Tu 1
with up to about a 20.4% improvement.

With respect to the flow field shown in Figure 3, the recirculating regions by Tu 3 ex-
tensively developed at the top corners of the compartment; a significant improvement was
observed when comparing with Tu 1 or even Tu 2. By studying the predicted temperature
field in Figure 4, Tu 3 provided a temperature field with a more sophisticated development
of temperature layers. The results were also in line with the theory [20,26,30] that the LRN
k-ε model can better handle the viscous effects in the viscous sub-layers near the walls than
the standard k-ε model. Regarding the mass source error, the pattern of the transient values
of Tu 3 was similar to Tu 2, as they were applying the same base model turbulence model,
k-ε model, with modifications. At time 100 s, the mass source error of Tu 3 was 13.6 or 43.2%
more compared to Tu 1 and this can be explained by the theory [18,20,26,30] behind Tu 3,
for which a relatively more complicated turbulence model was applied. In addition, the
value was found to be well within the reasonable and acceptable level. The required CPU
time for Tu 3 was 5.02 h or 11.56% longer than Tu 1, but up to a 62.8% (at Pt 1) improvement
in predicting temperature.

8. Boundary of the Flow Regions

As mentioned in Section 2, the discontinuity problem is one of the major difficulties
of the zonal turbulence model. For the two cases of zonal turbulence models, Tu 2 and
Tu 3, the turbulent-viscosity-to-laminar-viscosity ratio ((µt/µl) was inspected to check
the continuity.
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The viscosity ratio (µt/µl) along the x-axis for J = 23 and K = 11 by Tu 2 and Tu 3 were
plotted in Figure 7a,c. The variations of viscosity ratio (µt/µl) along the z-axis for I = 11
and J = 23 by Tu 2 and Tu 3 are shown in Figure 7b,d.
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From the data, no significant discontinuity was recorded. The gradients
d(µt/µl)

dx
and

d(µt/µl)

dy
for the ratio ((µt/µl) across the boundary by Tu 2 were 850 m−1 at I = 9, 100 m−1

at I = 16, 2140 m−1 at K = 7, and −2410 m−1 at K = 16. Similarly, the gradients across the
boundary by Tu 3 were 540 m−1 at I = 9, 80 m−1 at I = 16,−90 m−1 at K = 7, and−1020 m−1

at K = 16.
This is only a qualitative comparison of the zonal turbulence model. Further studies

with experiments are needed on the boundary phenomenon.

9. Conclusions

Fire-induced flow in a compartment has been computed with the standard k-ε model
first (Tu 1). Based on the computed flow field, different regions with distinct turbulence
features are located and suitable modifications of the standard k-ε model are proposed. By
combining different modifications of the standard k-ε model targeted on different regions,
two zonal turbulence models are formed, which are Tu 2 (standard k-ε model and standard
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k-ε model with a second-order correction) and Tu 3 (standard k-ε model and LRN k-ε model
with a second-order correction).

The results indicate that the zonal models provide superior predictions for most of
the zones in the flow field when compared to the standard k-εmodel. The improvements
will be varied according to the suitability of the modifications of the k-ε model applied in
specific zones. Moreover, one of the major problems in zonal turbulence modeling is the
discontinuity across the boundary of different zones. In this study, a solution is proposed
by using similar types of turbulence models, i.e., the k-ε model and its modifications,
and reasonable results were obtained. However, the selections of turbulence models for
combination are limited. Further research in the combination of different turbulence models
is required.

The zonal turbulence modeling approach proposed above is appropriate for carrying
out a high number of simulations in a preliminary study on identifying typical scenarios
in initial hazard assessments while applying a performance-based design. This will give
a reasonable accuracy within affordable computing resources. The identified scenarios
can then be studied more thoroughly using a much smaller number of LES simulations
and confirmed by previous full-scale burning tests. The cost of hazard assessments on
compartment fires is then highly reduced.
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Nomenclature

C1, C2, CD empirical constants in the turbulence model
Cµ, Cµ∝, C2∝
Cp specific heat of the gas mixture at constant pressure
Qt heat generation rate
ρ density
T absolute temperature
h stagnation enthalpy of the gas mixture
k turbulent kinetic energy
p static pressure
t time
u, v, w velocity components in the (Cartesian) co-ordinate directions x, y, and z, respectively
Γφ effective exchange coefficient of the property φ
ε turbulent energy dissipation rate
φ general fluid property
µ absolute viscosity of the gas mixture
Rt Reynolds number
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