Modification of Soil Hydroscopic and Chemical Properties Caused by Four Recent California, USA Megafires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Locations and Fire Description
2.2. Water Drop Penetration Time (WDPT) Measurements
2.3. Apparent Contact Angle (ACA) Measurements
2.4. TG APPI FT-ICR MS Measurements
3. Results and Discussion
3.1. Water Drop Penetration Time (WDPT)
3.2. Apparent Contact Angle (ACA)
3.3. Chemical Characterization of Organic Constituents with TG APPI FT-ICR MS
3.3.1. Thermogravimetric Analysis
3.3.2. Mass Spectrometric Evolved Gas Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Morgan, P. Tree regeneration following wildfires in the western US: A review. Fire Ecol. 2019, 15, 15. [Google Scholar] [CrossRef]
- Sanderfoot, O.; Bassing, S.; Brusa, J.; Emmet, R.; Gillman, S.; Swift, K.; Gardner, B. A review of the effects of wildfire smoke on the health and behavior of wildlife. Environ. Res. Lett. 2022, 16, 123003. [Google Scholar] [CrossRef]
- Parkins, K.; York, A.; Di Stefano, J. Edge effects in fire-prone landscapes: Ecological importance and implications for fauna. Ecol. Evol. 2018, 8, 5937–5948. [Google Scholar] [CrossRef]
- Nichols, L.; Shinneman, D.J.; McIlroy, S.K.; de Graaff, M.-A. Fire frequency impacts soil properties and processes in sagebrush steppe ecosystems of the Columbia Basin. Appl. Soil Ecol. 2021, 165, 103967. [Google Scholar] [CrossRef]
- Watts, A.C.; Samburova, V.; Moosmüller, H. Criteria-based identification of important fuels for Wildland fire emission research. Atmosphere 2020, 11, 640. [Google Scholar] [CrossRef]
- Lack, D.A.; Moosmüller, H.; McMeeking, G.R.; Chakrabarty, R.K.; Baumgardner, D. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties. Anal. Bioanal. Chem. 2014, 406, 99–122. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Moosmüller, H.; Chen, L.-W.; Lewis, K.; Arnott, W.; Mazzoleni, C.; Dubey, M.; Wold, C.; Hao, W.; Kreidenweis, S. Brown carbon in tar balls from smoldering biomass combustion. Atmos. Chem. Phys. 2010, 10, 6363–6370. [Google Scholar] [CrossRef]
- Moosmüller, H.; Chakrabarty, R.; Ehlers, K.; Arnott, W. Absorption Ångström coefficient, brown carbon, and aerosols: Basic concepts, bulk matter, and spherical particles. Atmos. Chem. Phys. 2011, 11, 1217–1225. [Google Scholar] [CrossRef]
- Rennie, M.; Samburova, V.; Sengupta, D.; Bhattarai, C.; Arnott, W.P.; Khlystov, A.; Moosmüller, H. Emissions from the open laboratory combustion of cheatgrass (Bromus Tectorum). Atmosphere 2020, 11, 406. [Google Scholar] [CrossRef]
- Sengupta, D.; Samburova, V.; Bhattarai, C.; Moosmüller, H.; Khlystov, A. Emission factors for polycyclic aromatic hydrocarbons from laboratory biomass-burning and their chemical transformations during aging in an oxidation flow reactor. Sci. Total Environ. 2023, 870, 161857. [Google Scholar] [CrossRef]
- Yatavelli, R.L.; Chen, L.-W.A.; Knue, J.; Samburova, V.; Gyawali, M.; Watts, A.C.; Chakrabarty, R.K.; Moosmüller, H.; Hodzic, A.; Wang, X. Emissions and Partitioning of Intermediate-Volatility and Semi-Volatile Polar Organic Compounds (I/SV-POCs) During Laboratory Combustion of Boreal and Sub-Tropical Peat. Aerosol Sci. Eng. 2017, 1, 25–32. [Google Scholar] [CrossRef]
- Lewis, K.; Arnott, W.; Moosmüller, H.; Chakrabarty, R.; Carrico, C.; Kreidenweis, S.; Day, D.; Malm, W.; Laskin, A.; Jimenez, J. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer. Atmos. Chem. Phys. 2009, 9, 8949–8966. [Google Scholar] [CrossRef]
- Bhattarai, C.; Samburova, V.; Sengupta, D.; Iaukea-Lum, M.; Watts, A.C.; Moosmüller, H.; Khlystov, A.Y. Physical and chemical characterization of aerosol in fresh and aged emissions from open combustion of biomass fuels. Aerosol Sci. Technol. 2018, 52, 1266–1282. [Google Scholar] [CrossRef]
- Sengupta, D.; Samburova, V.; Bhattarai, C.; Watts, A.C.; Moosmüller, H.; Khlystov, A.Y. Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor. Atmos. Chem. Phys. 2020, 20, 8227–8250. [Google Scholar] [CrossRef]
- Iaukea-Lum, M.; Bhattarai, C.; Sengupta, D.; Samburova, V.; Khlystov, A.Y.; Watts, A.C.; Arnott, W.P.; Moosmüller, H. Optical Characterization of Fresh and Photochemically Aged Aerosols Emitted from Laboratory Siberian Peat Burning. Atmosphere 2022, 13, 386. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Wigder, N.L. Ozone production from wildfires: A critical review. Atmos. Environ. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- Black, C.; Tesfaigzi, Y.; Bassein, J.A.; Miller, L.A. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue. Environ. Toxicol. Pharmacol. 2017, 55, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.R.; Abbatt, J.P. Wildfire atmospheric chemistry: Climate and air quality impacts. Trend. Chem. 2022, 4, 255–257. [Google Scholar] [CrossRef]
- Finlay, S.E.; Moffat, A.; Gazzard, R.; Baker, D.; Murray, V. Health impacts of wildfires. PLoS Curr. 2012, 4, e4f959951cce2c. [Google Scholar] [CrossRef]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [PubMed]
- DeMott, P.J.; Petters, M.D.; Prenni, A.J.; Carrico, C.M.; Kreidenweis, S.M.; Collett, J.L., Jr.; Moosmüller, H. Ice nucleation behavior of biomass combustion particles at cirrus temperatures. J. Geophys. Res. Atmos. 2009, 114, D16. [Google Scholar] [CrossRef]
- Petters, M.D.; Parsons, M.T.; Prenni, A.J.; DeMott, P.J.; Kreidenweis, S.M.; Carrico, C.M.; Sullivan, A.P.; McMeeking, G.R.; Levin, E.; Wold, C.E. Ice nuclei emissions from biomass burning. J. Geophys. Res. Atmos. 2009, 114, D7. [Google Scholar] [CrossRef]
- Lewis, K.; Arnott, W.P.; Moosmüller, H.; Wold, C.E. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J. Geophys. Res. Atmos. 2008, 113, D16. [Google Scholar] [CrossRef]
- Gyawali, M.; Arnott, W.; Lewis, K.; Moosmüller, H. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption. Atmos. Chem. Phys. 2009, 9, 8007–8015. [Google Scholar] [CrossRef]
- Moosmüller, H.; Chakrabarty, R.; Arnott, W. Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Radiat. Transfer. 2009, 110, 844–878. [Google Scholar] [CrossRef]
- Beres, N.D.; Sengupta, D.; Samburova, V.; Khlystov, A.Y.; Moosmüller, H. Deposition of brown carbon onto snow: Changes in snow optical and radiative properties. Atmos. Chem. Phys. 2020, 20, 6095–6114. [Google Scholar] [CrossRef]
- Lapuerta, M.; González-Correa, S.; Ballesteros, R.; Cereceda-Balic, F.; Moosmüller, H. Albedo reduction for snow surfaces contaminated with soot aerosols: Comparison of experimental results and models. Aerosol Sci. Technol. 2022, 56, 847–858. [Google Scholar] [CrossRef]
- Shakesby, R. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- DeBano, L.F. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- Letey, J. Causes and consequences of fire-induced soil water repellency. Hydrol. Process. 2001, 15, 2867–2875. [Google Scholar] [CrossRef]
- Lewis, S.A.; Wu, J.Q.; Robichaud, P.R. Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado. Hydrol. Process Int. J. 2006, 20, 1. [Google Scholar] [CrossRef]
- Samburova, V.; Shillito, R.M.; Berli, M.; Khlystov, A.Y.; Moosmüller, H. Effect of Biomass-Burning Emissions on Soil Water Repellency: A Pilot Laboratory Study. Fire 2021, 4, 24. [Google Scholar] [CrossRef]
- Robichaud, P.; Hungerford, R. Water repellency by laboratory burning of four northern Rocky Mountain forest soils. J. Hydrol. 2000, 231, 207–219. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; MacDonald, L.H. Soil water repellency: A key factor in post-fire erosion. In Fire Effects on Soils and Restoration Strategies; CRC Press: Enfield, NH, USA, 2009; pp. 213–240. [Google Scholar]
- Larsen, I.J.; MacDonald, L.H.; Brown, E.; Rough, D.; Welsh, M.J.; Pietraszek, J.H.; Libohova, Z.; de Dios Benavides-Solorio, J.; Schaffrath, K. Causes of post-fire runoff and erosion: Water repellency, cover, or soil sealing? Soil Sci. Soc. Am. J. 2009, 73, 1393–1407. [Google Scholar] [CrossRef]
- Butzen, V.; Seeger, M.; Marruedo, A.; de Jonge, L.; Wengel, R.; Ries, J.B.; Casper, M.C. Water repellency under coniferous and deciduous forest—Experimental assessment and impact on overland flow. Catena 2015, 133, 255–265. [Google Scholar] [CrossRef]
- DeBano, L.F. Water Repellent Soils: A State-of-the-Art; US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: Washington, DC, USA, 1981; Volume 46.
- DeBano, L.F.; Letey, J. Water-Repellent Soils. In Symposium of Water-Repellent Soils; DeBano, L.F., Letey, J., Eds.; University of California Riverside: Riverside, CA, USA, 1969; p. 354. [Google Scholar]
- Kean, J.W.; Staley, D.M. Forecasting the frequency and magnitude of postfire debris flows across southern California. Earth’s Future 2021, 9, e2020EF001735. [Google Scholar] [CrossRef]
- Oakley, N.S.; Cannon, F.; Munroe, R.; Lancaster, J.T.; Gomberg, D.; Ralph, F.M. Brief communication: Meteorological and climatological conditions associated with the 9 January 2018 post-fire debris flows in Montecito and Carpinteria, California, USA. Nat. Hazards Earth Syst. Sci. 2018, 18, 3037–3043. [Google Scholar] [CrossRef]
- Dennis, M.S.; Joseph, E.G.; Jason, W.K. Objective definition of rainfall intensity-duration thresholds for post-fire flash floods and debris flows in the area burned by the Waldo Canyon Fire, Colorado, USA. In Engineering Geology for Society and Territory-Volume 2; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 621–624. [Google Scholar]
- Varga, K.; Jones, C.; Trugman, A.; Carvalho, L.M.; McLoughlin, N.; Seto, D.; Thompson, C.; Daum, K. Megafires in a Warming World: What Wildfire Risk Factors Led to California’s Largest Recorded Wildfire. Fire 2022, 5, 16. [Google Scholar] [CrossRef]
- Iglesias, V.; Balch, J.K.; Travis, W.R. US fires became larger, more frequent, and more widespread in the 2000s. Sci. Adv. 2022, 8, 11. [Google Scholar] [CrossRef]
- Shaw, D.C.; Beedlow, P.A.; Lee, E.H.; Woodruff, D.R.; Meigs, G.W.; Calkins, S.J.; Reilly, M.J.; Merschel, A.G.; Cline, S.P.; Comeleo, R.L. The complexity of biological disturbance agents, fuels heterogeneity, and fire in coniferous forests of the western United States. For. Ecol. Manag. 2022, 525, 120572. [Google Scholar] [CrossRef] [PubMed]
- Safford, H.D.; Stevens, J.T. Natural Range of Variation for Yellow Pine and Mixed-Conifer Forests in the Sierra Nevada, Southern Cascades, and Modoc and Inyo National Forests, California, USA; US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Washington, DC, USA, 2017; Volume 229, p. 256.
- Heidari, H.; Arabi, M.; Warziniack, T. Effects of climate change on natural-caused fire activity in western US national forests. Atmosphere 2021, 12, 981. [Google Scholar] [CrossRef]
- Parks, S.; Abatzoglou, J. Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophys. Res. Lett. 2020, 47, e2020GL089858. [Google Scholar] [CrossRef]
- Steel, Z.L.; Safford, H.D.; Viers, J.H. The fire frequency-severity relationship and the legacy of fire suppression in California forests. Ecosphere 2015, 6, 1. [Google Scholar] [CrossRef]
- Voelker, S.L.; Merschel, A.G.; Meinzer, F.C.; Ulrich, D.E.; Spies, T.A.; Still, C.J. Fire deficits have increased drought sensitivity in dry conifer forests: Fire frequency and tree-ring carbon isotope evidence from Central Oregon. Glob. Chang. Biol. 2019, 25, 1247–1262. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Touma, D.; Stevenson, S.; Swain, D.L.; Singh, D.; Kalashnikov, D.A.; Huang, X. Climate change increases risk of extreme rainfall following wildfire in the western United States. Sci. Adv. 2022, 8, 13. [Google Scholar] [CrossRef]
- Jones, M.W.; Smith, A.; Betts, R.; Canadell, J.G.; Prentice, I.C.; Le Quéré, C. Climate change increases the risk of wildfires. ScienceBrief Rev. 2020, 116, 117. [Google Scholar]
- Porter, T.W. Report: Wildfire Activity Statistics; California Department of Forestry and Fire Protection: Sacramento, CA, USA, 2020.
- CalFire. State of California. Available online: https://www.fire.ca.gov/incidents (accessed on 23 April 2023).
- Sion, B.; Samburova, V.; Berli, M.; Baish, C.; Bustarde, J.; Houseman, S. Assessment of the Effects of the 2021 Caldor Megafire on Soil Physical Properties, Eastern Sierra Nevada, USA. Fire 2023, 6, 66. [Google Scholar] [CrossRef]
- Bartlett, A. It changed in the blink of an eye: Smoke from California’s Mosquito Fire races over Nevada. SFGATE 2022. Available online: https://www.sfgate.com/california-wildfires/article/Mosquito-Fire-smoke-East-Coast-17434311.php (accessed on 26 March 2023).
- Arnott, W.P. Available online: https://www.patarnott.com/pas532/ (accessed on 23 April 2023).
- de Dios Benavides-Solorio, J.; MacDonald, L.H. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. Int. J. Wildland Fire 2005, 14, 457–474. [Google Scholar] [CrossRef]
- Zituni, R.; Wittenberg, L.; Malkinson, D. The effects of post-fire forest management on soil erosion rates 3 and 4 years after a wildfire, demonstrated on the 2010 Mount Carmel fire. Int. J. Wildland Fire 2019, 28, 377–385. [Google Scholar] [CrossRef]
- Prats, S.A.; González-Pelayo, Ó.; Silva, F.C.; Bokhorst, K.J.; Baartman, J.E.; Keizer, J.J. Post-fire soil erosion mitigation at the scale of swales using forest logging residues at a reduced application rate. Earth Surf. Process. Landf. 2019, 44, 2837–2848. [Google Scholar] [CrossRef]
- Beyers, J.L.; Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland Fire in Ecosystems: Effects of Fire on Soil and Water; United States Department of Agriculture, Forest Service: Washington, DC, USA, 2005.
- DeBano, L.; Savage, S.; Hamilton, D. The transfer of heat and hydrophobic substances during burning. Soil Sci. Soc. Am. J. 1976, 40, 779–782. [Google Scholar] [CrossRef]
- Debano, L.F.; Krammes, J. Water repellent soils and their relation to wildfire temperatures. Hydrol. Sci. J. 1966, 11, 14–19. [Google Scholar] [CrossRef]
- Simkovic, I.; Dlapa, P.; Doerr, S.H.; Mataix-Solera, J.; Sasinkova, V. Thermal destruction of soil water repellency and associated changes to soil organic matter as observed by FTIR spectroscopy. Catena 2008, 74, 205–211. [Google Scholar] [CrossRef]
- Atanassova, I.; Doerr, S. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. Eur. J. Soil Sci. 2011, 62, 516–532. [Google Scholar] [CrossRef]
- Scholl, D.G. Soil wettability and fire in Arizona chaparral. Soil Sci. Soc. Am. J. 1975, 39, 356–361. [Google Scholar] [CrossRef]
- Shillito, R.; Berli, M.; Ghezzehei, T.A.; Kaminski, E. Effective Infiltration Measurements for Fire-Affected Water-Repellent Soils. In Proceedings of the AGU Fall Meeting, Washington, DC, USA, 9–14 December 2018; p. H23L-2113. [Google Scholar]
- Huffman, E.L.; MacDonald, L.H.; Stednick, J.D. Strength and persistence of fire-induced soil hydrophobicity under ponderosa and lodgepole pine, Colorado Front Range. Hydrol. Process. 2001, 15, 2877–2892. [Google Scholar] [CrossRef]
- Bisdom, E.; Dekker, L.; Schoute, J.T. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. In Soil Structure/Soil Biota Interrelationships; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; pp. 105–118. [Google Scholar]
- Doerr, S.H.; Shakesby, R.A. Soil water repellency. In Handbook of Soil Sciences; Huang, P.M., Li, Y., Sumner, M., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 1–11. [Google Scholar]
- Erbil, H.Y. The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review. Surf. Sci. Rep. 2014, 69, 325–365. [Google Scholar] [CrossRef]
- Yuan, Y.; Lee, T.R. Contact angle and wetting properties. In Surface Science Techniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–34. [Google Scholar]
- Bachmann, J.; Ellies, A.; Hartge, K. Development and application of a new sessile drop contact angle method to assess soil water repellency. J. Hydrol. 2000, 231, 66–75. [Google Scholar] [CrossRef]
- Beatty, S.M.; Smith, J.E. Fractional wettability and contact angle dynamics in burned water repellent soils. J. Hydrol. 2010, 391, 97–108. [Google Scholar] [CrossRef]
- Leelamanie, D.; Karube, J. Time dependence of contact angle and its relation to repellency persistence in hydrophobized sand. Soil Sci. Plant Nutr. 2009, 55, 457–461. [Google Scholar] [CrossRef]
- McHale, G.; Shirtcliffe, N.; Newton, M. Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 2004, 20, 10146–10149. [Google Scholar] [CrossRef] [PubMed]
- Letey, J.; Carrillo, M.; Pang, X. Characterizing the Degree of Repellency; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Fox, D.; Darboux, F.; Carrega, P. Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrol. Process Int. J. 2007, 21, 2377–2384. [Google Scholar] [CrossRef]
- Chen, J.; Pangle, L.A.; Gannon, J.P.; Stewart, R.D. Soil water repellency after wildfires in the Blue Ridge Mountains, United States. Int. J. Wildland Fire 2020, 29, 1009–1020. [Google Scholar] [CrossRef]
- Garcia-Chevesich, P.; Pizarro, R.; Stropki, C.; Ramirez de Arellano, P.; Ffolliott, P.; DeBano, L.; Neary, D.; Slack, D. Formation of post-fire water-repellent layers in Monterrey pine (Pinus radiata D. DON) plantations in south-central Chile. Soil Sci. Plant Nutr. 2010, 10, 399–406. [Google Scholar] [CrossRef]
- Rodríguez-Alleres, M.; Varela, M.; Benito, E. Natural severity of water repellency in pine forest soils from NW Spain and influence of wildfire severity on its persistence. Geoderma 2012, 191, 125–131. [Google Scholar] [CrossRef]
- Dyrness, C. Effect of Wildfire on Soil Wettability in the High Cascades of Oregon; US Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station: Washington, DC, USA, 1976; Volume 202.
- Doerr, S.; Woods, S.; Martin, D.; Casimiro, M. Natural background’soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence. J. Hydrol. 2009, 371, 12–21. [Google Scholar] [CrossRef]
- Leelamanie, D.; Nishiwaki, J. Water repellency in Japanese coniferous forest soils as affected by drying temperature and moisture. Biologia 2019, 74, 127–137. [Google Scholar] [CrossRef]
- Dymov, A.A.; Gabov, D.N.; Milanovskii, E.Y. 13C-NMR, PAHs, WSOC and water repellence of fire-affected soils (Albic Podzols) in lichen pine forests, Russia. Environ. Earth Sci. 2017, 76, 275. [Google Scholar] [CrossRef]
- Mainwaring, K.; Hallin, I.; Douglas, P.; Doerr, S.; Morley, C.P. The role of naturally occurring organic compounds in causing soil water repellency. Eur. J. Soil Sci. 2013, 64, 667–680. [Google Scholar] [CrossRef]
- Uddin, S.; Daniel, N.R.; Harper, R.J.; Henry, D.J. Why do biogenic volatile organic compounds (BVOCs) derived from vegetation fire not induce soil water repellency? Biogeochemistry 2017, 134, 147–161. [Google Scholar] [CrossRef]
- Doerr, S.; Llewellyn, C.; Douglas, P.; Morley, C.; Mainwaring, K.; Haskins, C.; Johnsey, L.; Ritsema, C.; Stagnitti, F.; Allinson, G. Extraction of compounds associated with water repellency in sandy soils of different origin. Soil Res. 2005, 43, 225–237. [Google Scholar] [CrossRef]
- Ma, S.; Chen, Y.; Lu, X.; Wang, X. Soil organic matter chemistry: Based on pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Mini-Rev. Org. Chem. 2018, 15, 389–403. [Google Scholar] [CrossRef]
- Kiersch, K.; Kruse, J.; Regier, T.Z.; Leinweber, P. Temperature resolved alteration of soil organic matter composition during laboratory heating as revealed by C and N XANES spectroscopy and Py-FIMS. Thermochim. Acta 2012, 537, 36–43. [Google Scholar] [CrossRef]
- Kiersch, K.; Kruse, J.; Eckhardt, K.-U.; Fendt, A.; Streibel, T.; Zimmermann, R.; Broll, G.; Leinweber, P. Impact of grassland burning on soil organic matter as revealed by a synchrotron-and pyrolysis–mass spectrometry-based multi-methodological approach. Org. Geochem. 2012, 44, 8–20. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Faria, S.R.; Varela, M.E.; Knicker, H.; González-Vila, F.J.; González-Pérez, J.A.; Keizer, J. Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 2012, 191, 24–30. [Google Scholar] [CrossRef]
- Otto, A.; Gondokusumo, R.; Simpson, M.J. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada. Appl. Geochem. 2006, 21, 166–183. [Google Scholar] [CrossRef]
- Woods, S.W.; Birkas, A.; Ahl, R. Spatial variability of soil hydrophobicity after wildfires in Montana and Colorado. Geomorphology 2007, 86, 465–479. [Google Scholar] [CrossRef]
- de Deus, M.; Miller, A.Z.; Jiménez-Morillo, N.T. Molecular Characterization of Burned Organic Matter at Different Soil Depths and Its Relationship with Soil Water Repellency: A Preliminary Result. Agronomy 2021, 11, 2560. [Google Scholar] [CrossRef]
- Jiménez-Morillo, N.T.; González-Pérez, J.A.; Almendros, G.; José, M.; Waggoner, D.C.; Jordán, A.; Zavala, L.M.; González-Vila, F.J.; Hatcher, P.G. Ultra-high resolution mass spectrometry of physical speciation patterns of organic matter in fire-affected soils. J. Environ. Manag. 2018, 225, 139–147. [Google Scholar] [CrossRef]
- Campo, J.; Nierop, K.G.; Cammeraat, E.; Andreu, V.; Rubio, J.L. Application of pyrolysis-gas chromatography/mass spectrometry to study changes in the organic matter of macro-and microaggregates of a Mediterranean soil upon heating. J. Chromatogr. A 2011, 1218, 4817–4827. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, N.; Slater, G.; Waddington, J.M.; de Lannoy, C.-F. Hydrophobicity of peat soils: Characterization of organic compound changes associated with heat-induced water repellency. Sci. Total Environ. 2020, 714, 136444. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.-J.; Ku, P.-J.; Tsui, M.T.-K.; Abney, R.B.; Berhe, A.A.; Zhang, Q.; Burton, S.D.; Dahlgren, R.A.; Chow, A.T. Burn Intensity Drives the Alteration of Phenolic Lignin to (Poly) Aromatic Hydrocarbons as Revealed by Pyrolysis Gas Chromatography–Mass Spectrometry (Py-GC/MS). Environ. Sci. Technol. 2022, 56, 12678–12687. [Google Scholar] [CrossRef]
- Roth, H.K.; Borch, T.; Young, R.B.; Bahureksa, W.; Blakney, G.T.; Nelson, A.R.; Wilkins, M.J.; McKenna, A.M. Enhanced speciation of pyrogenic organic matter from wildfires enabled by 21 T FT-ICR mass spectrometry. Anal. Chem. 2022, 94, 2973–2980. [Google Scholar] [CrossRef] [PubMed]
- Bahureksa, W.; Young, R.B.; McKenna, A.M.; Chen, H.; Thorn, K.A.; Rosario-Ortiz, F.L.; Borch, T. Nitrogen enrichment during soil organic matter burning and molecular evidence of Maillard reactions. Environ. Sci. Technol. 2022, 56, 4597–4609. [Google Scholar] [CrossRef] [PubMed]
- Hockaday, W.C.; Grannas, A.M.; Kim, S.; Hatcher, P.G. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org. Geochem. 2006, 37, 501–510. [Google Scholar] [CrossRef]
- Rüger, C.P.; Miersch, T.; Schwemer, T.; Sklorz, M.; Zimmermann, R. Hyphenation of thermal analysis to ultrahigh-resolution mass spectrometry (Fourier transform ion cyclotron resonance mass spectrometry) using atmospheric pressure chemical ionization for studying composition and thermal degradation of complex materials. Anal. Chem. 2015, 87, 6493–6499. [Google Scholar] [CrossRef]
- Friederici, L.; Meščeriakovė, S.-M.; Neumann, A.; Sermyagina, E.; Meščeriakovas, A.; Lähde, A.; Grimmer, C.; Streibel, T.; Rüger, C.P.; Zimmermann, R. Effect of hydrothermal carbonization and eutectic salt mixture (KCl/LiCl) on the pyrolysis of Kraft lignin as revealed by thermal analysis coupled to advanced high-resolution mass spectrometry. J. Anal. Appl. Pyrolysis 2022, 166, 105604. [Google Scholar] [CrossRef]
- Friederici, L.; Schneider, E.; Burnens, G.; Streibel, T.; Giusti, P.; Rüger, C.P.; Zimmermann, R. Comprehensive Chemical Description of Pyrolysis Chars from Low-Density Polyethylene by Thermal Analysis Hyphenated to Different Mass Spectrometric Approaches. Energy Fuels 2021, 35, 18185–18193. [Google Scholar] [CrossRef]
- Rüger, C.P.; Neumann, A.; Sklorz, M.; Schwemer, T.; Zimmermann, R. Thermal analysis coupled to ultrahigh resolution mass spectrometry with collision induced dissociation for complex petroleum samples: Heavy oil composition and asphaltene precipitation effects. Energy Fuels 2017, 31, 13144–13158. [Google Scholar] [CrossRef]
- Neumann, A.; Chacon-Patino, M.L.; Rodgers, R.P.; Ruger, C.P.; Zimmermann, R. Investigation of Island/Single-Core-and Archipelago/Multicore-Enriched Asphaltenes and Their Solubility Fractions by Thermal Analysis Coupled with High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2020, 35, 3808–3824. [Google Scholar] [CrossRef]
- Zherebker, A.; Kostyukevich, Y.; Volkov, D.S.; Chumakov, R.G.; Friederici, L.; Rüger, C.P.; Kononikhin, A.; Kharybin, O.; Korochantsev, A.; Zimmermann, R. Speciation of organosulfur compounds in carbonaceous chondrites. Sci. Rep. 2021, 11, 7410. [Google Scholar] [CrossRef]
- USDA. Forest Service. Available online: https://www.fs.usda.gov/detail/lpnf/home/?cid=fseprd570093 (accessed on 23 April 2023).
- USDA. Available online: https://websoilsurvey.nrcs.usda.gov/app/ (accessed on 23 April 2023).
- Rüger, C.P.; Grimmer, C.; Sklorz, M.; Neumann, A.; Streibel, T.; Zimmermann, R. Combination of different thermal analysis methods coupled to mass spectrometry for the analysis of asphaltenes and their parent crude oils: Comprehensive characterization of the molecular pyrolysis pattern. Energy Fuels 2017, 32, 2699–2711. [Google Scholar] [CrossRef]
- Rüger, C.P.; Tiemann, O.; Neumann, A.; Streibel, T.; Zimmermann, R. Review on evolved gas analysis mass spectrometry with soft photoionization for the chemical description of petroleum, petroleum-derived materials, and alternative feedstocks. Energy Fuels 2021, 35, 18308–18332. [Google Scholar] [CrossRef]
- Rüger, C.P.; Schwemer, T.; Sklorz, M.; O’Connor, P.B.; Barrow, M.P.; Zimmermann, R. Comprehensive chemical comparison of fuel composition and aerosol particles emitted from a ship diesel engine by gas chromatography atmospheric pressure chemical ionisation ultra-high resolution mass spectrometry with improved data processing routines. Eur. J. Mass Spectrom. 2017, 23, 28–39. [Google Scholar] [CrossRef]
- Koch, B.P.; Dittmar, T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 2006, 20, 926–932. [Google Scholar] [CrossRef]
- Kainulainen, P.; Holopainen, J. Concentrations of secondary compounds in Scots pine needles at different stages of decomposition. Soil Biol. Biochem. 2002, 34, 37–42. [Google Scholar] [CrossRef]
- Kelleher, B.P.; Simpson, M.J.; Simpson, A.J. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy. Geochim. Cosmochim. Acta 2006, 70, 4080–4094. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Rodríguez-Alleres, M.; Benito, E.; de Blas, E. Extent and persistence of water repellency in north-western Spanish soils. Hydrol. Process Int. J. 2007, 21, 2291–2299. [Google Scholar] [CrossRef]
- Doerr, S.H.; Thomas, A.D. The role of soil moisture in controlling water repellency: New evidence from forest soils in Portugal. J. Hydrol. 2000, 231, 134–147. [Google Scholar] [CrossRef]
- Blumler, M.A. Three conflated definitions of Mediterranean climates. Middle States Geogr. 2005, 38, 52–60. [Google Scholar]
- Aschmann, H. Distribution and peculiarity of Mediterranean ecosystems. In Mediterranean Type Ecosystems; Springer: Berlin/Heidelberg, Germany, 1973; pp. 11–19. [Google Scholar]
- Cerdà, A.; Doerr, S.H. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 2008, 74, 256–263. [Google Scholar] [CrossRef]
- Dlapa, P.; Bodí, M.B.; Mataix-Solera, J.; Cerdà, A.; Doerr, S.H. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena 2013, 108, 35–43. [Google Scholar] [CrossRef]
- Ellerbrock, R.; Gerke, H.; Bachmann, J.; Goebel, M.-O. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Sci. Soc. Am. J. 2005, 69, 57–66. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.; Walsh, R. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Schulten, H.-R.; Schnitzer, M. A state of the art structural concept for humic substances. Naturwissenschaften 1993, 80, 29–30. [Google Scholar] [CrossRef]
- Fernandez-Marcos, M.L. Potentially Toxic Substances and Associated Risks in Soils Affected by Wildfires: A Review. Toxics 2022, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Hatten, J.A.; Zabowski, D. Fire severity effects on soil organic matter from a ponderosa pine forest: A laboratory study. Int. J. Wildland Fire 2010, 19, 613–623. [Google Scholar] [CrossRef]
- Gaspar, A.; Zellermann, E.; Lababidi, S.; Reece, J.; Schrader, W. Characterization of saturates, aromatics, resins, and asphaltenes heavy crude oil fractions by atmospheric pressure laser ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2012, 26, 3481–3487. [Google Scholar] [CrossRef]
- Kew, W.; Mackay, C.L.; Goodall, I.; Clarke, D.J.; Uhrín, D.A. Complementary ionization techniques for the analysis of scotch whisky by high resolution mass spectrometry. Anal. Chem. 2018, 90, 11265–11272. [Google Scholar] [CrossRef]
- Mofikoya, O.O.; Mäkinen, M.; Jänis, J. Compositional analysis of essential oil and solvent extracts of Norway spruce sprouts by ultrahigh-resolution mass spectrometry. Phytochem. Anal. 2022, 33, 392–401. [Google Scholar] [CrossRef]
- Lex, A.; Gehlenborg, N.; Strobelt, H.; Vuillemot, R.; Pfister, H. UpSet: Visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1983–1992. [Google Scholar] [CrossRef]
Fire Name | Start Date–End Date | * Fire Area (km2) | ** Total Fraction of Moderate and Severely Burned Soil Area | *** Total Fraction of High and Very High Soil Erosion Hazard Area | GPS Coordinates of Sampling Sites | **** Dominant Forest Type |
---|---|---|---|---|---|---|
Dixie | 13-Jul-21–25-Oct-21 | 3898 | 54% | 20 | 39°58′41.9″ N 120°21′24.8″ W | Sierran mixed conifer (Pinus contorta, Abies concolor) |
Beckwourth Complex | 4-Jul-21–22-Sep-21 | 428 | 57% | 38 | 39°53′21.1″ N 120°12′02.9″ W | Sierran mixed conifer and mixed pine (Pinus lambertiana, P. contorta, P. ponderosa, Pseudotsuga menziesii) |
Caldor | 14-Aug-21–21-Oct-21 | 898 | 56% | 28 | 38°50′37.0″ N 120°01′59.8″ W | Sierran mixed and Sierran Montane hardwood (Pinus jeffreyi, P. contorta, P. ponderosa, A. magnifica, A. concolor) |
Mosquito | 6-Sep-22–27-Oct-22 | 311 | 34% | N/A | 38°59′22.3″ N 120°44′21.1″ W | Sierran mixed conifer, Sierran Montane Hardwood; Sierran Montane Hardwood-Conifer (P. ponderosa, P. jeffreyi) |
Fire Name | Sample Type | Sampling and WDPT | * ACA Analysis | * TG FT-ICR MS Analysis | ** Soil Composition (% of Dry Soil Mass) | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 Month | 6 Months | 1 Year | Sand | Silt | Clay | SOM | ||||
Dixie | Ash | ✕ | ✕ | ✕ | ✕ | ✕ | - | - | - | - |
Burned soil | ✕ | ✕ | ✕ | ✕ | ✕ | - | - | - | - | |
Unburned soil | ✕ | ✕ | ✕ | ✕ | ✕ | 66 | 19 | 15 | 1.5 | |
Beckwourth Complex | Ash | ✕ | ✕ | ✕ | ✕ | ✕ | - | - | - | - |
Burned soil | ✕ | ✕ | ✕ | ✕ | ✕ | - | - | - | - | |
Unburned soil | ✕ | ✕ | ✕ | ✕ | ✕ | 42 | 38 | 20 | 2 | |
Caldor | Ash | ✕ | ✕ | ✕ | ✕ | ✕ | - | - | - | - |
Burned soil | ✕ | ✕ | ✕ | ✕ | ✕ | - | - | - | - | |
Unburned soil | ✕ | ✕ | ✕ | ✕ | ✕ | 84 | 11 | 5 | 5 | |
Mosquito | Ash | ✕ | - | - | ✕ | - | - | - | - | - |
Burned soil | ✕ | - | - | ✕ | - | - | - | - | - | |
Unburned soil | ✕ | - | - | ✕ | - | 45 | 45 | 10 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samburova, V.; Schneider, E.; Rüger, C.P.; Inouye, S.; Sion, B.; Axelrod, K.; Bahdanovich, P.; Friederici, L.; Raeofy, Y.; Berli, M.; et al. Modification of Soil Hydroscopic and Chemical Properties Caused by Four Recent California, USA Megafires. Fire 2023, 6, 186. https://doi.org/10.3390/fire6050186
Samburova V, Schneider E, Rüger CP, Inouye S, Sion B, Axelrod K, Bahdanovich P, Friederici L, Raeofy Y, Berli M, et al. Modification of Soil Hydroscopic and Chemical Properties Caused by Four Recent California, USA Megafires. Fire. 2023; 6(5):186. https://doi.org/10.3390/fire6050186
Chicago/Turabian StyleSamburova, Vera, Eric Schneider, Christopher P. Rüger, Shelby Inouye, Brad Sion, Kevin Axelrod, Palina Bahdanovich, Lukas Friederici, Yasaman Raeofy, Markus Berli, and et al. 2023. "Modification of Soil Hydroscopic and Chemical Properties Caused by Four Recent California, USA Megafires" Fire 6, no. 5: 186. https://doi.org/10.3390/fire6050186
APA StyleSamburova, V., Schneider, E., Rüger, C. P., Inouye, S., Sion, B., Axelrod, K., Bahdanovich, P., Friederici, L., Raeofy, Y., Berli, M., Lutz, A., Zimmermann, R., & Moosmüller, H. (2023). Modification of Soil Hydroscopic and Chemical Properties Caused by Four Recent California, USA Megafires. Fire, 6(5), 186. https://doi.org/10.3390/fire6050186