Fire Impacts on Water Resources: A Remote Sensing Methodological Proposal for the Brazilian Cerrado
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Fire Occurrence
2.1.2. Fire Impact on Water Resource Index (FIWRI)
3. Results
3.1. Fire Occurrence Patterns in Selected Watersheds in the Brazilian Cerrado
3.2. Fire Impact on Water Resources Index (FIWRI)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Environment Programme GRID-Arendal. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires—A Rapid Response Assessment. Available online: https://wedocs.unep.org/20.500.11822/38372 (accessed on 4 December 2022).
- Hardesty, J.; Myers, R.; Fulks, W. Fire, Ecosystems and People: A Preliminary Assessment of Fire as a Global Conservation Issue. Fire Manag. 2005, 22, 78–87. [Google Scholar]
- Pivello, V.R. The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- Silva, P.S.; Bastos, A.; Libonati, R.; Rodrigues, J.A.; DaCamara, C.C. Impacts of the 1.5 °C Global Warming Target on Future Burned Area in the Brazilian Cerrado. For. Ecol. Manag. 2019, 446, 193–203. [Google Scholar] [CrossRef]
- Li, S.; Rifai, S.; Anderson, L.O.; Sparrow, S. Identifying Local-scale Meteorological Conditions Favorable to Large Fires in Brazil. Clim. Resil. Sustain. 2022, 1, e11. [Google Scholar] [CrossRef]
- Silva, P.S.; Nogueira, J.; Rodrigues, J.A.; Santos, F.L.M.; Pereira, J.M.C.; DaCamara, C.C.; Daldegan, G.A.; Pereira, A.A.; Peres, L.F.; Schmidt, I.B.; et al. Putting Fire on the Map of Brazilian Savanna Ecoregions. J. Environ. Manag. 2021, 296, 113098. [Google Scholar] [CrossRef]
- Neary, D.G. Impacts of Wildfire Severity on Hydraulic Conductivity in Forest, Woodland, and Grassland Soils. In Hydraulic Conductivity—Issues, Determination and Applications; InTech: London, UK, 2011. [Google Scholar]
- Wang, J.; Stern, M.A.; King, V.M.; Alpers, C.N.; Quinn, N.W.T.; Flint, A.L.; Flint, L.E. PFHydro: A New Watershed-Scale Model for Post-Fire Runoff Simulation. Environ. Model. Softw. 2020, 123, 104555. [Google Scholar] [CrossRef]
- Lahsen, M.; Bustamante, M.M.C.; Dalla-Nora, E.L. Undervaluing and Overexploiting the Brazilian Cerrado at Our Peril. Environ. Sci. Policy Sustain. Dev. 2016, 58, 4–15. [Google Scholar] [CrossRef]
- Rust, A.J.; Randell, J.; Todd, A.S.; Hogue, T.S. Wildfire Impacts on Water Quality, Macroinvertebrate, and Trout Populations in the Upper Rio Grande. For. Ecol. Manag. 2019, 453, 117636. [Google Scholar] [CrossRef]
- Quigley, K.M.; Wildt, R.E.; Sturtevant, B.R.; Kolka, R.K.; Dickinson, M.B.; Kern, C.C.; Donner, D.M.; Miesel, J.R. Fuels, Vegetation, and Prescribed Fire Dynamics Influence Ash Production and Characteristics in a Diverse Landscape under Active Pine Barrens Restoration. Fire Ecol. 2019, 15, 5. [Google Scholar] [CrossRef]
- Bodí, M.B.; Martin, D.A.; Balfour, V.N.; Santín, C.; Doerr, S.H.; Pereira, P.; Cerdà, A.; Mataix-Solera, J. Wildland Fire Ash: Production, Composition and Eco-Hydro-Geomorphic Effects. Earth-Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Earl, S.R.; Blinn, D.W. Effects of Wildfire Ash on Water Chemistry and Biota in South-Western U.S.A. Streams. Freshw. Biol. 2003, 48, 1015–1030. [Google Scholar] [CrossRef]
- Gonino, G.M.R.; Figueiredo, B.R.S.; Manetta, G.I.; Zaia Alves, G.H.; Benedito, E. Fire Increases the Productivity of Sugarcane, but It Also Generates Ashes That Negatively Affect Native Fish Species in Aquatic Systems. Sci. Total Environ. 2019, 664, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.R.; Calvão, A.R.; Aranha, J. Linking Wildfire Effects on Soil and Water Chemistry of the Marão River Watershed, Portugal, and Biomass Changes Detected from Landsat Imagery. Appl. Geochem. 2014, 44, 93–102. [Google Scholar] [CrossRef]
- Stankov Jovanovic, V.P.; Ilic, M.D.; Markovic, M.S.; Mitic, V.D.; Nikolic Mandic, S.D.; Stojanovic, G.S. Wild Fire Impact on Copper, Zinc, Lead and Cadmium Distribution in Soil and Relation with Abundance in Selected Plants of Lamiaceae Family from Vidlic Mountain (Serbia). Chemosphere 2011, 84, 1584–1591. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P.; Haydon, S. Wildfire Effects on Water Quality in Forest Catchments: A Review with Implications for Water Supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Burke, M.P.; Hogue, T.S.; Kinoshita, A.M.; Barco, J.; Wessel, C.; Stein, E.D. Pre- and Post-Fire Pollutant Loads in an Urban Fringe Watershed in Southern California. Environ. Monit. Assess. 2013, 185, 10131–10145. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current Research Issues Related to Post-Wildfire Runoff and Erosion Processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Pettit, N.E.; Naiman, R.J. Fire in the Riparian Zone: Characteristics and Ecological Consequences. Ecosystems 2007, 10, 673–687. [Google Scholar] [CrossRef]
- Verkaik, I.; Rieradevall, M.; Cooper, S.D.; Melack, J.M.; Dudley, T.L.; Prat, N. Fire as a Disturbance in Mediterranean Climate Streams. Hydrobiologia 2013, 719, 353–382. [Google Scholar] [CrossRef]
- Brito, D.Q.; Santos, L.H.G.; Passos, C.J.S.; Oliveira-Filho, E.C. Short-Term Effects of Wildfire Ash on Water Quality Parameters: A Laboratory Approach. Bull. Environ. Contam. Toxicol. 2021, 107, 500–505. [Google Scholar] [CrossRef]
- Basso, M.; Mateus, M.; Ramos, T.B.; Vieira, D.C.S. Potential Post-Fire Impacts on a Water Supply Reservoir: An Integrated Watershed-Reservoir Approach. Front. Environ. Sci. 2021, 9, 684703. [Google Scholar] [CrossRef]
- World Bank. Serviços Urbanos de Água e Esgotamento Sanitário (A + E): Desafios Da Inclusão e Da Sustentabilidade Rumo Ao Acesso Universal; World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- Getirana, A.; Libonati, R.; Cataldi, M. Brazil Is in Water Crisis—It Needs a Drought Plan. Nature 2021, 600, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Ball, G.; Regier, P.; González-Pinzón, R.; Reale, J.; Van Horn, D. Wildfires Increasingly Impact Western US Fluvial Networks. Nat. Commun. 2021, 12, 2484. [Google Scholar] [CrossRef] [PubMed]
- Huffman, E.L.; MacDonald, L.H.; Stednick, J.D. Strength and Persistence of Fire-Induced Soil Hydrophobicity under Ponderosa and Lodgepole Pine, Colorado Front Range. Hydrol. Process. 2001, 15, 2877–2892. [Google Scholar] [CrossRef]
- Lane, P.N.J.; Sheridan, G.J.; Noske, P.J.; Sherwin, C.B. Phosphorus and Nitrogen Exports from SE Australian Forests Following Wildfire. J. Hydrol. 2008, 361, 186–198. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Plaza-Álvarez, P.A.; Gonzalez-Romero, J.; Sagra, J.; Alfaro-Sánchez, R.; Zema, D.A.; Moya, D.; de las Heras, J. Short-Term Effects of Prescribed Burning in Mediterranean Pine Plantations on Surface Runoff, Soil Erosion and Water Quality of Runoff. Sci. Total Environ. 2019, 674, 615–622. [Google Scholar] [CrossRef]
- Meneses, B.M.; Reis, E.; Reis, R.; Vale, M.J. Post-Wildfires Effects on Physicochemical Properties of Surface Water: The Case Study of Zêzere Watershed (Portugal). Ribagua 2019, 6, 34–48. [Google Scholar] [CrossRef]
- Yu, M.; Bishop, T.; Van Ogtrop, F. Assessment of the Decadal Impact of Wildfire on Water Quality in Forested Catchments. Water 2019, 11, 533. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Curr. For. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Libonati, R.; DaCamara, C.; Setzer, A.; Morelli, F.; Melchiori, A. An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 Μm MODIS Imagery. Remote Sens. 2015, 7, 15782–15803. [Google Scholar] [CrossRef]
- Szpakowski, D.; Jensen, J. A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef]
- Pinto, M.M.; Libonati, R.; Trigo, R.M.; Trigo, I.F.; DaCamara, C.C. A Deep Learning Approach for Mapping and Dating Burned Areas Using Temporal Sequences of Satellite Images. ISPRS J. Photogramm. Remote Sens. 2020, 160, 260–274. [Google Scholar] [CrossRef]
- Robinne, F.-N.; Miller, C.; Parisien, M.-A.; Emelko, M.; Bladon, K.; Silins, U.; Flannigan, M. A Global Index for Mapping the Exposure of Water Resources to Wildfire. Forests 2016, 7, 22. [Google Scholar] [CrossRef]
- Robinne, F.-N.; Bladon, K.D.; Silins, U.; Emelko, M.B.; Flannigan, M.D.; Parisien, M.-A.; Wang, X.; Kienzle, S.W.; Dupont, D.P. A Regional-Scale Index for Assessing the Exposure of Drinking-Water Sources to Wildfires. Forests 2019, 10, 384. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, M.; Oliveira, L.; Ollivier, Q.R.; Faulkner, S.; Roff, A. Rapid Assessment of Hillslope Erosion Risk after the 2019–2020 Wildfires and Storm Events in Sydney Drinking Water Catchment. Remote Sens. 2020, 12, 3805. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Estimativas Da População. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html?edicao=28674&t=resultados (accessed on 4 December 2022).
- Agência Nacional de Águas (Brasil) Atlas Brasil: Abastecimento Urbano de Água: Panorama Nacional 2010, 1. Available online: https://portal1.snirh.gov.br/ana/apps/storymaps/stories/1d27ae7adb7f4baeb224d5893cc21730 (accessed on 1 May 2022).
- Environmental Systems Research Institute. ArcGIS Desktop: Release 10.8; Environmental Systems Research Institute: Redlands, CA, USA, 2021. [Google Scholar]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Campagnolo, M.L.; Libonati, R.; Rodrigues, J.A.; Pereira, J.M.C. A Comprehensive Characterization of MODIS Daily Burned Area Mapping Accuracy across Fire Sizes in Tropical Savannas. Remote Sens. Environ. 2021, 252, 112115. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Libonati, R.; Pereira, A.A.; Nogueira, J.M.P.; Santos, F.L.M.; Peres, L.F.; Santa Rosa, A.; Schroeder, W.; Pereira, J.M.C.; Giglio, L.; et al. How Well Do Global Burned Area Products Represent Fire Patterns in the Brazilian Savannas Biome? An Accuracy Assessment of the MCD64 Collections. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 318–331. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Tufekcioglu, M.; Saglam, B.; Tufekcioglu, A. Effects of Fire Intensity and Slope on Surface Soil Erosion Following a Prescribed Fire in Old Pinus Nigra Stands. Fresenius Environ. Bull. 2017, 26, 7227–7234. [Google Scholar]
- Stavi, I. Wildfires in Grasslands and Shrublands: A Review of Impacts on Vegetation, Soil, Hydrology, and Geomorphology. Water 2019, 11, 1042. [Google Scholar] [CrossRef]
- Larsen, I.J.; MacDonald, L.H.; Brown, E.; Rough, D.; Welsh, M.J.; Pietraszek, J.H.; Libohova, Z.; Dios Benavides-Solorio, J.; Schaffrath, K. Causes of Post-Fire Runoff and Erosion: Water Repellency, Cover, or Soil Sealing? Soil Sci. Soc. Am. J. 2009, 73, 1393–1407. [Google Scholar] [CrossRef]
- McCool, D.K.; George, G.O.; Freckleton, M.; Douglas, C.L., Jr.; Papendick, R.I. Topographic Effect on Erosion from Cropland in the Northwestern Wheat Region. Trans. ASAE 1993, 36, 771–775. [Google Scholar] [CrossRef]
- Ryan, S.E.; Dwire, K.A.; Dixon, M.K. Impacts of Wildfire on Runoff and Sediment Loads at Little Granite Creek, Western Wyoming. Geomorphology 2011, 129, 113–130. [Google Scholar] [CrossRef]
- Owens, M.K.; Lyons, R.K.; Alejandro, C.L. Rainfall Partitioning within Semiarid Juniper Communities: Effects of Event Size and Canopy Cover. Hydrol. Process. 2006, 20, 3179–3189. [Google Scholar] [CrossRef]
- Martinez-Mena, M.; Rogel, J.A.; Albaladejo, J.; Castillo, V.M. Influence of Vegetal Cover on Sediment Particle Size Distribution in Natural Rainfall Conditions in a Semiarid Environment. Catena 2000, 38, 175–190. [Google Scholar] [CrossRef]
- Mahlum, S.K.; Eby, L.A.; Young, M.K.; Clancy, C.G.; Jakober, M. Effects of Wildfire on Stream Temperatures in the Bitterroot River Basin, Montana. Int. J. Wildland Fire 2011, 20, 240. [Google Scholar] [CrossRef]
- Emelko, M.B.; Stone, M.; Silins, U.; Allin, D.; Collins, A.L.; Williams, C.H.S.; Martens, A.M.; Bladon, K.D. Sediment-Phosphorus Dynamics Can Shift Aquatic Ecology and Cause Downstream Legacy Effects after Wildfire in Large River Systems. Glob. Chang. Biol. 2016, 22, 1168–1184. [Google Scholar] [CrossRef]
- Emelko, M.B.; Silins, U.; Bladon, K.D.; Stone, M. Implications of Land Disturbance on Drinking Water Treatability in a Changing Climate: Demonstrating the Need for “Source Water Supply and Protection” Strategies. Water Res. 2011, 45, 461–472. [Google Scholar] [CrossRef]
- Klose, K.; Cooper, S.D.; Bennett, D.M. Effects of Wildfire on Stream Algal Abundance, Community Structure, and Nutrient Limitation. Freshw. Sci. 2015, 34, 1494–1509. [Google Scholar] [CrossRef]
- Sundarambal, P.; Balasubramanian, R.; Tkalich, P.; He, J. Impact of Biomass Burning on Ocean Water Quality in Southeast Asia through Atmospheric Deposition: Field Observations. Atmos. Chem. Phys. 2010, 10, 11323–11336. [Google Scholar] [CrossRef]
- Oliveira-Filho, E.C.; Brito, D.Q.; Dias, Z.M.B.; Guarieiro, M.S.; Carvalho, E.L.; Fascineli, M.L.; Niva, C.C.; Grisolia, C.K. Effects of Ashes from a Brazilian Savanna Wildfire on Water, Soil and Biota: An Ecotoxicological Approach. Sci. Total Environ. 2018, 618, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Moody, J.A.; Martin, D.A. Initial Hydrologic and Geomorphic Response Following a Wildfire in the Colorado Front Range. Earth Surf. Process. Landf. 2001, 26, 1049–1070. [Google Scholar] [CrossRef]
- Rodrigues, E.L.; Jacobi, C.M.; Figueira, J.E.C. Wildfires and Their Impact on the Water Supply of a Large Neotropical Metropolis: A Simulation Approach. Sci. Total Environ. 2019, 651, 1261–1271. [Google Scholar] [CrossRef]
- Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Kapovic Solomun, M.; Atanassova, I.; Glushkova, M.; Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil Water Res. 2021, 14, 11786221211028185. [Google Scholar] [CrossRef]
Variable | Product | Source |
---|---|---|
Fire | MODIS burned area (MCD64A1 c6) | NASA |
Vegetation | MapBiomas Collection 7 | MapBiomas |
Slope | Calculated from SRTM | USGS |
Drainage Network | Calculated from SRTM | USGS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagel, G.W.; De Carvalho, L.A.S.; Libonati, R.; da Silva Nemirovsky, A.K.; da Cunha Bustamante, M.M. Fire Impacts on Water Resources: A Remote Sensing Methodological Proposal for the Brazilian Cerrado. Fire 2023, 6, 214. https://doi.org/10.3390/fire6050214
Nagel GW, De Carvalho LAS, Libonati R, da Silva Nemirovsky AK, da Cunha Bustamante MM. Fire Impacts on Water Resources: A Remote Sensing Methodological Proposal for the Brazilian Cerrado. Fire. 2023; 6(5):214. https://doi.org/10.3390/fire6050214
Chicago/Turabian StyleNagel, Gustavo Willy, Lino Augusto Sander De Carvalho, Renata Libonati, Andressa Karen da Silva Nemirovsky, and Mercedes Maria da Cunha Bustamante. 2023. "Fire Impacts on Water Resources: A Remote Sensing Methodological Proposal for the Brazilian Cerrado" Fire 6, no. 5: 214. https://doi.org/10.3390/fire6050214
APA StyleNagel, G. W., De Carvalho, L. A. S., Libonati, R., da Silva Nemirovsky, A. K., & da Cunha Bustamante, M. M. (2023). Fire Impacts on Water Resources: A Remote Sensing Methodological Proposal for the Brazilian Cerrado. Fire, 6(5), 214. https://doi.org/10.3390/fire6050214