Unraveling the Effect of Fire Seasonality on Fire-Preferred Fuel Types and Dynamics in Alto Minho, Portugal (2000–2018)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Burned Area Maps
2.3. Spatial Distribution of Fuel Types
2.4. Data Analysis
3. Results
3.1. Fire Regime in Alto Minho
3.2. Changes in Fuel Types between 2000 and 2018
3.3. Fires and Fuels in Alto Minho: Identifying “Winners” and “Losers”
4. Discussion
4.1. Fire Regime
4.2. Effects of Fire Seasonality on Fuel Types Preferred by Fire
4.3. The Role of Fire in Changing Fuel Types
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, T.; Lamont, B.B. Baptism by Fire: The Pivotal Role of Ancient Conflagrations in Evolution of the Earth’s Flora. Natl. Sci. Rev. 2018, 5, 237–254. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Keeley, J.E. A Burning Story: The Role of Fire in the History of Life. Bioscience 2009, 59, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Belcher, C.M.; Mills, B.J.W.; Vitali, R.; Baker, S.J.; Lenton, T.M.; Watson, A.J. The Rise of Angiosperms Strengthened Fire Feedbacks and Improved the Regulation of Atmospheric Oxygen. Nat. Commun. 2021, 12, 503. [Google Scholar] [CrossRef]
- McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.; Adalsteinsson, S.A.; et al. Fire as a Fundamental Ecological Process: Research Advances and Frontiers. J. Ecol. 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- MacDonald, K. Fire-Free Hominin Strategies for Coping with Cool Winter Temperatures in North-Western Europe from before 800,000 to Circa 400,000 Years Ago. Paleo Anthropol. 2018, 16, 7–26. [Google Scholar] [CrossRef]
- Roebroeks, W.; Villa, P. On the Earliest Evidence for Habitual Use of Fire in Europe. Proc. Natl. Acad. Sci. USA 2011, 108, 5209–5214. [Google Scholar] [CrossRef]
- Daniau, A.L.; D’Errico, F.; Goñi, M.F.S. Testing the Hypothesis of Fire Use for Ecosystem Management by Neanderthal and Upper Palaeolithic Modern Human Populations. PLoS ONE 2010, 5, e9157. [Google Scholar] [CrossRef] [PubMed]
- Connor, S.E.; Vannière, B.; Colombaroli, D.; Anderson, R.S.; Carrión, J.S.; Ejarque, A.; Gil Romera, G.; González-Sampériz, P.; Hoefer, D.; Morales-Molino, C.; et al. Humans Take Control of Fire-Driven Diversity Changes in Mediterranean Iberia’s Vegetation during the Mid–Late Holocene. Holocene 2019, 29, 886–901. [Google Scholar] [CrossRef]
- Abel-Schaad, D.; López-Sáez, J.A. Vegetation Changes in Relation to Fire History and Human Activities at the Peña Negra Mire (Bejar Range, Iberian Central Mountain System, Spain) during the Past 4000 Years. Veg. Hist. Archaeobot 2013, 22, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Bal, M.C.; Pelachs, A.; Perez-Obiol, R.; Julia, R.; Cunill, R. Fire History and Human Activities during the Last 3300cal Yr BP in Spain’s Central Pyrenees: The Case of the Estany de Burg. Palaeogeogr. Palaeoclim. Palaeoecol. 2011, 300, 179–190. [Google Scholar] [CrossRef]
- Santos, L.; Romani, V., Jr.; Jalut, G. History of Vegetation during the Holocene in the Courel and Queixa Sierras, Galicia, Northwest Iberian Peninsula. J. Quat. Sci. 2000, 15, 621–632. [Google Scholar] [CrossRef]
- Carrión, J.S.; Sánchez-Gómez, P.; Mota, J.F.; Yll, R.; Chaín, C. Holocene Vegetation Dynamics, Fire and Grazing in the Sierra de Gádor, Southern Spain. Holocene 2003, 13, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Johansson, M.U.; Fetene, M.; Malmer, A.; Granström, A. Tending for Cattle: Traditional Fire Management in Ethiopian Montane Heathlands. Ecol. Soc. 2012, 17, 19. [Google Scholar] [CrossRef]
- Leone, V.; Lovreglio, R.; Martín, M.P.; Martínez, J.; Vilar, L. Human Factors of Fire Occurrence in the Mediterranean. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 149–170. [Google Scholar]
- Fernandes, P.M.; Santos, J.A.; Castedo-dorado, F.; Almeida, R. Fire from the Sky in the Anthropocene. Fire 2021, 4, 13. [Google Scholar] [CrossRef]
- ICNF. Sistema de Gestão de Incêndios Florestais—Versão1.1 2015; Instituto de Conservação da Natureza e das Florestas: Lisboa, Portugal; Available online: https://fogos.icnf.pt/sgif_app/FiltraMapasGraficos.asp (accessed on 10 March 2023).
- Pereira, M.G.; Malamud, B.D.; Trigo, R.M.; Alves, P.I. The History and Characteristics of the 1980-2005 Portuguese Rural Fire Database. Nat. Hazards Earth Syst. Sci. 2011, 11, 3343–3358. [Google Scholar] [CrossRef] [Green Version]
- Santalla, A.L.; García, M.L. Los Incendios Forestales En España—Decenio 2006–2015; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2019.
- Rego, F.; Rigolot, E.; Fernandes, P.; Joaquim, C.M.; Silva, S. Towards Integrated Fire Management; EFI Policy Brief No. 4., European Forest Institute: Joensuu, Finland, 2010; Available online: https://gfmc.online/wp-content/uploads/Fire-Paradox-Policy-Brief-Integrated-Fire-Management-ENG.pdf (accessed on 18 March 2022).
- Reyes-García, V. Conocimiento Ecológico Tradicional Para La Conservación: Dinámicas y Conflictos. Papeles 2009, 107, 39–55. [Google Scholar]
- Welch, J.R.; Coimbra, C.E.A. Indigenous Fire Ecologies, Restoration, and Territorial Sovereignty in the Brazilian Cerrado: The Case of Two Xavante Reserves. Land Use Policy 2021, 104, 104055. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed Burning in Southern Europe: Developing Fire Management in a Dynamic Landscape. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef] [Green Version]
- Mistry, J.; Bilbao, B.A.; Berardi, A. Community Owned Solutions for Fire Management in Tropical Ecosystems: Case Studies from Indigenous Communities of South America. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasanta, T.; Cortijos-López, M.; Errea, M.P.; Khorchani, M.; Nadal-Romero, E. An Environmental Management Experience to Control Wildfires in the Mid-Mountain Mediterranean Area: Shrub Clearing to Generate Mosaic Landscapes. Land Use Policy 2022, 118, 106147. [Google Scholar] [CrossRef]
- Ruiz-Mirazo, J.; Martínez-Fernández, J.; Vega-García, C. Pastoral Wildfires in the Mediterranean: Understanding Their Linkages to Land Cover Patterns in Managed Landscapes. J. Environ. Manag. 2012, 98, 43–50. [Google Scholar] [CrossRef]
- San Emeterio, L.; Múgica, L.; Ugarte, M.D.; Goicoa, T.; Canals, R.M. Sustainability of Traditional Pastoral Fires in Highlands under Global Change: Effects on Soil Function and Nutrient Cycling. Agric. Ecosyst. Environ. 2016, 235, 155–163. [Google Scholar] [CrossRef]
- Coughlan, M.R. Errakina: Pastoral Fire Use and Landscape Memory In the Basque Region of the French Western Pyrenees. J. Ethnobiol. 2013, 33, 86–104. [Google Scholar] [CrossRef]
- Ascoli, D.; Bovio, G. Prescribed Burning in Italy: Issues, Advances and Challenges. iForest 2013, 6, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Meddour-Sahar, O.; Lovreglio, R.; Meddour, R.; Leone, V.; Derridj, A. Fire and People in Three Rural Communities in Kabylia (Algeria): Results of a Survey. Open J. 2013, 3, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Castoldi, E.; Quintana, J.R.; Mata, R.G.; Molina, J.A. Early Post-Fire Plant Succession in Slash-Pile Prescribed Burns of a Sub-Mediterranean Managed Forest. Plant Ecol. Evol. 2013, 146, 272–278. [Google Scholar] [CrossRef]
- van Vliet, J.; de Groot, H.L.F.; Rietveld, P.; Verburg, P.H. Manifestations and Underlying Drivers of Agricultural Change in Europe. Landsc. Urban. Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Plieninger, T.; Draux, H.; Fagerholm, N.; Bieling, C.; Bürgi, M.; Kizos, T.; Kuemmerle, T.; Primdahl, J.; Verburg, P.H. The Driving Forces of Landscape Change in Europe: A Systematic Review of the Evidence. Land Use Policy 2016, 57, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Schulp, C.J.E.; Levers, C.; Kuemmerle, T.; Tieskens, K.F.; Verburg, P.H. Mapping and Modelling Past and Future Land Use Change in Europe’s Cultural Landscapes. Land Use Policy 2019, 80, 332–344. [Google Scholar] [CrossRef]
- Weissteiner, C.J.; Strobl, P.; Sommer, S. Assessment of Status and Trends of Olive Farming Intensity in EU-Mediterranean Countries Using Remote Sensing Time Series and Land Cover Data. Ecol. Indic. 2011, 11, 601–610. [Google Scholar] [CrossRef]
- Kuemmerle, A.T.; Levers, C.; Erb, K.; Estel, S.; Martin, R. Hotspots of Land Use Change in Europe. Environ. Res. Lett. 2016, 11, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Levers, C.; Müller, D.; Erb, K.; Haberl, H.; Jepsen, M.R.; Metzger, M.J.; Meyfroidt, P.; Plieninger, T.; Plutzar, C.; Stürck, J.; et al. Archetypical Patterns and Trajectories of Land Systems in Europe. Reg. Environ. Chang. 2018, 18, 715–732. [Google Scholar] [CrossRef]
- Plutzar, C.; Kroisleitner, C.; Haberl, H.; Fetzel, T.; Bulgheroni, C.; Beringer, T.; Hostert, P.; Kastner, T.; Kuemmerle, T.; Lauk, C.; et al. Changes in the Spatial Patterns of Human Appropriation of Net Primary Production (HANPP) in Europe 1990–2006. Reg. Environ. Chang. 2016, 16, 1225–1238. [Google Scholar] [CrossRef]
- Weissteiner, C.J.; Boschetti, M.; Böttcher, K.; Carrara, P.; Bordogna, G.; Brivio, P.A. Spatial Explicit Assessment of Rural Land Abandonment in the Mediterranean Area. Glob. Planet. Chang. 2011, 79, 20–36. [Google Scholar] [CrossRef]
- Debolini, M.; Marraccini, E.; Dubeuf, J.P.; Geijzendorffer, I.R.; Guerra, C.; Simon, M.; Targetti, S.; Napoléone, C. Land and Farming System Dynamics and Their Drivers in the Mediterranean Basin. Land Use Policy 2018, 75, 702–710. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Loureiro, C.; Guiomar, N.; Pezzatti, G.B.; Manso, F.T.; Lopes, L. The Dynamics and Drivers of Fuel and Fire in the Portuguese Public Forest. J. Environ. Manag. 2014, 146, 373–382. [Google Scholar] [CrossRef]
- Viedma, O.; Moity, N.; Moreno, J.M. Changes in Landscape Fire-Hazard during the Second Half of the 20th Century: Agriculture Abandonment and the Changing Role of Driving Factors. Agric. Ecosyst. Environ. 2015, 207, 126–140. [Google Scholar] [CrossRef]
- Azevedo, J.C.; Moreira, C.; Castro, J.P.; Loureiro, C. Agriculture Abandonment, Land- Use Change and Fire Hazard in Mountain Landscapes in Northeastern Portugal. In Landscape Ecology in Forest Management and Conservation: Challenges and Solutions for Global Change; Li, C., Lafortezza, R., Chen, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 329–351. [Google Scholar]
- Sil, Â.; Fernandes, P.M.; Paula, A.; Alonso, J.M.; Honrado, J.P.; Perera, A.; Azevedo, J.C. Farmland Abandonment Decreases the Fire Regulation Capacity and the Fire Protection Ecosystem Service in Mountain Landscapes. Ecosyst. Serv. 2019, 36, 100908. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.D.; de Neufville, R.; Claro, J.; Oliveira, T.; Pacheco, A.P. Forest Fire Management to Avoid Unintended Consequences: A Case Study of Portugal Using System Dynamics. J. Environ. Manag. 2013, 130, 1–9. [Google Scholar] [CrossRef]
- Ingalsbee, T. Whither the Paradigm Shift? Large Wildland Fires and the Wildfire Paradox Offer Opportunities for a New Paradigm of Ecological Fire Management. Int. J. Wildland Fire 2017, 26, 557–561. [Google Scholar] [CrossRef]
- Leone, V.; Tedim, F.; Xanthopoulos, G. Fire Smart Territory as an Innovative Approach to Wildfire Risk Reduction. In Extreme Wildfire Events and Disasters: Root Causes and New Management Strategies; Tedim, F., Leone, V., McGee, T.K., Eds.; Elsevier: Amesterdam, The Netherlands, 2020; pp. 201–215. ISBN 9780128157213. [Google Scholar]
- Fernandes, P.M.; Monteiro-Henriques, T.; Guiomar, N.; Loureiro, C.; Barros, A.M.G. Bottom-up Variables Govern Large-Fire Size in Portugal. Ecosystems 2016, 19, 1362–1375. [Google Scholar] [CrossRef]
- Castellnou, M.; Guiomar, N.; Rego, F.; Fernandes, P.M. Fire Growth Patterns in the 2017 Mega Fire Episode of October 15, Central Portugal. In Advances in Forest Fire Research 2018; Viegas, D.X., Ed.; ADAI/CEIF; University of Coimbra: Coimbra, Portugal, 2018; pp. 447–453. ISBN 9789892616506. [Google Scholar]
- Rodrigues, M.; Cunill Camprubí, À.; Balaguer-Romano, R.; Coco Megía, C.J.; Castañares, F.; Ruffault, J.; Fernandes, P.M.; Resco de Dios, V. Drivers and Implications of the Extreme 2022 Wildfire Season in Southwest Europe. Sci. Total Environ. 2023, 859, 160320. [Google Scholar] [CrossRef]
- Dossi, S.; Messerschmidt, B.; Ribeiro, L.M.; Almeida, M.; Rein, G. Relationships between Building Features and Wildfire Damage in California, USA and Pedrógão Grande, Portugal. Int. J. Wildland Fire 2022, 32, 296–312. [Google Scholar] [CrossRef]
- Pinto, P.; Silva, Á.P.; Viegas, D.X.; Almeida, M.; Raposo, J.; Ribeiro, L.M. Influence of Convectively Driven Flows in the Course of a Large Fire in Portugal: The Case of Pedrógão Grande. Atmosphere 2022, 13, 414. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Papavasileiou, G.; Lagouvardos, K.; Kotroni, V.; Dafis, S.; Karagiannidis, A.; Dragozi, E. Meteorological Analysis of the 2021 Extreme Wildfires in Greece: Lessons Learned and Implications for Early Warning of the Potential for Pyroconvection. Atmosphere 2022, 13, 475. [Google Scholar] [CrossRef]
- Seijo, F.; Cespedes, B.; Zavala, G. Traditional Fire Use Impact in the Aboveground Carbon Stock of the Chestnut Forests of Central Spain and Its Implications for Prescribed Burning. Sci. Total Environ. 2018, 625, 1405–1414. [Google Scholar] [CrossRef]
- Mariani, M.; Connor, S.E.; Theuerkauf, M.; Herbert, A.; Kuneš, P.; Bowman, D.; Fletcher, M.S.; Head, L.; Kershaw, A.P.; Haberle, S.G.; et al. Disruption of Cultural Burning Promotes Shrub Encroachment and Unprecedented Wildfires. Front. Ecol. Environ. 2022, 20, 292–300. [Google Scholar] [CrossRef]
- Souza, M.E.B.; Pacheco, A.P.; Teixeira, J.G. Systematizing Experts’ Risk Perception on Rural Fires Resulting from Traditional Burnings in Portugal: A Mental Model Approach. In Advances in Forest Fire Research 2022; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2022; pp. 1520–1525. [Google Scholar]
- Coutinho, J.M.P. Incêndios Florestais: Causas e Atitudes; Númena: Porto Salvo, Portugal, 2009. [Google Scholar]
- Salgueiro, A. The Portuguese National Programme on Suppression Fire: GAUF Team Actions. In Best Practices of Fire Use—Prescribed Burning and Suppression Fire Programmes in Selected Case-Study Regions in Europe; Montiel, C., Kraus, D., Eds.; European Forest Institute: Joensuu, Finland, 2010; pp. 123–136. [Google Scholar]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape-Wildfire Interactions in Southern Europe: Implications for Landscape Management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land Cover Type and Fire in Portugal: Do Fires Burn Land Cover Selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- Barros, A.M.G.; Pereira, J.M.C. Wildfire Selectivity for Land Cover Type: Does Size Matter? PLoS ONE 2014, 9, e84760. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.C.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire Management in Mediterranean-Type Regions: Paradigm Change Needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an Evolutionary Pressure Shaping Plant Traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.S.; Vaz, P.; Moreira, F.; Catry, F.; Rego, F.C. Wildfires as a Major Driver of Landscape Dynamics in Three Fire-Prone Areas of Portugal. Landsc. Urban. Plan. 2011, 101, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Guiomar, N.; Godinho, S.; Fernandes, P.M.; Machado, R.; Neves, N.; Fernandes, J.P. Wildfire Patterns and Landscape Changes in Mediterranean Oak Woodlands. Sci. Total Environ. 2015, 536, 338–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duane, A.; Aquilué, N.; Canelles, Q.; Morán-Ordoñez, A.; De Cáceres, M.; Brotons, L. Adapting Prescribed Burns to Future Climate Change in Mediterranean Landscapes. Sci. Total Environ. 2019, 677, 68–83. [Google Scholar] [CrossRef]
- Perpiña Castillo, C.; Jacobs-Crisioni, C.; Diogo, V.; Lavalle, C. Modelling Agricultural Land Abandonment in a Fine Spatial Resolution Multi-Level Land-Use Model: An Application for the EU. Environ. Model. Softw. 2021, 136, 104946. [Google Scholar] [CrossRef]
- Benali, A.; Mota, B.; Carvalhais, N.; Oom, D.; Miller, L.M.; Campagnolo, M.L.; Pereira, J.M.C. Bimodal Fire Regimes Unveil a Global-Scale Anthropogenic Fingerprint. Glob. Ecol. Biogeogr. 2017, 26, 799–811. [Google Scholar] [CrossRef]
- Bajocco, S.; Ferrara, C.; Guglietta, D.; Ricotta, C. Easy-to-Interpret Procedure to Analyze Fire Seasonality and the Influence of Land Use in Fire Occurrence: A Case Study in Central Italy. Fire 2020, 3, 46. [Google Scholar] [CrossRef]
- Bajocco, S.; Pezzatti, G.B.; Mazzoleni, S.; Ricotta, C. Wildfire Seasonality and Land Use: When Do Wildfires Prefer to Burn? Environ. Monit. Assess. 2010, 164, 445–452. [Google Scholar] [CrossRef]
- Krebs, P.; Pezzatti, G.B.; Mazzoleni, S.; Talbot, L.M.; Conedera, M. Fire Regime: History and Definition of a Key Concept in Disturbance Ecology. Theory Biosci. 2010, 129, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J. Quantitative Measurement of Food Selection A Modification of the Forage Ratio and Ivlev’s Electivity Index. Oecologia 1974, 14, 413–417. [Google Scholar] [CrossRef]
- Monteiro, A.; Ferreira, C.; Madureira, H. Atlas Agroclimatológico Do Entre Douro e Minho. Relatório Final. 2005. Available online: https://repositorio-aberto.up.pt/handle/10216/21260 (accessed on 15 March 2023).
- CIM Alto Minho; Instituto Politécnico de Viana do Castelo. PIAAC—Plano Intermunicipal de Adaptação Às Alterações Climáticas Do Alto Minho—Contextualização e Cenarização Climática; Comunidade Intermunicipal do Alto Minho: Viana do Castelo, Portugal, 2017. [Google Scholar]
- LEAF. EPIC WebGIS Portugal; Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal. Available online: http://epic-webgis-portugal.isa.ulisboa.pt/ (accessed on 10 May 2023).
- FAO. World Reference Base for Soil. Resources 2014: International Soil. Classification System for Naming Soils and Creating Legends for Soil. Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; ISBN 9789251083697. [Google Scholar]
- Sweeney, L.; Harrison, S.P.; Linden, M. Vander Assessing Anthropogenic Influence on Fire History during the Holocene in the Iberian Peninsula. Quat. Sci. Rev. 2022, 287, 107562. [Google Scholar] [CrossRef]
- Martínez-Cortizas, A.; Costa-Casais, M.; López-Sáez, J.A. Environmental Change in NW Iberia between 7000 and 500 Cal BC. Quat. Int. 2009, 200, 77–89. [Google Scholar] [CrossRef]
- Reis, J. A «Lei Da Fome»: As Origens Do Proteccionismo Cerealífero (1889–1914). Anal. Soc. 1979, 15, 745–793. [Google Scholar]
- Pais, J.M.; Valadas de Lima, A.M.; Baptista, J.F.; Marques de Jesus, M.F.; Gameiro, M.M. Elementos Para a História Do Fascismo Nos Campos: A «Campanha Do Trigo»: 1928-38 (Ii). Anal. Soc. 1978, 14, 321–389. [Google Scholar]
- Mendonça, J.C. 75 Anos de Actividade Na Arborização de Serras; Direcção-Geral dos Serviços Florestais e Aquícolas: Lisboa, Portugal, 1961. [Google Scholar]
- Brouwer, R. Between Policy and Politics: The Forestry Services and the Commons in Portugal. For. Conserv. Hist. 1993, 37, 160–168. [Google Scholar] [CrossRef]
- Brouwer, R. Planting Power—The Afforestation of the Commons and State Formation in Portugal; Wageningen University and Research: Wageningen, The Netherlands, 1995. [Google Scholar]
- DGT. Carta de Uso e Ocupação do Solo Para 2018; Direção-Geral do Território: Lisboa, Portugal, 2018. Available online: https://www.dgterritorio.gov.pt/Carta-de-Uso-e-Ocupacao-do-Solo-para-2018 (accessed on 15 March 2023).
- Díaz-Fierros, F. Forest Fires in Galicia and Portugal: An Historical Overview. Territ. Rev. Port. De. Riscos Prevenção E Segurança 2019, 26, 97–114. [Google Scholar] [CrossRef]
- Oliveira, E.; Fernandes, P. Uma Cartografia Aperfeiçoada Das Áreas Ardidas No Alto Minho (Noroeste de Portugal) Entre 2001 e 2020. Finisterra, 2023; 58, online first. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation Project, 2023; Available online: https://www.qgis.org/ (accessed on 15 March 2023).
- Key, C.H.; Benson, N.C. Landscape Assessment (LA): Sampling Analysis and Methods. In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; USDA Forest Service: Ogden, UT, USA, 2006; pp. LA-1–LA-51. [Google Scholar]
- Chuvieco, E.; Congalton, R.G. Mapping and Inventory of Forest Fires from Digital Processing of Tm Data. Geocarto Int. 1988, 3, 41–53. [Google Scholar] [CrossRef]
- Tanaka, S.; Kimura, H.; Suga, Y. Preparation of a 1:25,000 Landsat Map for Assessment of Burnt Area on Etajima Island. Int. J. Remote Sens. 1983, 4, 17–31. [Google Scholar] [CrossRef]
- Fernandes, P.; Gonçalves, H.; Loureiro, C.; Fernandes, M.T.; Costa, T.; Cruz, M.G.; Botelho, H. Modelos de Combustível Florestal para Portugal. In Actas do 6º Congresso Florestal Nacional; SPCF: Lisboa, Portugal, 2009; pp. 348–354. [Google Scholar]
- DGF. Inventário Florestal Nacional, Portugal Continental. 3a Revisão, 1995–1998; Direção-Geral das Florestas: Lisboa, Portugal, 2001.
- Caetano, M.; Igreja, C.; Marcelino, F. Especificações Técnicas da Carta de Uso e Ocupação do Solo (COS) de Portugal Continental para 1995, 2007, 2010 e 2015; Direção-Geral do Território: Lisboa, Portugal, 2018; Available online: https://www.dgterritorio.gov.pt/sites/default/files/documentos-publicos/2019-12-26-11-47-32-0__ET-COS-2018_v1.pdf (accessed on 12 March 2022).
- DGT. Especificações Técnicas da Carta de Uso e Ocupação do Solo (COS) de Portugal Continental Para 2018; Direção-Geral do Território: Lisboa, Portugal, 2019.
- Büttner, J.; Feranec, J.; Jaffrain, G. Corine Land Cover Update 2000: Technical Guidelines. EEA Technical Report. no 89; European Environmental Agency: Copenhagen, Denmark, 2002.
- Caetano, M.; Marcelino, F. CORINE Land Cover de Portugal Continental 1990–2000–2006–2012; Direção-Geral do Território: Lisboa, Portugal, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2023. Available online: https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (accessed on 14 April 2023).
- Lyubchich, V.; Gel, Y.R.; Brenning, A.; Chu, C.; Huang, X.; Islambekov, U.; Niamkova, P.; Ofori-Boateng, D.; Schaeffer, E.D.; Vishwakarma, S.; et al. Package ‘Funtimes’—Functions for Time Series Analysis. Available online: https://cran.r-project.org/web/packages/funtimes/funtimes.pdf (accessed on 30 April 2023).
- Noguchi, K.; Gel, Y.R.; Duguay, C.R. Bootstrap-Based Tests for Trends in Hydrological Time Series, with Application to Ice Phenology Data. J. Hydrol. 2011, 410, 150–161. [Google Scholar] [CrossRef]
- Lyubchich, V.; Gel, Y.R.; El-Shaarawi, A. On Detecting Non-Monotonic Trends in Environmental Time Series: A Fusion of Local Regression and Bootstrap. Environmetrics 2013, 24, 209–226. [Google Scholar] [CrossRef]
- Kreiss, J.P.; Lahiri, S.N. Bootstrap Methods for Time Series. In Handbook of Statistics; Rao, T.S., Rao, S.S., Rao, C.R., Eds.; Elsevier: New York, NY, USA, 2012; Volume 30, pp. 3–26. [Google Scholar]
- Bühlmann, P. Sieve Bootstrap for Time Series. Bernoulli 1997, 3, 123–148. [Google Scholar] [CrossRef]
- Hall, P.; van Keilegom, I. Using Difference-Based Methods for Inference in Nonparametric Regression with Time Series Errors. J. R. Stat. Soc. Ser. B 2003, 65, 443–456. [Google Scholar] [CrossRef]
- Hintze, J.L.; Nelson, R.D. Violin Plots: A Box Plot-Density Trace Synergism. Am. Stat. 1998, 52, 181–184. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2—Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Allen, M.; Poggiali, D.; Whitaker, K.; Marshall, T.R.; Kievit, R.A. Raincloud Plots: A Multi-Platform Tool for Robust Data Visualization. Wellcome Open Res. 2019, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- Dancho, M.; Vaughan, D. Package “tidyquant”—Tidy Quantitative Financial Analysis. Available online: https://github.com/business-science/tidyquant/issues (accessed on 14 April 2023).
- Kay, M.; Wiernik, B.M. Package ‘ggdist’—Visualizations of Distributions and Uncertainty. Available online: https://github.com/mjskay/ggdist/ (accessed on 30 April 2023).
- Arnold, J.B.; Daroczi, G.; Werth, B.; Weitzner, B.; Kunst, J.; Auguie, B.; Rudis, B.; Talbot, J. Package “ggthemes”—Extra Themes, Scales and Geoms for “Ggplot2”. Available online: http://github.com/jrnold/ggthemes (accessed on 30 April 2023).
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Loureiro, C.; Magalhães, M.; Ferreira, P.; Fernandes, M. Fuel Age, Weather and Burn Probability in Portugal. Int. J. Wildland Fire 2012, 21, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.L.J.; Pereira, J.M.C.; Carreiras, J.M.B. Fire Frequency Analysis in Portugal (1975–2005), Using Landsat-Based Burnt Area Maps. Int. J. Wildland Fire 2012, 21, 48–60. [Google Scholar] [CrossRef]
- Delignette-Muller, M.L.; Dutang, C. Fitdistrplus: An R Package for Fitting Distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Cuba, N. Research Note: Sankey Diagrams for Visualizing Land Cover Dynamics. Landsc. Urban. Plan. 2015, 139, 163–167. [Google Scholar] [CrossRef]
- Hijmans, R.J.; van Etten, J.; Sumner, M.; Cheng, J.; Baston, D.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.; Fasoli, B.; et al. Package “raster”—Geographic Data Analysis and Modeling. Available online: https://github.com/rspatial/raster/issues/ (accessed on 12 April 2023).
- Allaire, J.J.; Ellis, P.; Gandrud, C.; Kuo, K.; Lewis, B.W.; Owen, J.; Russell, K.; Rogers, J.; Sese, C.; Yetman, C.J.; et al. Package “networkD3”—D3 JavaScript Network Graphs from R. Available online: https://github.com/christophergandrud/networkD3/issues (accessed on 20 April 2023).
- Jockers, M.L.; Thalken, R. Text Analysis with R For Students of Literature; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Mailund, T. Manipulating Data Frames: Dplyr. In R Data Science Quick Reference; Apress: Berkeley, CA, USA, 2019; pp. 109–160. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Mangiafico, S. Package “rcompanion”—Functions to Support Extension Education Program Evaluation. Available online: http://rcompanion.org (accessed on 6 May 2023).
- Cox, D.R.; Snell, E.J. A General Definition of Residuals. J. R. Stat. Society Ser. B 1968, 30, 248–275. [Google Scholar] [CrossRef]
- Smith, T.J.; Mckenna, C.M. A Comparison of Logistic Regression Pseudo R2 Indices. Mult. Linear Regres. Viewp. 2013, 39, 17–26. [Google Scholar]
- Mcfadden, D. Regression-Based Specification Tests for the Multinomial Logit Model. J. Econ. 1987, 34, 63–82. [Google Scholar] [CrossRef]
- Pereira, J.M.C.; Carreiras, J.; Silva, J.M.N.; Vasconcelos, M.J.P. Alguns Conceitos Básicos Sobre Os Fogos Rurais Em Portugal. In Incêndios Florestais em Portugal—Caracterização, Impactes e Prevenção; ISAPress: Lisboa, Portugal, 2006; pp. 133–158. [Google Scholar]
- Trigo, R.M.; Sousa, P.M.; Pereira, M.G.; Rasilla, D.; Gouveia, C.M. Modelling Wildfire Activity in Iberia with Different Atmospheric Circulation Weather Types. Int. J. Climatol. 2016, 36, 2761–2778. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Guiomar, N.; Rossa, C.G. Analysing Eucalypt Expansion in Portugal as a Fire-Regime Modifier. Sci. Total Environ. 2019, 666, 79–88. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire Regime Changes in the Western Mediterranean Basin: From Fuel-Limited to Drought-Driven Fire Regime. Clim. Change 2012, 110, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, P.; Rodrigues, P. Cost Management: The Use of Fire for Pasture Renewal in Alto Minho. Rev. Floresta 2023, 53, 46–55. [Google Scholar] [CrossRef]
- Oliveira, E.; Fernandes, P.M. Pastoral Burning and Its Contribution to the Fire Regime of Alto Minho, Portugal. Fire 2023, 6, 210. [Google Scholar] [CrossRef]
- Iglesias, M.C.; Hermoso, V.; Campos, J.C.; Carvalho-Santos, C.; Fernandes, P.M.; Freitas, T.R.; Honrado, J.P.; Santos, J.A.; Sil, Â.; Regos, A.; et al. Climate- and Fire-Smart Landscape Scenarios Call for Redesigning Protection Regimes to Achieve Multiple Management Goals. J. Environ. Manag. 2022, 322, 116045. [Google Scholar] [CrossRef] [PubMed]
- Mori, A.S.; Lertzman, K.P. Historic Variability in Fire-Generated Landscape Heterogeneity of Subalpine Forests in the Canadian Rockies. J. Veg. Sci. 2011, 22, 45–58. [Google Scholar] [CrossRef]
- Airey-Lauvaux, C.; Pierce, A.D.; Skinner, C.N.; Taylor, A.H. Changes in Fire Behavior Caused by Fire Exclusion and Fuel Build-up Vary with Topography in California Montane Forests, USA. J. Environ. Manag. 2022, 304, 114255. [Google Scholar] [CrossRef]
- Christianson, A.C.; Sutherland, C.R.; Moola, F.; Gonzalez Bautista, N.; Young, D.; MacDonald, H. Centering Indigenous Voices: The Role of Fire in the Boreal Forest of North America. Curr. For. Rep. 2022, 8, 257–276. [Google Scholar] [CrossRef]
- Moreira, F.; Leal, M.; Bergonse, R.; Canadas, M.J.; Novais, A.; Oliveira, S.; Ribeiro, P.F.; Zêzere, J.L.; Santos, J.L. Recent Trends in Fire Regimes and Associated Territorial Features in a Fire-Prone Mediterranean Region. Fire 2023, 6, 60. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Martins, S.; Fernandes, P.M. Characterization of Biophysical Contexts Leading to Severe Wildfires in Portugal and Their Environmental Controls. Sci. Total Environ. 2023, 875, 162575. [Google Scholar] [CrossRef]
- Strauss, D.; Bednar, L.; Mees, R. Do One Percent of Forest Fires Cause Ninety-Nine Percent of the Damage? For. Sci. 1989, 35, 319–328. [Google Scholar]
- Malamud, B.D.; Millington, J.D.A.; Perry, G.L.W. Characterizing Wildfire Regimes in the United States. Proc. Natl. Acad. Sci. USA 2005, 102, 4694–4699. [Google Scholar] [CrossRef]
- Hantson, S.; Pueyo, S.; Chuvieco, E. Global Fire Size Distribution: From Power Law to Log-Normal. Int. J. Wildland Fire 2016, 24, 589–596. [Google Scholar] [CrossRef]
- Fernandes, P.M. Variation in the Canadian Fire Weather Index Thresholds for Increasingly Larger Fires in Portugal. Forests 2019, 10, 838. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.; Moreira, F.; Boca, R.; San-Miguel-Ayanz, J.; Pereira, J.M.C. Assessment of Fire Selectivity in Relation to Land Cover and Topography: A Comparison between Southern European Countries. Int. J. Wildland Fire 2014, 23, 620–630. [Google Scholar] [CrossRef]
- Bajocco, S.; Ricotta, C. Evidence of Selective Burning in Sardinia (Italy): Which Land-Cover Classes Do Wildfires Prefer? Landsc. Ecol. 2008, 23, 241–248. [Google Scholar] [CrossRef]
- Mermoz, M.; Kitzberger, T.; Veblen, T.T. Landscape Influences on Occurrence and Spread of Wildfires in Patagonian Forests and Shrublands. Ecology 2005, 86, 2705–2715. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.S.; Moreira, F.; Vaz, P.; Catry, F.; Godinho-Ferreira, P. Assessing the Relative Fire Proneness of Different Forest Types in Portugal. Plant Biosyst. 2009, 143, 597–608. [Google Scholar] [CrossRef]
- Pereira, M.G.; Aranha, J.; Amraoui, M. Land Cover Fire Proneness in Europe. Systems 2014, 23, 598–610. [Google Scholar] [CrossRef]
- Moreira, F.; Vaz, P.; Catry, F.X.; Silva, J.S. Regional Variations in Wildfire Susceptibility of Land-Cover Types in Portugal: Implications for Landscape Management to Minimize Fire Hazard. Int. J. Wildland Fire 2009, 18, 563–574. [Google Scholar] [CrossRef]
- Pezzatti, G.B.; Bajocco, S.; Torriani, D.; Conedera, M. Selective Burning of Forest Vegetation in Canton Ticino (Southern Switzerland). Plant Biosyst. 2009, 143, 609–620. [Google Scholar] [CrossRef]
- Cumming, S.G. Forest Type and Wildfire in the Alberta Boreal Mixedwood: What Do Fires Burn? Ecol. Appl. 2001, 11, 97–110. [Google Scholar] [CrossRef]
- Bergonse, R.; Oliveira, S.; Zêzere, J.L.; Moreira, F.; Ribeiro, P.F.; Leal, M.; Lima e Santos, J.M. Biophysical Controls over Fire Regime Properties in Central Portugal. Sci. Total Environ. 2022, 810, 152314. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, M.R. Farmers, Flames, and Forests: Historical Ecology of Pastoral Fire Use and Landscape Change in the French Western Pyrenees, 1830-2011. Ecol Manag. 2014, 312, 55–66. [Google Scholar] [CrossRef]
- Coughlan, M.R. Traditional Fire-Use, Landscape Transition, and the Legacies of Social Theory Past. Ambio 2015, 44, 705–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Múgica, L.; Canals, R.M.; San Emeterio, L.; Peralta, J. Decoupling of Traditional Burnings and Grazing Regimes Alters Plant Diversity and Dominant Species Competition in High-Mountain Grasslands. Sci. Total Environ. 2021, 790, 147917. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.M.; Rigolot, E. The Fire Ecology and Management of Maritime Pine (Pinus pinaster Ait.). Ecol. Manag. 2007, 241, 1–13. [Google Scholar] [CrossRef]
- Keeley, J.E.; Ne’eman, G.; Fotheringham, C.J. Immaturity Risk in a Fire-Dependent Pine. J. Mediterr. Ecol. 1999, 1, 41–48. [Google Scholar]
- Maia, P.; Pausas, J.G.; Arcenegui, V.; Guerrero, C.; Pérez-Bejarano, A.; Mataix-Solera, J.; Varela, M.E.T.; Fernandes, I.; Pedrosa, E.T.; Keizer, J.J. Wildfire Effects on the Soil Seed Bank of a Maritime Pine Stand—The Importance of Fire Severity. Geoderma 2012, 191, 80–88. [Google Scholar] [CrossRef]
- Maia, P.; Pausas, J.G.; Vasques, A.; Keizer, J.J. Fire Severity as a Key Factor in Post-Fire Regeneration of Pinus Pinaster (Ait.) in Central Portugal. Ann. Sci. 2012, 69, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Cruz, O.; García-Duro, J.; Casal, M.; Reyes, O. Role of Serotiny on Pinus Pinaster Aiton Germination and Its Relation to Mother Plant Age and Fire Severity. iForest 2019, 12, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Guiomar, N. Os Incêndios Como Causa de Desarborização Em Portugal. AGROTEC 2017, 3, 28–32. [Google Scholar]
- Turner, M.G.; Baker, W.L.; Peterson, C.J.; Peet, R.K. Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances. Ecosystems 1998, 1, 511–523. [Google Scholar] [CrossRef]
- Hernández-Serrano, A.; Verdú, M.; González-Martínez, S.C.; Pausas, J.G. Fire Structures Pine Serotiny at Different Scales. Am. J. Bot. 2013, 100, 2349–2356. [Google Scholar] [CrossRef]
- Pausas, J.G. Evolutionary Fire Ecology: Lessons Learned from Pines. Trends Plant Sci. 2015, 20, 318–324. [Google Scholar] [CrossRef]
- Pausas, J.G. Bark Thickness and Fire Regime. Funct. Ecol. 2015, 29, 315–327. [Google Scholar] [CrossRef]
- Guiote, C.; Pausas, J.G. Fire Favors Sexual Precocity in a Mediterranean Pine. Oikos 2023, 2023. [Google Scholar] [CrossRef]
- Mota, M.M.; Vieira, P.C. Pine Wilt Disease in Portugal. In Pine Wilt Disease; Springer: Tokyo, Japan, 2008; pp. 33–38. [Google Scholar]
- Águas, A.; Ferreira, A.; Maia, P.; Fernandes, P.M.; Roxo, L.; Keizer, J.; Silva, J.S.; Rego, F.C.; Moreira, F. Natural Establishment of Eucalyptus Globulus Labill. in Burnt Stands in Portugal. Ecol. Manag. 2014, 323, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Catry, F.X.; Moreira, F.; Tujeira, R.; Silva, J.S. Post-Fire Survival and Regeneration of Eucalyptus Globulus in Forest Plantations in Portugal. Ecol. Manag. 2013, 310, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; Ferreira, A.; Abrantes, N.; Catry, F.; Fernandes, P.; Roxo, L.; Keizer, J.J.; Silva, J. Occurrence of Native and Exotic Invasive Trees in Burned Pine and Eucalypt Plantations: Implications for Post-Fire Forest Conversion. Ecol. Eng. 2013, 58, 296–302. [Google Scholar] [CrossRef]
- Sanjuán, Y.; Arnáez, J.; Beguería, S.; Lana-Renault, N.; Lasanta, T.; Gómez-Villar, A.; Álvarez-Martínez, J.; Coba-Pérez, P.; García-Ruiz, J.M. Woody Plant Encroachment Following Grazing Abandonment in the Subalpine Belt: A Case Study in Northern Spain. Reg. Environ. Chang. 2018, 18, 1103–1115. [Google Scholar] [CrossRef]
- Komac, B.; Kefi, S.; Nuche, P.; Escós, J.; Alados, C.L. Modeling Shrub Encroachment in Subalpine Grasslands under Different Environmental and Management Scenarios. J. Environ. Manag. 2013, 121, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Palombo, C.; Chirici, G.; Marchetti, M.; Tognetti, R. Is Land Abandonment Affecting Forest Dynamics at High Elevation in Mediterranean Mountains More than Climate Change? Plant Biosyst. 2013, 147, 1–11. [Google Scholar] [CrossRef]
- Romero-Calcerrada, R.; Perry, G.L.W. The Role of Land Abandonment in Landscape Dynamics in the SPA ‘Encinares Del Rio Alberche y Cofio, Central Spain, 1984–1999. Land. Urban Plan 2004, 66, 217–232. [Google Scholar] [CrossRef]
Fuel Types | Short Description of the Fuel Types | % Area in 2000 | % Area in 2018 | %C |
---|---|---|---|---|
F-RAC | Short-needle conifers (Pseudotsuga, Cedrus, Cupressus, Pinus sylvestris, P. nigra) (litter) | 0.75 | 0.62 | −17.84 |
F-PIN | Medium-long needle pines (P. pinaster, P. pinea, P. halepensis, P. radiata) (litter) | 0.01 | 0.01 | 12.34 |
F-FOL | Broadleaved forest stands (litter) | 6.64 | 8.05 | 21.21 |
M-PIN | Medium-long needle pines (litter + understory vegetation) | 19.36 | 15.33 | −20.85 |
M-EUC | Eucalyptus stands (litter + understory vegetation) | 7.71 | 12.01 | 55.60 |
M-CAD | Broadleaved forest stands, including marcescent and deciduous oaks and Castanea sativa (litter + understory vegetation) | 6.14 | 6.38 | 3.87 |
M-ESC | Sclerophyllous hardwood stands (cork oak, holm oak, strawberry tree) (litter + understory vegetation) | ≤0.01 | ≤0.01 | −50.05 |
V-MAa | Tall shrublands (>1 m) (heather, gorse) | 28.36 | 26.38 | −7.05 |
V-MMb | Short shrublands (<1 m) (cistus, broom) | 2.29 | 2.08 | −9.49 |
V-Hb | Short herbs, including agricultural areas | 17.63 | 16.70 | −5.35 |
V-Ha | Tall herbs | 0.36 | ≤ 0.01 | −98.61 |
V-MH | Mosaics of young shrublands and herbs | 2.38 | 2.38 | −0.10 |
Sieve-Bootstrap Mann–Kendall Test | Sieve-Bootstrap Student’s t-Test | |||||||
---|---|---|---|---|---|---|---|---|
MK tau | p-Value | H0: No Trend | AR p | t-Value | p-Value | H0: No Trend | AR p | |
T-NP | 0.11 | 0.51 | Rejected | 0 | 1.05 | 0.32 | Rejected | 0 |
T-BA | 0.03 | 1.00 | Rejected | 0 | 0.06 | 0.96 | Rejected | 0 |
FS-NP | −0.07 | 0.75 | Rejected | 0 | −0.49 | 0.63 | Rejected | 0 |
FS-BA | −0.14 | 0.44 | Rejected | 0 | −0.22 | 0.83 | Rejected | 0 |
NFS-NP | 0.23 | 0.20 | Rejected | 0 | 1.41 | 0.18 | Rejected | 0 |
NFS-BA | 0.12 | 0.51 | Rejected | 0 | 1.04 | 0.33 | Rejected | 0 |
Jacobs Index | ||||||
---|---|---|---|---|---|---|
Fuel Types | TBA | FStBA | NFStBA | FStBA∩NFStBA | FSo | NFSo |
F-FOL | −0.25 | −0.22 | −0.40 | −0.44 | −0.12 | −0.35 |
F-PIN | −0.43 | −0.33 | −1.00 | −1.00 | −0.11 | −1.00 |
F-RAC | 0.08 | 0.11 | −0.06 | −0.11 | 0.20 | −0.01 |
M-CAD | −0.10 | −0.15 | −0.20 | −0.46 | −0.01 | 0.05 |
M-ESC | 0.04 | 0.17 | 0.22 | 0.46 | −0.24 | −1.00 |
M-EUC | 0.22 | 0.32 | −0.07 | 0.09 | 0.41 | −0.37 |
M-PIN | 0.02 | 0.05 | −0.18 | −0.23 | 0.18 | −0.12 |
V-MAa | 0.48 | 0.45 | 0.65 | 0.71 | 0.25 | 0.56 |
V-MMb | −0.74 | −0.75 | −0.81 | −0.89 | −0.68 | −0.72 |
V-MH | 0.19 | −0.04 | 0.29 | −0.29 | 0.07 | 0.57 |
V-Ha | −0.61 | −0.65 | −0.62 | −0.75 | −0.59 | −0.48 |
V-Hb | −0.89 | −0.92 | −0.89 | −0.98 | −0.88 | −0.78 |
NF | −0.92 | −0.92 | −0.95 | −0.96 | −0.89 | −0.94 |
Estimate | Std. Error | z-Value | p-Value | |
---|---|---|---|---|
Intercept | −2.25 | 0.06 | −36.86 | <0.001 |
FIRErec | 0.48 | 0.04 | 10.64 | <0.001 |
FIREfs | 0.56 | 0.08 | 7.18 | <0.001 |
FIREnfs | 0.06 | 0.07 | 0.92 | 0.35 |
FIREfslf | 0.00 | 0.00 | −5.29 | <0.001 |
FC2000F-RAC | 1.72 | 0.12 | 14.59 | <0.001 |
FC2000M-CAD | 0.19 | 0.08 | 2.31 | 0.02 |
FC2000M-EUC | −0.53 | 0.08 | −6.39 | <0.001 |
FC2000M-PIN | 2.70 | 0.06 | 41.66 | <0.001 |
FC2000PS | 0.00 | 0.00 | 5.57 | <0.001 |
Efron’s pseudo-R2 | 0.42 | |||
McFadden pseudo-R2 | 0.34 | |||
Cox and Snell pseudo-R2 | 0.37 | |||
Nagelkerke pseudo-R2 | 0.50 | |||
Null deviance | 20,084 (14,487 d.f.) | |||
Residual deviance | 13,314 (14,478 d.f.) | |||
AIC | 13,334 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, E.; Fernandes, P.M.; Barros, D.; Guiomar, N. Unraveling the Effect of Fire Seasonality on Fire-Preferred Fuel Types and Dynamics in Alto Minho, Portugal (2000–2018). Fire 2023, 6, 267. https://doi.org/10.3390/fire6070267
Oliveira E, Fernandes PM, Barros D, Guiomar N. Unraveling the Effect of Fire Seasonality on Fire-Preferred Fuel Types and Dynamics in Alto Minho, Portugal (2000–2018). Fire. 2023; 6(7):267. https://doi.org/10.3390/fire6070267
Chicago/Turabian StyleOliveira, Emanuel, Paulo M. Fernandes, David Barros, and Nuno Guiomar. 2023. "Unraveling the Effect of Fire Seasonality on Fire-Preferred Fuel Types and Dynamics in Alto Minho, Portugal (2000–2018)" Fire 6, no. 7: 267. https://doi.org/10.3390/fire6070267
APA StyleOliveira, E., Fernandes, P. M., Barros, D., & Guiomar, N. (2023). Unraveling the Effect of Fire Seasonality on Fire-Preferred Fuel Types and Dynamics in Alto Minho, Portugal (2000–2018). Fire, 6(7), 267. https://doi.org/10.3390/fire6070267