Forest Flame Detection in Unmanned Aerial Vehicle Imagery Based on YOLOv5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Data Pre-Processing
2.2.1. Data Augmentation
2.2.2. Rectangular Inference
2.2.3. Datasets Division
2.3. YOLOv5 Network Structure
2.3.1. Focus
2.3.2. Conv2d + BN + Leaky ReLU (CBL)
2.3.3. Cross Stage Partial Networks (CSP1_X)
2.3.4. Spatial Pyramid Pooling (SPP)
2.3.5. CSP2_X
2.4. Model Training
2.4.1. Training Platform and Settings
2.4.2. Loss Function Design
2.4.3. Evaluation Metrics
3. Results
3.1. Training Result of YOLOv5 Model
3.2. Comprehensive Comparison of YOLO Models
3.3. Flame Detection in Different Scenarios
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Aryal, J. Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables. Fire 2019, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Lin, H.; Lu, K.; Cao, L.; Liu, Y. A Forest Fire Detection System Based on Ensemble Learning. Forests 2021, 12, 217. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, H.; Mittal, K.; Kauhsal, S.; Kaushal, M.; Gupta, D.; Narula, A. IoT and deep learning-inspired multi-model framework for monitoring Active Fire Locations in Agricultural Activities. Comput. Electr. Eng. 2021, 93, 107216. [Google Scholar] [CrossRef]
- Mohindru, P.; Singh, R. Multi-sensor based forest fire detection system. Int. J. Soft Comput. Eng. 2013, 3, T707. [Google Scholar]
- Choi, K.; Hong, S.; Kim, D.S.; Choi, D. An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses. World Acad. Sci. Eng. Technol. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2017, 11, 757–764. [Google Scholar]
- Rachman, F.Z.; Yanti, N.; Hadiyanto, H.; Suhaedi, S.; Hidayati, Q.; Widagda, M.E.P.; Saputra, B.A. Design of the early fire detection based fuzzy logic using multisensor. IOP Conf. Ser. Mater. Sci. Eng. 2020, 732, 012039. [Google Scholar] [CrossRef]
- Nemalidinne, S.M.; Gupta, D. Nonsubsampled contourlet domain visible and infrared image fusion framework for fire detection using pulse coupled neural network and spatial fuzzy clustering. Fire Saf. J. 2018, 101, 84–101. [Google Scholar] [CrossRef]
- Dong, Z.; Huang, D.G.; Zhang, D.Y. Research of an Automatic Forest Fire Detection System Based on Cooperative Perception. Appl. Mech. Mater. 2011, 48-49, 916–919. [Google Scholar] [CrossRef]
- Hackner, A.; Oberpriller, H.; Ohnesorge, A.; Hechtenberg, V.; Müller, G. Heterogeneous sensor arrays: Merging cameras and gas sensors into innovative fire detection systems. Sens. Actuators B Chem. 2016, 231, 497–505. [Google Scholar] [CrossRef]
- Kirani, Y.; Dey, D. Detection of Fire Regions from a Video image frames using YCbCr Color Model. Int. J. Recent Technol. Eng. (IJRTE) 2019, 8, 6082–6086. [Google Scholar]
- Senthil, M. Implications of Color Models in Image Processing for Fire Detection. Int. J. Comput. Appl. 2018, 179, 38–41. [Google Scholar] [CrossRef]
- Hu, G.L.; Jiang, X. Early Fire Detection of Large Space Combining Thresholding with Edge Detection Techniques. Appl. Mech. Mater. 2010, 44–47, 2060–2064. [Google Scholar] [CrossRef]
- Gupta, A.; Bokde, N.; Marathe, D.; Kishore. A Novel approach for Video based Fire Detection system using Spatial and Texture analysis. Indian J. Sci. Technol. 2018, 11, 1–17. [Google Scholar] [CrossRef]
- Prema, C.E.; Vinsley, S.S.; Suresh, S. Efficient Flame Detection Based on Static and Dynamic Texture Analysis in Forest Fire Detection. Fire Technol. 2018, 54, 255–288. [Google Scholar] [CrossRef]
- Negara, B.S.; Kurniawan, R.; A Nazri, M.Z.; Abdullah, S.N.H.S.; Saputra, R.W.; Ismanto, A. Riau Forest Fire Prediction using Supervised Machine Learning. J. Phys. Conf. Ser. 2020, 1566, 012002. [Google Scholar] [CrossRef]
- Jain, T.; Sharma, N. Forest Fire Prediction using Machine Learning Models based on DC, Wind and RH. Int. J. Recent Technol. Eng. 2020, 8, 7–8. [Google Scholar] [CrossRef]
- Chanthiya, P.; Kalaivani, V. Forest fire detection on LANDSAT images using support vector machine. Concurr. Comput. Pract. Exp. 2021, 33, e6280. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, H.; Shen, W.; Zhang, Y.; Su, H.; Li, M. Quantifying Forest Fire and Post-Fire Vegetation Recovery in the Daxin’anling Area of Northeastern China Using Landsat Time-Series Data and Machine Learning. Remote Sens. 2021, 13, 792. [Google Scholar] [CrossRef]
- Abid, F. A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems. Fire Technol. 2020, 57, 559–590. [Google Scholar] [CrossRef]
- Pratapa, A.; Doron, M.; Caicedo, J.C. Image-based cell phenotyping with deep learning. Curr. Opin. Chem. Biol. 2021, 65, 9–17. [Google Scholar] [CrossRef]
- Ma, P.; Lau, C.P.; Yu, N.; Li, A.; Liu, P.; Wang, Q.; Sheng, J. Image-based nutrient estimation for Chinese dishes using deep learning. Food Res. Int. 2021, 147, 110437. [Google Scholar] [CrossRef]
- Benzekri, W.; El Moussati, A.; Moussaoui, O.; Berrajaa, M. Early Forest Fire Detection System using Wireless Sensor Network and Deep Learning. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 496–503. [Google Scholar] [CrossRef]
- Pham, V.; Weindorf, D.C.; Dang, T. Soil profile analysis using interactive visualizations, machine learning, and deep learning. Comput. Electron. Agric. 2021, 191, 106539. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, Y.; Mu, L.; Xin, J.; Jiao, S.; Liu, H.; Liu, D. A YOLOv3-based Learning Strategy for Real-time UAV-based Forest Fire Detection. In Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 4963–4967. [Google Scholar] [CrossRef]
- Li, D.; Sun, X.; Elkhouchlaa, H.; Jia, Y.; Yao, Z.; Lin, P.; Li, J.; Lu, H. Fast detection and location of longan fruits using UAV images. Comput. Electron. Agric. 2021, 190, 106465. [Google Scholar] [CrossRef]
- Sarwar, F.; Griffin, A.; Rehman, S.U.; Pasang, T. Detecting sheep in UAV images. Comput. Electron. Agric. 2021, 187, 106219. [Google Scholar] [CrossRef]
- Pandey, A.; Jain, K. An intelligent system for crop identification and classification from UAV images using conjugated dense convolutional neural network. Comput. Electron. Agric. 2022, 192, 106543. [Google Scholar] [CrossRef]
- Kinaneva, D.; Hristov, G.; Raychev, J.; Zahariev, P. Application of Artificial Intelligence in UAV platforms for Early Forest Fire Detection. In Proceedings of the 27th National Conference with International Participation (TELECOM), Sofia, Bulgaria, 30–31 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 50–53. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Stathaki, T.; Dimitropoulos, K.; Grammalidis, N. Early Fire Detection Based on Aerial 360-Degree Sensors, Deep Convolution Neural Networks and Exploitation of Fire Dynamic Textures. Remote Sens. 2020, 12, 3177. [Google Scholar] [CrossRef]
- Qin, Y.-Y.; Cao, J.-T.; Ji, X.-F. Fire Detection Method Based on Depthwise Separable Convolution and YOLOv3. Int. J. Autom. Comput. 2021, 18, 300–310. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Alexandrov, D.; Pertseva, E.; Berman, I.; Pantiukhin, I.; Kapitonov, A. Analysis of Machine Learning Methods for Wildfire Security Monitoring with an Unmanned Aerial Vehicles. In Proceedings of the 24th conference of open innovations association (FRUCT), Moscow, Russia, 8–12 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3–9. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Abdusalomov, A.; Baratov, N.; Kutlimuratov, A.; Whangbo, T.K. An Improvement of the Fire Detection and Classification Method Using YOLOv3 for Surveillance Systems. Sensors 2021, 21, 6519. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W. Image fire detection algorithms based on convolutional neural networks. Case Stud. Therm. Eng. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv 2016, arXiv:1605.06409. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the ECCV, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Bochkovskiy, A.; Wang, C.; Liao, H.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Shamsoshoara, A.; Afghah, F.; Razi, A.; Zheng, L.; Fulé, P.Z.; Blasch, E. Aerial imagery pile burn detection using deep learning: The FLAME dataset. Comput. Netw. 2021, 193, 108001. [Google Scholar] [CrossRef]
- Lee, W.; Kim, S.; Lee, Y.-T.; Lee, H.-W.; Choi, M. Deep neural networks for wild fire detection with unmanned aerial vehicle. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 8–10 January 2017; pp. 252–253. [Google Scholar] [CrossRef]
- Szpakowski, D.M.; Jensen, J.L.R. A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef] [Green Version]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef]
- Farhadi, H.; Mokhtarzade, M.; Ebadi, H.; Beirami, B.A. Rapid and automatic burned area detection using sentinel-2 time-series images in google earth engine cloud platform: A case study over the Andika and Behbahan Regions, Iran. Environ. Monit. Assess. 2022, 194, 369. [Google Scholar] [CrossRef]
- Liu, J.; Maeda, E.E.; Wang, D.; Heiskanen, J. Sensitivity of Spectral Indices on Burned Area Detection using Landsat Time Series in Savannas of Southern Burkina Faso. Remote Sens. 2021, 13, 2492. [Google Scholar] [CrossRef]
- Kanga, S.; Singh, S.K. Forest Fire Simulation Modeling using Remote Sensing & GIS. Int. J. Adv. Res. Comput. Sci. 2017, 8, 326–332. [Google Scholar]
- Yuan, C.; Liu, Z.; Zhang, Y. Aerial Images-Based Forest Fire Detection for Firefighting Using Optical Remote Sensing Techniques and Unmanned Aerial Vehicles. J. Intell. Robot. Syst. 2017, 88, 635–654. [Google Scholar] [CrossRef]
- Yang, G.; Feng, W.; Jin, J.; Lei, Q.; Li, X.; Gui, G.; Wang, W. Face Mask Recognition System with YOLOV5 Based on Image Recognition. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 1398–1404. [Google Scholar]
- Peng, Y.; Wang, Y. Real-time forest smoke detection using hand-designed features and deep learning. Comput. Electron. Agric. 2019, 167, 105029. [Google Scholar] [CrossRef]
- Pham, B.T.; Jaafari, A.; Avand, M.; Al-Ansari, N.; Dinh Du, T.; Yen, H.P.H.; Phong, T.V.; Nguyen, D.H.; Le, H.V.; Mafi-Gholami, D.; et al. Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction. Symmetry 2020, 12, 1022. [Google Scholar] [CrossRef]
- Fang, Y.; Guo, X.; Chen, K.; Zhou, Z.; Ye, Q. Accurate and automated detection of surface knots on sawn timbers using YOLO-V5 model. Bioresources 2021, 16, 5390. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Yan, J.; Qiu, X.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W. A Wheat Spike Detection Method in UAV Images Based on Improved YOLOv5. Remote Sens. 2021, 13, 3095. [Google Scholar] [CrossRef]
- Zhan, W.; Sun, C.; Wang, M.; She, J.; Zhang, Y.; Zhang, Z.; Sun, Y. An improved Yolov5 real-time detection method for small objects captured by UAV. Soft Comput. 2022, 26, 361–373. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Maleva, T.; Soloviev, V. Detecting Apples in Orchards Using YOLOv3 and YOLOv5 in General and Close-Up Images. In Proceedings of the International Symposium on Neural Networks, Cairo, Egypt, 4–6 December 2020; Springer: Cham, Switzerland, 2020; pp. 233–243. [Google Scholar]
- Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs. Sensors 2022, 22, 464. [Google Scholar] [CrossRef]
- Chen, B.-H.; Shi, L.-F.; Ke, X. A Robust Moving Object Detection in Multi-Scenario Big Data for Video Surveillance. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 982–995. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Zoph, B.; Cubuk, E.D.; Ghiasi, G.; Lin, T.-Y.; Shlens, J.; Le, Q.V. Learning Data Augmentation Strategies for Object Detection. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2020; pp. 566–583. [Google Scholar] [CrossRef]
Datasets | Number of Pictures | Number of Fire Labels |
---|---|---|
Training set | 1483 | 3572 |
Validation set | 185 | 512 |
Test set | 185 | 381 |
Model | mAP (%) | Precision (%) | Recall (%) | Training Time | Flops (G) | F1-Score | Speed (ms/frame) |
---|---|---|---|---|---|---|---|
YOLOv3-tiny | 89.33 | 79 | 90 | 1 h 18 m 36 s | 5.448 | 0.84 | |
YOLOv3 | 94.06 | 84 | 93 | 2 h 11 m 24 s | 65.304 | 0.88 | |
YOLOv4-tiny | 80.47 | 86 | 79 | 1 h 56 m 24 s | 6.787 | 0.82 | |
YOLOv4 | 94.54 | 70 | 81 | 6 h 52 m 12 s | 127.232 | 0.76 | |
YOLOv5n | 91.4 | 85.9 | 88.9 | 1 h 33 m 47 s | 4.2 | 0.88 | 1.4 |
YOLOv5s | 94.4 | 88.5 | 92.4 | 1 h 33 m 32 s | 15.8 | 0.90 | 2.2 |
YOLOv5m | 94.4 | 90.6 | 89.6 | 1 h 35 m 35 s | 47.9 | 0.90 | 5.1 |
YOLOv5l | 96.3 | 91 | 91.9 | 1 h 32 m 4 s | 107.8 | 0.91 | 8.5 |
YOLOv5x | 95.7 | 89.8 | 92 | 1 h 38 m 59 s | 204 | 0.91 | 14.1 |
Model | Detection Results | ||
---|---|---|---|
YOLOv5n | |||
YOLOv5s | |||
YOLOv5m | |||
YOLOv5l | |||
YOLOv5x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Hu, H.; Zhou, F.; Yuan, H. Forest Flame Detection in Unmanned Aerial Vehicle Imagery Based on YOLOv5. Fire 2023, 6, 279. https://doi.org/10.3390/fire6070279
Liu H, Hu H, Zhou F, Yuan H. Forest Flame Detection in Unmanned Aerial Vehicle Imagery Based on YOLOv5. Fire. 2023; 6(7):279. https://doi.org/10.3390/fire6070279
Chicago/Turabian StyleLiu, Haiqing, Heping Hu, Fang Zhou, and Huaping Yuan. 2023. "Forest Flame Detection in Unmanned Aerial Vehicle Imagery Based on YOLOv5" Fire 6, no. 7: 279. https://doi.org/10.3390/fire6070279
APA StyleLiu, H., Hu, H., Zhou, F., & Yuan, H. (2023). Forest Flame Detection in Unmanned Aerial Vehicle Imagery Based on YOLOv5. Fire, 6(7), 279. https://doi.org/10.3390/fire6070279