Assessment of the Analytic Burned Area Index for Forest Fire Severity Detection Using Sentinel and Landsat Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. CBI-Based ABAI Computation and Assessment
2.3. Data Collection and Processing
2.3.1. Remote Sensing Data
2.3.2. CBI Data
2.4. Spectral Indices and Accuracy Assessment
3. Results
3.1. Validation of the ABAI for Fire Severity Detection
3.2. Assessment of the Impacts of Different Sensors
3.3. Assessment of Impacts on Different Regions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorente, M.; Parsons, W.F.J.; McIntire, E.J.B.; Munson, A.D. Wildfire and forest harvest disturbances in the boreal forest leave different long-lasting spatial signatures. Plant Soil 2013, 364, 39–54. [Google Scholar] [CrossRef]
- Bowd, E.J.; Banks, S.C.; Strong, C.L.; Lindenmayer, D.B. Long-term impacts of wildfire and logging on forest soils. Nat. Geosci. 2019, 12, 113–118. [Google Scholar] [CrossRef]
- Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and Mapping Wildfire Severity: A Comparison of Methods. Photogramm. Eng. Remote Sens. 2005, 71, 1311–1320. [Google Scholar] [CrossRef]
- Morgan, P.; Keane, R.E.; Dillon, G.K.; Jain, T.B.; Hudak, A.T.; Karau, E.C.; Sikkink, P.G.; Holden, Z.A.; Strand, E.K. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling. Int. J. Wildland Fire 2014, 23, 1045–1060. [Google Scholar] [CrossRef]
- McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.; Adalsteinsson, S.A.; et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- dos Santos, S.M.B.; Bento-Gonçalves, A.; Vieira, A. Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis. Forests 2021, 12, 604. [Google Scholar] [CrossRef]
- Han, D.; Di, X.; Yang, G.; Sun, L.; Weng, Y. Quantifying fire severity: A brief review and recommendations for improvement. Ecosyst. Health Sustain. 2021, 7, 1973346. [Google Scholar] [CrossRef]
- Hao, B.; Xu, X.; Wu, F.; Tan, L. Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery. Forests 2022, 13, 883. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H.; Gagnon, A.S.; Li, Q.; Mumtaz, F.; Hysa, A.; Siddique, M.A.; Munir, I. Assessing Burned Areas in Wildfires and Prescribed Fires with Spectral Indices and SAR Images in the Margalla Hills of Pakistan. Forests 2021, 12, 1371. [Google Scholar] [CrossRef]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Veraverbeke, S.; Coppin, P. Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index. ISPRS J. Photogramm. Remote Sens. 2011, 66, 17–27. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Turetsky, M.R.; Ottmar, R.D.; French, N.H.F.; Hoy, E.E.; Kane, E.S. Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests. Int. J. Wildland Fire 2008, 17, 515–526. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S., III; Mack, M.C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Chang. Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Quintano, C. Evaluating Landsat ETM+ emissivity-enhanced spectral indices for burn severity discrimination in Mediterranean forest ecosystems. Remote Sens. Lett. 2015, 6, 302–310. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Chuvieco, E.; Mouillot, F.; Van Der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Chen, Y.; Lara, M.J.; Hu, F.S. A robust visible near-infrared index for fire severity mapping in Arctic tundra ecosystems. ISPRS J. Photogramm. Remote Sens. 2020, 159, 101–113. [Google Scholar] [CrossRef]
- Kurbanov, E.; Vorobev, O.; Lezhnin, S.; Sha, J.; Wang, J.; Li, X.; Cole, J.; Dergunov, D.; Wang, Y. Remote Sensing of Forest Burnt Area, Burn Severity, and Post-Fire Recovery: A Review. Remote Sens. 2022, 14, 4714. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Chafer, C.J.; Noonan, M.; Macnaught, E. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. Int. J. Wildland Fire 2004, 13, 227–240. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing post-fire vegetation recovery using red–near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS J. Photogramm. Remote Sens. 2012, 68, 28–39. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martín, M.P.; Palacios, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Hassan, M.M.; Hasan, I.; Southworth, J.; Loboda, T. Mapping fire-impacted refugee camps using the integration of field data and remote sensing approaches. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103120. [Google Scholar] [CrossRef]
- García, M.J.L.; Caselles, V. Mapping burns and natural reforestation using thematic Mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Wu, B.; Zheng, H.; Xu, Z.; Wu, Z.; Zhao, Y. Forest Burned Area Detection Using a Novel Spectral Index Based on Multi-Objective Optimization. Forests 2022, 13, 1787. [Google Scholar] [CrossRef]
- Su, Z.; Tigabu, M.; Cao, Q.; Wang, G.; Hu, H.; Guo, F. Comparative analysis of spatial variation in forest fire drivers between boreal and subtropical ecosystems in China. For. Ecol. Manag. 2019, 454, 117669. [Google Scholar] [CrossRef]
- Cai, L.; Wang, M. Is the RdNBR a better estimator of wildfire burn severity than the dNBR? A discussion and case study in southeast China. Geocarto Int. 2022, 37, 758–772. [Google Scholar] [CrossRef]
- Narayanaraj, G.; Wimberly, M.C. Influences of forest roads and their edge effects on the spatial pattern of burn severity. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 62–70. [Google Scholar] [CrossRef]
- Heinlen, E.R.; Vitt, D.H. Patterns of Rarity in Mosses of the Okanogan Highlands of Washington State: An Emerging Coarse Filter Approach to Rare Moss Conservation. Bryologist 2003, 106, 34–52. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape assessment: Ground measure of severity, the Composite Burn Index; and remote sensing of severity, the Normalized Burn Ratio. In FIREMON: Fire Effects Monitoring and Inventory System; USDA, Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-164-CD. LA1-LA51; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006. [Google Scholar]
- García-Llamas, P.; Suárez-Seoane, S.; Fernández-Manso, A.; Quintano, C.; Calvo, L. Evaluation of fire severity in fire prone-ecosystems of Spain under two different environmental conditions. J. Environ. Manag. 2020, 271, 110706. [Google Scholar] [CrossRef]
- Hayes, J.J.; Robeson, S.M. Relationships between fire severity and post-fire landscape pattern following a large mixed-severity fire in the Valle Vidal, New Mexico, USA. For. Ecol. Manag. 2011, 261, 1392–1400. [Google Scholar] [CrossRef]
- Guo, L.; Li, S.; Wu, Z.; Parsons, R.A.; Lin, S.; Wu, B.; Sun, L. Assessing spatial patterns and drivers of burn severity in subtropical forests in Southern China based on Landsat 8. For. Ecol. Manag. 2022, 524, 120515. [Google Scholar] [CrossRef]
- Kurbanov, E.; Vorobyev, O.; Leznin, S.; Polevshikova, Y.; Demisheva, E. Assessment of burn severity in Middle Povozhje with Landsat multitemporal data. Int. J. Wildland Fire 2017, 26, 772–782. [Google Scholar] [CrossRef]
- Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GIScience Remote Sens. 2018, 55, 1–18. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Trigg, S.; Flasse, S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens. 2001, 22, 2641–2647. [Google Scholar] [CrossRef]
- Qarallah, B.; Othman, Y.A.; Al-Ajlouni, M.; Alheyari, H.A.; Qoqazeh, B.A. Assessment of Small-Extent Forest Fires in Semi-Arid Environment in Jordan Using Sentinel-2 and Landsat Sensors Data. Forests 2022, 14, 41. [Google Scholar] [CrossRef]
- Sawalhah, M.N.; Al-Kofahi, S.D.; Othman, Y.A.; Cibils, A.F. Assessing rangeland cover conversion in Jordan after the Arab spring using a remote sensing approach. J. Arid Environ. 2018, 157, 97–102. [Google Scholar] [CrossRef]
- Alcaras, E.; Costantino, D.; Guastaferro, F.; Parente, C.; Pepe, M. Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2 Imagery. Remote Sens. 2022, 14, 1727. [Google Scholar] [CrossRef]
- Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Haywood, A.; Nguyen, T. Using Landsat Spectral Indices in Time-Series to Assess Wildfire Disturbance and Recovery. Remote Sens. 2018, 10, 460. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kontoes, C.; Keramitsoglou, I. Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using Support Vector Machines. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 70–80. [Google Scholar] [CrossRef]
- Schepers, L.; Haest, B.; Veraverbeke, S.; Spanhove, T.; Vanden Borre, J.; Goossens, R. Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX). Remote Sens. 2014, 6, 1803–1826. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Smiraglia, D.; Filipponi, F.; Mandrone, S.; Tornato, A.; Taramelli, A. Agreement Index for Burned Area Mapping: Integration of Multiple Spectral Indices Using Sentinel-2 Satellite Images. Remote Sens. 2020, 12, 1862. [Google Scholar] [CrossRef]
Study Area | Sensor | Path/Row | Cloud Cover | Acquisition Date |
---|---|---|---|---|
Ganzhou | Sentinel-2A | N0209, R132 | 0% | 1 January 2021 |
Sentinel-2A | N0209, R132 | 62.6% | 21 January 2021 | |
Sentinel-2B | N0209, R032 | 0% | 9 January 2021 | |
Sentinel-2B | N0209, R032 | 0.1% | 19 January 2021 | |
Landsat 8 OLI | 121, 042 | 40.7% | 27 December 2020 | |
Landsat 8 OLI | 122, 042 | 0.3% | 18 February 2020 | |
Landsat 8 OLI | 121, 042 | 0% | 12 January 2021 | |
Landsat 8 OLI | 122, 042 | 0% | 19 January 2021 | |
Okanogan | Landsat 8 OLI | 045, 026 | 2.7% | 15 July 2014 |
Landsat 8 OLI | 045, 027 | 1.6% | 15 July 2014 | |
Landsat 8 OLI | 045, 026 | 1.8% | 2 July 2015 | |
Landsat 8 OLI | 045, 027 | 0.4% | 2 July 2015 |
Severity Grade | Class Boundary, CBI | Number (Train/Test) | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|---|
Unburned | [0, 0.25] | 40 (28/12) | 0 | 0.24 | 0.01 | 0.04 |
Low | [0.25, 1.25] | 20 (14/6) | 0.3 | 1.25 | 1.03 | 0.17 |
Moderate | [1.25, 2.25] | 90 (63/27) | 1.26 | 2.25 | 1.82 | 0.29 |
High | [2.25, 3] | 90 (63/27) | 2.27 | 3 | 2.59 | 0.20 |
Severity Grade | Class Boundary, CBI | Number (Train/Test) | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|---|
Unburned | [0, 0.25] | 45 (32/13) | 0 | 0.24 | 0.02 | 0.06 |
Low | [0.25, 1.25] | 99 (69/30) | 0.27 | 1.23 | 0.79 | 0.25 |
Moderate | [1.25, 2.25] | 54 (38/16) | 1.3 | 2.21 | 1.72 | 0.30 |
High | [2.25, 3] | 59 (41/18) | 2.3 | 2.9 | 2.60 | 0.20 |
Spectral Index | Computational Formula | Reference |
---|---|---|
Analytical Burned Area Index (ABAI) | [24] | |
Differenced Analytical Burned Area Index (dABAI) | [24] | |
Normalized Burn Ratio (NBR) | [23] | |
Differenced Normalized Burn Ratio (dNBR) | [29] | |
Normalized Difference Vegetation Index (NDVI) | [34] | |
Differenced Normalized Difference Vegetation Index (dNDVI) | [34] | |
Soil-Adjusted Vegetation Index (SAVI) | , where L = 0.5 | [35] |
Differenced Soil-Adjusted Vegetation Index (dSAVI) | [35] | |
Mid-Infrared Bi-Spectral Index (MIRBI) | [36] | |
Differenced Mid-Infrared Bi-Spectral Index (dMIRBI) | [36] | |
Burned Area Index (BAI) | [21] | |
Differenced Burned Area Index (dBAI) | [21] | |
Char Soil Index (CSI) | [22] | |
Differenced Char Soil Index (dCSI) | [22] |
Model Spectral Indices | Linear R2 | RMSE | Quadratic Polynomial R2 | RMSE | Cubic Polynomial R2 | RMSE |
---|---|---|---|---|---|---|
NBR | 0.664 | 0.842 | 0.665 | 0.839 | 0.667 | 0.837 |
NDVI | 0.642 | 0.921 | 0.645 | 0.916 | 0.645 | 0.914 |
SAVI | 0.453 | 1.581 | 0.455 | 1.578 | 0.463 | 1.572 |
MIRBI | 0.441 | 12.874 | 0.443 | 12.865 | 0.447 | 12.852 |
BAI | 0.230 | 15.283 | 0.232 | 15.280 | 0.233 | 15.272 |
CSI | 0.625 | 0.913 | 0.628 | 0.910 | 0.629 | 0.905 |
ABAI | 0.658 | 0.782 | 0.662 | 0.779 | 0.664 | 0.778 |
dNBR | 0.735 | 0.586 | 0.736 | 0.574 | 0.737 | 0.568 |
dNDVI | 0.713 | 0.663 | 0.715 | 0.659 | 0.721 | 0.653 |
dSAVI | 0.474 | 1.468 | 0.477 | 1.464 | 0.478 | 1.462 |
dMIRBI | 0.290 | 12.765 | 0.293 | 12.748 | 0.299 | 12.741 |
dBAI | 0.233 | 14.090 | 0.237 | 13.876 | 0.240 | 13.854 |
dCSI | 0.407 | 2.037 | 0.409 | 1.987 | 0.410 | 1.985 |
dABAI | 0.728 | 0.448 | 0.731 | 0.433 | 0.733 | 0.432 |
Spectral Indices | Severity Grade | |||
---|---|---|---|---|
Unburned | Low | Moderate | High | |
NBR | >0.425 | 0.263~0.425 | 0.102~0.263 | <0.102 |
NDVI | >0.593 | 0.451~0.593 | 0.310~0.451 | <0.310 |
SAVI | >0.888 | 0.681~0.888 | 0.475~0.681 | <0.475 |
MIRBI | <−5.573 | −5.573~−3.747 | −3.747~−1.921 | >−1.921 |
BAI | <0.360 | 0.360~0.825 | 0.825~1.289 | >1.289 |
CSI | >2.654 | 1.951~2.654 | 1.249~1.951 | <1.249 |
ABAI | <−0.294 | −0.294~−0.230 | −0.230~−0.167 | >−0.167 |
dNBR | <0.134 | 0.134~0.287 | 0.287~0.439 | >0.439 |
dNDVI | <0.120 | 0.120~0.249 | 0.249~0.378 | >0.378 |
dSAVI | <0.183 | 0.183~0.381 | 0.381~0.579 | >0.579 |
dMIRBI | >−1.073 | −2.624~−1.073 | −4.175~−2.624 | <−4.175 |
dBAI | >−0.167 | −0.614~−0.167 | −1.061~−0.614 | <−1.061 |
dCSI | <0.908 | 0.908~1.546 | 1.546~2.183 | >2.183 |
dABAI | >−0.049 | −0.111~−0.049 | −0.174~−0.111 | <−0.174 |
Severity Grade | Burn Index | |||||||
---|---|---|---|---|---|---|---|---|
NBR | NDVI | SAVI | MIRBI | BAI | CSI | ABAI | ||
Producer Accuracy (%) | Unburned | 88.34 ± 12.64 | 70.00 ± 9.50 | 83.33 ± 10.21 | 80.00 ± 12.64 | 86.37 ± 6.43 | 86.37 ± 6.43 | 90.00 ± 6.97 |
Low | 53.33 ± 7.46 | 20.00 ± 13.94 | 46.67 ± 21.73 | 6.67 ± 9.13 | 50.00 ± 23.57 | 50.00 ± 23.58 | 46.67 ± 13.95 | |
Moderate | 37.04 ± 13.61 | 30.37 ± 4.83 | 34.07 ± 11.54 | 48.15 ± 6.93 | 19.23 ± 5.44 | 42.31 ± 16.32 | 39.26 ± 10.00 | |
High | 55.35 ± 14.92 | 60.60 ± 6.98 | 51.11 ± 6.09 | 54.07 ± 8.53 | 38.00 ± 2.83 | 46.00 ± 8.49 | 56.13 ± 4.95 | |
User Accuracy (%) | Unburned | 80.34 ± 13.42 | 62.82 ± 14.27 | 82.44 ± 6.45 | 80.24 ± 10.36 | 57.57 ± 6.98 | 76.19 ± 33.67 | 81.57 ± 11.20 |
Low | 32.89 ± 8.54 | 12.80 ± 9.51 | 17.81 ± 8.43 | 4.40 ± 6.46 | 14.36 ± 5.41 | 24.29 ± 6.06 | 29.14 ± 19.05 | |
Moderate | 46.76 ± 7.70 | 46.08 ± 5.71 | 41.91 ± 8.99 | 49.71 ± 6.80 | 41.26 ± 6.92 | 54.91 ± 9.38 | 49.90 ± 3.80 | |
High | 56.63 ± 6.26 | 55.87 ± 5.74 | 63.65 ± 11.93 | 59.13 ± 6.59 | 53.13 ± 4.42 | 63.98 ± 10.54 | 62.62 ± 13.67 | |
Overall Accuracy (%) | 53.78 ± 2.64 | 47.33 ± 3.56 | 49.72 ± 3.86 | 52.22 ± 4.87 | 40.45 ± 1.04 | 52.21 ± 5.20 | 54.62 ± 2.13 | |
Kappa Coefficient | 0.35 ± 0.02 | 0.26 ± 0.04 | 0.31 ± 0.06 | 0.31 ± 0.07 | 0.23 ± 0.01 | 0.35 ± 0.01 | 0.37 ± 0.02 | |
dNBR | dNDVI | dSAVI | dMIRBI | dBAI | dCSI | dABAI | ||
Producer Accuracy (%) | Unburned | 91.67 ± 11.79 | 80.00 ± 12.64 | 100.00 ± 0.00 | 85.00 ± 6.97 | 95.46 ± 6.43 | 90.91 ± 0.00 | 90.00 ± 10.87 |
Low | 66.67 ± 27.39 | 50.00 ± 11.79 | 33.33 ± 16.67 | 36.67 ± 18.26 | 58.34 ± 11.79 | 25.00 ± 35.36 | 63.33 ± 16.67 | |
Moderate | 40.74 ± 10.14 | 40.74 ± 11.71 | 38.52 ± 8.53 | 24.44 ± 6.20 | 36.49 ± 13.67 | 21.15 ± 8.16 | 45.19 ± 7.59 | |
High | 55.30 ± 8.31 | 53.02 ± 12.94 | 50.37 ± 10.67 | 48.89 ± 12.67 | 54.00 ± 8.49 | 56.00 ± 5.66 | 59.03 ± 7.70 | |
User Accuracy (%) | Unburned | 82.25 ± 9.37 | 83.32 ± 6.54 | 68.33 ± 8.98 | 48.36 ± 4.28 | 74.02 ± 13.17 | 48.06 ± 6.47 | 84.84 ± 6.07 |
Low | 30.91 ± 11.31 | 25.35 ± 15.05 | 20.91 ± 14.09 | 15.40 ± 6.85 | 32.90 ± 24.19 | 25.00 ± 35.36 | 35.21 ± 12.12 | |
Moderate | 53.19 ± 3.16 | 49.29 ± 3.89 | 49.61 ± 3.98 | 43.92 ± 8.89 | 54.17 ± 5.89 | 49.15 ± 6.65 | 56.20 ± 6.39 | |
High | 61.12 ± 5.26 | 62.32 ± 9.80 | 62.77 ± 4.21 | 60.16 ± 9.45 | 61.25 ± 1.77 | 49.08 ± 1.31 | 64.50 ± 5.75 | |
Overall Accuracy (%) | 56.58 ± 1.62 | 52.65 ± 3.82 | 52.78 ± 4.05 | 44.72 ± 4.10 | 54.41 ± 8.32 | 45.59 ± 2.08 | 59.66 ± 2.07 | |
Kappa Coefficient | 0.40 ± 0.02 | 0.34 ± 0.05 | 0.35 ± 0.05 | 0.26 ± 0.05 | 0.38 ± 0.08 | 0.25 ± 0.03 | 0.43 ± 0.03 |
Model Spectral Indices | Linear R2 | RMSE | Quadratic Polynomial R2 | RMSE | Cubic Polynomial R2 | RMSE |
---|---|---|---|---|---|---|
NBR | 0.489 | 0.856 | 0.490 | 0.854 | 0.492 | 0.854 |
NDVI | 0.485 | 1.070 | 0.486 | 1.069 | 0.489 | 1.068 |
SAVI | 0.435 | 1.755 | 0.438 | 1.754 | 0.439 | 1.754 |
MIRBI | 0.405 | 12.369 | 0.408 | 12.363 | 0.410 | 12.359 |
BAI | 0.120 | 10.658 | 0.120 | 10.651 | 0.122 | 10.586 |
CSI | 0.524 | 1.267 | 0.526 | 1.263 | 0.526 | 1.261 |
ABAI | 0.487 | 0.733 | 0.489 | 0.730 | 0.490 | 0.729 |
dNBR | 0.497 | 0.737 | 0.498 | 0.735 | 0.499 | 0.732 |
dNDVI | 0.492 | 0.953 | 0.493 | 0.951 | 0.494 | 0.950 |
dSAVI | 0.442 | 1.773 | 0.444 | 1.772 | 0.445 | 1.768 |
dMIRBI | 0.326 | 12.703 | 0.328 | 12.701 | 0.329 | 12.665 |
dBAI | 0.150 | 15.763 | 0.150 | 15.747 | 0.156 | 15.744 |
dCSI | 0.365 | 9.879 | 0.367 | 9.872 | 0.369 | 9.865 |
dABAI | 0.493 | 0.716 | 0.495 | 0.714 | 0.496 | 0.713 |
Spectral Indices | Severity Grade | |||
---|---|---|---|---|
Unburned | Low | Moderate | High | |
NBR | >0.474 | 0.318~0.474 | 0.161~0.318 | <0.161 |
NDVI | >0.618 | 0.483~0.618 | 0.348~0.483 | <0.348 |
SAVI | >0.927 | 0.724~0.927 | 0.522~0.724 | <0.522 |
MIRBI | <−5.171 | −5.171~−3.630 | −3.630~−2.089 | >−2.089 |
BAI | <0.436 | 0.436~0.806 | 0.806~1.176 | >1.176 |
CSI | >3.041 | 2.279~3.041 | 1.484~2.279 | <1.484 |
ABAI | <−0.307 | −0.307~−0.247 | −0.247~−0.187 | >−0.187 |
dNBR | <0.114 | 0.114~0.260 | 0.260~0.405 | >0.405 |
dNDVI | <0.067 | 0.067~0.182 | 0.182~0.297 | >0.297 |
dSAVI | <0.100 | 0.100~0.273 | 0.273~0.445 | >0.445 |
dMIRBI | >−1.364 | −2.882~−1.364 | −4.399~−2.882 | <−4.399 |
dBAI | >−0.193 | −0.592~−0.193 | −0.991~−0.592 | <−0.991 |
dCSI | <0.978 | 0.978~1.644 | 1.644~2.310 | >2.310 |
dABAI | >−0.078 | −0.139~−0.078 | −0.200~−0.139 | <−0.200 |
Severity Grade | Burn Index | |||||||
---|---|---|---|---|---|---|---|---|
NBR | NDVI | SAVI | MIRBI | BAI | CSI | ABAI | ||
Producer Accuracy (%) | Unburned | 90.91 ± 9.09 | 87.27 ± 13.79 | 83.64 ± 14.94 | 76.37 ± 13.79 | 96.97 ± 5.25 | 78.79 ± 10.50 | 85.46 ± 8.13 |
Low | 20.00 ± 7.45 | 43.33 ± 9.13 | 36.67 ± 13.94 | 33.33 ± 11.78 | 22.22 ± 9.62 | 27.78 ± 9.62 | 16.67 ± 11.78 | |
Moderate | 31.75 ± 6.14 | 15.51 ± 4.72 | 20.92 ± 8.83 | 27.97 ± 10.91 | 7.85 ± 4.08 | 34.05 ± 19.01 | 35.63 ± 6.12 | |
High | 57.60 ± 6.07 | 57.60 ± 6.69 | 57.60 ± 8.29 | 57.60 ± 6.07 | 40.56 ± 10.43 | 61.66 ± 13.71 | 59.20 ± 5.22 | |
User Accuracy (%) | Unburned | 67.69 ± 15.86 | 54.65 ± 2.65 | 51.54 ± 6.95 | 59.03 ± 18.53 | 46.71 ± 7.89 | 59.15 ± 20.94 | 61.14 ± 11.51 |
Low | 13.54 ± 5.87 | 22.69 ± 9.20 | 22.55 ± 10.61 | 18.58 ± 0.37 | 6.01 ± 1.08 | 30.00 ± 8.66 | 10.79 ± 7.23 | |
Moderate | 53.79 ± 6.81 | 51.00 ± 16.75 | 54.09 ± 16.63 | 51.61 ± 8.86 | 31.39 ± 12.81 | 60.54 ± 10.62 | 58.70 ± 6.92 | |
High | 52.93 ± 3.73 | 48.04 ± ±5.18 | 49.17 ± 6.29 | 50.46 ± 6.12 | 50.42 ± 12.54 | 51.67 ± 2.89 | 53.72 ± 3.81 | |
Overall Accuracy (%) | 49.86 ± 2.88 | 45.75 ± 2.10 | 46.64 ± 3.20 | 47.22 ± 5.02 | 35.53 ± 2.86 | 47.47 ± 1.75 | 50.75 ± 2.86 | |
Kappa coefficient | 0.30 ± 0.03 | 0.25 ± 0.04 | 0.26 ± 0.05 | 0.26 ± 0.06 | 0.17 ± 0.04 | 0.30 ± 0.02 | 0.31 ± 0.05 | |
dNBR | dNDVI | dSAVI | dMIRBI | dBAI | dCSI | dABAI | ||
Producer Accuracy (%) | Unburned | 87.27 ± 8.13 | 94.55 ± 4.98 | 89.09 ± 7.61 | 69.09 ± 15.21 | 96.97 ± 5.25 | 84.85 ± 10.50 | 90.91 ± 6.43 |
Low | 50.00 ± 16.67 | 40.00 ± 9.13 | 40.00 ± 14.91 | 30.00 ± 21.73 | 33.33 ± 9.62 | 38.89 ± 9.62 | 40.00 ± 14.91 | |
Moderate | 38.00 ± 8.83 | 33.39 ± 6.78 | 36.68 ± 18.63 | 23.38 ± 11.75 | 15.59 ± 3.86 | 33.80 ± 9.80 | 31.84 ± 5.57 | |
High | 60.00 ± 5.66 | 55.20 ± 9.55 | 55.20 ± 6.57 | 52.80 ± 4.38 | 42.02 ± 16.75 | 59.97 ± 8.90 | 62.40 ± 3.58 | |
User Accuracy (%) | Unburned | 82.73 ± 5.95 | 81.59 ± 7.73 | 79.22 ± 14.66 | 52.39 ± 15.31 | 60.27 ± 4.91 | 51.75 ± 4.32 | 82.05 ± 6.55 |
Low | 25.32 ± 8.78 | 22.61 ± 6.09 | 22.14 ± 7.23 | 17.58 ± 7.97 | 9.68 ± 0.28 | 27.86 ± 2.58 | 19.92 ± 9.30 | |
Moderate | 56.56 ± 4.06 | 49.35 ± 12.49 | 51.14 ± 9.60 | 38.83 ± 13.02 | 44.29 ± 5.15 | 68.22 ± 1.36 | 54.94 ± 9.17 | |
High | 56.03 ± 4.61 | 52.73 ± 4.22 | 54.50 ± 5.94 | 47.77 ± 5.26 | 52.62 ± 12.94 | 52.17 ± 3.76 | 55.80 ± 4.28 | |
Overall Accuracy (%) | 55.18 ± 4.73 | 51.93 ± 3.62 | 52.24 ± 5.11 | 42.21 ± 6.86 | 40.53 ± 4.46 | 51.97 ± 3.10 | 53.42 ± 5.62 | |
Kappa Coefficient | 0.37 ± 0.06 | 0.33 ± 0.05 | 0.33 ± 0.06 | 0.21 ± 0.10 | 0.24 ± 0.06 | 0.33 ± 0.04 | 0.35 ± 0.08 |
Model Spectral Indices | Linear R2 | RMSE | Quadratic Polynomial R2 | RMSE | Cubic Polynomial R2 | RMSE |
---|---|---|---|---|---|---|
NBR | 0.522 | 2.043 | 0.548 | 1.480 | 0.552 | 1.213 |
NDVI | 0.466 | 1.409 | 0.491 | 1.023 | 0.491 | 0.835 |
SAVI | 0.564 | 2.134 | 0.565 | 1.512 | 0.568 | 1.237 |
MIRBI | 0.488 | 14.181 | 0.533 | 10.475 | 0.569 | 8.839 |
BAI | 0.118 | 3.869 | 0.155 | 3.594 | 0.181 | 3.421 |
CSI | 0.335 | 6.450 | 0.335 | 4.561 | 0.335 | 3.725 |
ABAI | 0.519 | 0.796 | 0.539 | 0.574 | 0.556 | 0.476 |
dNBR | 0.537 | 2.120 | 0.605 | 1.591 | 0.605 | 1.299 |
dNDVI | 0.485 | 1.463 | 0.552 | 1.104 | 0.559 | 0.907 |
dSAVI | 0.520 | 2.067 | 0.550 | 1.503 | 0.550 | 1.227 |
dMIRBI | 0.244 | 12.621 | 0.247 | 8.987 | 0.271 | 7.675 |
dBAI | 0.126 | 3.732 | 0.168 | 3.511 | 0.187 | 3.190 |
dCSI | 0.328 | 6.948 | 0.360 | 5.387 | 0.370 | 4.520 |
dABAI | 0.494 | 0.835 | 0.554 | 0.625 | 0.559 | 0.513 |
Spectral Indices | Severity Grade | |||
---|---|---|---|---|
Unburned | Low | Moderate | High | |
NBR | >0.316 | 0.207~0.316 | 0.026~0.207 | <0.026 |
NDVI | >0.590 | 0.514~0.590 | 0.378~0.514 | <0.378 |
SAVI | >0.914 | 0.780~0.914 | 0.622~0.780 | <0.622 |
MIRBI | <−5.573 | −5.573~−3.747 | −3.747~−1.921 | >−1.921 |
BAI | >1.196 | 0.701~1.196 | 0.496~0.701 | <0.496 |
CSI | >2.070 | 1.594~2.070 | 1.183~1.594 | <1.183 |
ABAI | <−0.294 | −0.294~−0.230 | −0.230~−0.167 | >−0.167 |
dNBR | <0.176 | 0.176~0.257 | 0.257~0.487 | >0.487 |
dNDVI | <0.057 | 0.057~0.116 | 0.116~0.296 | >0.296 |
dSAVI | <0.071 | 0.071~0.173 | 0.173~0.410 | >0.410 |
dMIRBI | >−2.696 | −3.217~−2.696 | −4.095~−3.217 | <−4.095 |
dBAI | <−1.047 | −1.047~−0.561 | −0.561~−0.356 | >−0.356 |
dCSI | <1.234 | 1.234~1.444 | 1.444~2.333 | >2.333 |
dABAI | >−0.110 | −0.141~−0.110 | −0.220~−0.141 | <−0.220 |
Severity Grade | Burn Index | |||||||
---|---|---|---|---|---|---|---|---|
NBR | NDVI | SAVI | MIRBI | BAI | CSI | ABAI | ||
Producer Accuracy (%) | Unburned | 83.08 ± 10.03 | 83.08 ± 10.03 | 44.62 ± 23.33 | 44.62 ± 19.15 | 10.25 ± 4.44 | 38.46 ± 7.69 | 83.08 ± 10.03 |
Low | 33.33 ± 15.63 | 30.67 ± 13.62 | 40.67 ± 8.94 | 14.67 ± 9.60 | 3.45 ± 3.45 | 24.14 ± 9.12 | 34.00 ± 9.54 | |
Moderate | 42.50 ± 5.23 | 28.75 ± 9.48 | 33.75 ± 13.69 | 37.50 ± 8.84 | 0.00 ± 0.00 | 43.75 ± 3.61 | 28.75 ± 9.48 | |
High | 84.44 ± 4.65 | 80.00 ± 3.04 | 97.65 ± 5.26 | 89.41 ± 10.52 | 90.74 ± 8.49 | 81.48 ± 6.41 | 87.78 ± 4.65 | |
User Accuracy (%) | Unburned | 52.82 ± 11.22 | 42.65 ± 2.00 | 42.86 ± 7.45 | 31.25 ± 5.04 | 35.32 ± 27.67 | 42.85 ± 17.16 | 56.99 ± 4.96 |
Low | 60.59 ± 17.98 | 60.13 ± 11.35 | 71.17 ± 3.11 | 54.58 ± 35.66 | 17.67 ± 16.62 | 58.25 ± 5.56 | 54.08 ± 1.38 | |
Moderate | 43.86 ± 10.08 | 30.73 ± 8.97 | 42.62 ± 5.17 | 22.62 ± 3.37 | 0.00 ± 0.00 | 27.64 ± 0.62 | 28.65 ± 6.42 | |
High | 65.50 ± 10.69 | 66.15 ± 2.40 | 53.84 ± 12.76 | 62.48 ± 6.26 | 24.47 ± 0.79 | 56.71 ± 5.87 | 69.42 ± 4.32 | |
Overall Accuracy (%) | 55.59 ± 3.94 | 50.65 ± 5.35 | 52.63 ± 3.84 | 41.32 ± 2.73 | 24.56 ± 2.01 | 44.30 ± 1.52 | 53.77 ± 1.48 | |
Kappa coefficient | 0.41 ± 0.04 | 0.35 ± 0.06 | 0.37 ± 0.06 | 0.24 ± 0.03 | 0.02 ± 0.02 | 0.27 ± 0.02 | 0.39 ± 0.01 | |
dNBR | dNDVI | dSAVI | dMIRBI | dBAI | dCSI | dABAI | ||
Producer Accuracy (%) | Unburned | 87.69 ± 6.88 | 70.77 ± 11.41 | 52.11 ± 10.19 | 63.08 ± 12.64 | 10.25 ± 4.44 | 61.54 ± 0.00 | 86.16 ± 10.03 |
Low | 39.33 ± 10.90 | 31.33 ± 8.03 | 34.67 ± 6.91 | 14.00 ± 4.94 | 2.30 ± 1.99 | 9.22 ± 5.22 | 30.67 ± 14.61 | |
Moderate | 53.75 ± 11.35 | 50.00 ± 13.26 | 33.75 ± 10.46 | 6.25 ± 4.42 | 4.17 ± 3.61 | 16.67 ± 7.22 | 43.75 ± 11.69 | |
High | 62.22 ± 9.94 | 64.45 ± 12.79 | 72.94 ± 7.89 | 94.12 ± 5.88 | 85.18 ± 13.98 | 51.85 ± 21.03 | 72.22 ± 7.86 | |
User Accuracy (%) | Unburned | 48.92 ± 7.30 | 36.26 ± 3.09 | 33.18 ± 2.45 | 30.59 ± 3.34 | 33.06 ± 29.35 | 22.26 ± 1.05 | 47.54 ± 4.25 |
Low | 78.46 ± 5.62 | 59.33 ± 9.25 | 71.81 ± 6.09 | 67.26 ± 19.33 | 50.00 ± 30.83 | 44.44 ± 9.62 | 70.63 ± 2.56 | |
Moderate | 39.19 ± 4.58 | 42.80 ± 6.91 | 38.02 ± 11.73 | 10.58 ± 6.59 | 13.33 ± 11.55 | 21.35 ± 3.20 | 32.40 ± 4.54 | |
High | 69.32 ± 5.73 | 69.87 ± 8.36 | 51.35 ± 9.45 | 51.13 ± 9.75 | 23.61 ± 1.67 | 43.47 ± 3.95 | 69.15 ± 5.34 | |
Overall Accuracy (%) | 55.84 ± 3.79 | 49.61 ± 1.09 | 46.05 ± 6.03 | 38.68 ± 2.73 | 23.68 ± 3.95 | 29.82 ± 2.01 | 52.47 ± 3.39 | |
Kappa Coefficient | 0.42 ± 0.05 | 0.34 ± 0.02 | 0.29 ± 0.08 | 0.22 ± 0.04 | 0.04 ± 0.02 | 0.11 ± 0.03 | 0.38 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Yan, J.; Zheng, H.; Wu, B. Assessment of the Analytic Burned Area Index for Forest Fire Severity Detection Using Sentinel and Landsat Data. Fire 2024, 7, 19. https://doi.org/10.3390/fire7010019
Guo R, Yan J, Zheng H, Wu B. Assessment of the Analytic Burned Area Index for Forest Fire Severity Detection Using Sentinel and Landsat Data. Fire. 2024; 7(1):19. https://doi.org/10.3390/fire7010019
Chicago/Turabian StyleGuo, Rentao, Jilin Yan, He Zheng, and Bo Wu. 2024. "Assessment of the Analytic Burned Area Index for Forest Fire Severity Detection Using Sentinel and Landsat Data" Fire 7, no. 1: 19. https://doi.org/10.3390/fire7010019
APA StyleGuo, R., Yan, J., Zheng, H., & Wu, B. (2024). Assessment of the Analytic Burned Area Index for Forest Fire Severity Detection Using Sentinel and Landsat Data. Fire, 7(1), 19. https://doi.org/10.3390/fire7010019