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Abstract: Understanding current fire dynamics in the Amazon is vital for designing effective fire man-
agement strategies and setting a baseline for climate change projections. This study aimed to analyze
recent fire probabilities and project future “fire niches” under global warming scenarios across the
Legal Amazon, a scale chosen for its relevance in social and economic planning. Utilizing the maxi-
mum entropy method, this study combined a complex set of predictors with fire occurrences detected
during 1985–2022. It allowed for the estimation of current fire patterns and projecting changes for the
near future (2020–2040) under two contrasting socioeconomic pathways. The results showed strong
model performance, with AUC values consistently above 0.85. Key predictors included “Distance to
Farming” (53.4%), “Distance to Non-Vegetated Areas” (11.2%), and “Temperature Seasonality” (9.3%),
revealing significant influences from human activities alongside climatic predictors. The baseline
model indicated that 26.5% of the Amazon has “moderate” to “very high” fire propensity, especially
in the southern and southeastern regions, notably the “Arc of Deforestation”. Future projections
suggest that fire-prone areas may expand, particularly in the southern border regions and near the
Amazon riverbanks. The findings underscore the importance of incorporating both ecological and
human factors into fire management strategies to effectively address future risks.

Keywords: pyrogeography; fire susceptibility analysis; Maxent; Amazon fire dynamics; climate
change; disturbance; fire niche

1. Introduction

Wildfires are an increasing global environmental concern [1]. This interest is par-
ticularly relevant in the Amazon, where changes in historical fire frequencies have been
observed over the past few decades [2–5]. These changes have led to environmental
degradation, habitat loss, greenhouse gas emissions, and negative impacts on local com-
munities [6–10], threatening both biodiversity and ecosystem services [11–13]. Therefore,
understanding and predicting wildfire distribution is essential for formulating effective
mitigation and adaptation strategies to minimize negative impacts on the environment and
local communities.

Current research in Amazon wildfire dynamics reveals a consensus on the primary
drivers of these events, including human and climatic factors [2,3,5,14]. Human activi-
ties exert a dominant influence on fire patterns through deforestation fires, pasture and
agricultural maintenance, or accidental escapes of intentional fires into degraded forest
edges [15–17]. In recent decades, there has been a significant increase in “maintenance fires”
in the Amazon [5], with burn patterns varying depending on agricultural and livestock
management practices, settlement history, and logistical considerations [18]. Concurrently,
climatic changes, such as decreased precipitation and increased temperatures, result in
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more fire outbreaks during El Niño years [14]. However, even in years considered as
La Niña, considered to be of low fire risk, high values of fire outbreaks and burned area
have been previously recorded, showing that forests can be vulnerable to fires due to the
interaction with other variables [19].

Most studies indicate that the “forest flammability problem” is expected to worsen in
the near future due to projected increases in severe fire weather (i.e., favorable meteorologi-
cal conditions for the start and spread of fire) and ongoing growth at the wildland-farming
interface [2,12,15,20–22]. In contrast, other studies suggest that despite the immediate threat
of human-induced fires, the long-term trend for the Amazon and other tropical rainforests
might be a decrease in fire occurrence due to increasing precipitation brought about by
climate change [23]. Thus, understanding and projecting future fire trends is a complex task
that depends on various interrelated factors, including climate change, land-use policies,
and conservation efforts.

Recently, the application of machine learning models has emerged as a powerful
tool for analyzing large volumes of environmental and climatic data, providing a deeper
understanding of wildfire dynamics [24]. These models can integrate a wide variety
of factors to predict fire occurrence and spread with high accuracy. Furthermore, they
enable the simulation of future scenarios considering different land-use trajectories and
climate change. Therefore, these computational techniques can help to resolve controversies
regarding the future frequency and intensity of fires in the Amazon.

The primary aim of this study was to identify the key drivers of current wildfire
occurrences and project different trajectories of fire risk over the coming decades based
on future climate scenarios. In addition, the study aimed to develop detailed maps to
visualize the spatial distribution of high-risk areas and identify regions that are priorities
for preventive interventions and monitoring efforts. These objectives aim to inform public
policies, conservation programs, and integrated fire management strategies, supporting
the conservation of the Legal Amazon region that is subject to increasing environmental
pressures. This research employs advanced machine learning methods to spatially model
the distribution of fires in recent periods and predict the probability of future fires. A
distinctive aspect of this approach is the integration of a comprehensive temporal dataset
of fire scars detected through Landsat imagery and contemporary climate projections,
allowing for a more accurate and dynamic understanding of fire probability predictions.

2. Materials and Methods
2.1. Study Area

The Legal Amazon is a geographical region established by the Brazilian government
in 1980 (Decree Law No. 1806 on 6 September 1980) for the purposes of environmental
management and regional planning. Covering approximately 5 million square kilometers,
the region presents multiple environmental, social, and economic challenges, which require
coordinated development and conservation efforts. In this study, we adopted a spatial
approach using the Legal Amazon as the sampling window (Figure 1A), encompassing
nine Brazilian states as well as parts of Tocantins and Maranhão. The region comprehends
diverse vegetation types, each representing different fuel conditions (Figure 1B).

The dominant vegetation in the Legal Amazon is Tropical Moist Broadleaf Forests,
known in Brazil as the “Amazon Biome”, which are generally less fire-prone due to their
high biomass and moisture content. In the southern portion of the Legal Amazon, the
vegetation shifts to the “Cerrado” and “Pantanal” Biomes, which include Tropical Dry
Broadleaf Forests, Tropical Grasslands, Savannas, and Shrublands, all of which are more
which are more flammable and fire adapted. Flooded Grasslands, characteristic of the
Pantanal, are less likely to burn due to their moisture, though fires can occur and intensify
during droughts. Additionally, fire-adapted savanna enclaves exist within the northern
Amazon, representing ecosystems with vegetation adapted to fire. It is important to note
that these phytogeographic regions have been altered by human activities, and the current
land cover configuration is significantly different from the original [26].
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Figure 1. Location and features of the study area. (A) The polygon outlined with a purple line indi-
cates the sample window of the study, which encompasses the Legal Amazon region in Brazil and 
South America. (B) The map depicts the phytogeographic regions and major continental water bod-
ies within the Legal Amazon. Data on the limits of the Legal Amazon, water bodies, and political 
boundaries were sourced from the Brazilian Institute of Geography and Statistics virtual database 
(https://bdiaweb.ibge.gov.br/). Vegetation data are based on [25], available from the WWF website 
(https://www.worldwildlife.org/). 
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Figure 1. Location and features of the study area. (A) The polygon outlined with a purple line
indicates the sample window of the study, which encompasses the Legal Amazon region in Brazil
and South America. (B) The map depicts the phytogeographic regions and major continental water
bodies within the Legal Amazon. Data on the limits of the Legal Amazon, water bodies, and political
boundaries were sourced from the Brazilian Institute of Geography and Statistics virtual database
(https://bdiaweb.ibge.gov.br/). Vegetation data are based on [25], available from the WWF website
(https://www.worldwildlife.org/).

The vegetation diversity in the Brazilian Legal Amazon reflects its varied climatic
conditions. The region consistently experiences high temperatures, typically ranging from
25 ◦C to 28 ◦C, occasionally exceeding 30 ◦C, with humidity levels often above 80% [27].
Annual rainfall varies between 1500 mm and 3000 mm, with a distinct wet season occurring
from December to May [28]. However, seasonal variations in rainfall are more pronounced
in the southern Amazon, particularly in the forest–savanna transition regions, and also in
the Amazonian savannas.

The fire history of the Amazon biome, which covers the majority of the Legal Amazon,
accounts for 41.3% of Brazil’s total burned area. Of this biome, 16.4% has been affected
by fire at least once, with 1.6% burning annually [4]. Fires are often associated with
highly fragmented landscapes; proximity to major roads; and areas dominated by pastures,
agriculture, grasslands, and savannas [29]. Regions such as southern Pará, Rondônia, and
Mato Grosso, which make up the so-called “agricultural frontier”, are among the most
affected [11]. Additionally, Amazonian savannas also experience a high concentration of
fires, exacerbated by farming practices [30].

2.2. Overview

Firstly, we conducted a fire probability assessment for the recent period (referred
to as the “baseline”) to replicate the current distribution of fires. After validating the
baseline model, we projected future models to estimate changes in fire probabilities for
the next decades (2020–2040), considering two contrasting scenarios of climate warming
(Figure 2). Specifically, we focused on alterations in climate layers, while assuming that
all other predictor variables would remain stable, maintaining conditions akin to those
observed presently.

https://bdiaweb.ibge.gov.br/
https://www.worldwildlife.org/
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Figure 2. Flow chart of the modeling process.

This approach aligns with previous studies that have identified temperature and
precipitation as key factors influencing fire occurrence and behavior [7,20,23]. By isolating
climate variables to predict future scenarios, it became possible to assess the direct impact
of climate change on fire probabilities, thereby providing valuable insights for future fire
management strategies.

2.3. Fire Occurrence Data

Fire occurrences from 1985 to 2022 were extracted from the MapBiomas dataset [31],
accessed through the Google Earth Engine (GEE), which utilizes the Landsat product.
The MapBiomas dataset provides information on areas with fire scars. Our sampling
methodology involved randomly selecting 1000 points from these areas. In this study, we
did not filter the samples based on high-frequency values, as more than 95% of all samples
had a frequency of less than 15 times.

2.4. Environmental and Human Predictors

We employed land cover and land use data to construct a comprehensive categorical
layer essential for evaluating landscape influences on fire patterns. These data weresourced
from the MapBiomas dataset [26], comprising categories such as Forest (Forest Formation,
Savanna Formation, Mangrove, Floodable Forest, Wooded Sandbank Vegetation), Non-
Forest Natural Formation (Wetland, Grassland, Hypersaline Tidal Flat, Rocky Outcrop, and
Herbaceous Sandbank Vegetation), Farming (Pasture, Agriculture, and Forest Plantation),
Non-Vegetated Areas (Beach, Dune and Sand Spot, Urban Area, and Mining), and Water
(River, Lake, Ocean, and Aquaculture).

To refine our analysis and gain deeper insights into the impacts of different land
use/cover types on fire patterns, we created separate distance layers using the Euclidean
distance calculation. These layers were specifically designed to highlight categories related
to human footprint and ignition patterns. The analysis yielded four raster files, with three
primarily depicting classes associated with human influence (Farming, Non-Vegetated
Area, and Water), while the fourth raster predominantly represented areas of vegetation
that have not been significantly impacted by human activity (Native Vegetation).

2.5. Climatic Variables

Bioclimatic variables, encompassing both historical and future data, at a spatial resolu-
tion of 30 arc-seconds, are accessible through the WorldClim version 2.1 database (download
from http://worldclim.org). The baseline model was based on average climatic data for
1971–2000 [32]. For the future fire models, we utilized the MIROC6 climate model [33],
renowned for its robust performance and proven success in other studies focusing on fire
modeling in the Amazon region [34]. The future fire models for the early (2021–2040)
21st century were based on two scenarios that combine socioeconomic and technological
development (shared socioeconomic pathways—SSPs) [35,36]. These scenarios include an
optimistic pathway (SSP1–2.6), representing a low-emission scenario where temperatures

http://worldclim.org
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are projected to stabilize at approximately 1.3 ◦C to 1.5 ◦C above preindustrial levels by
the 2030s, and a pessimistic pathway (SSP5–8.5), which assumes an increase in warming to
about 1.5 ◦C to 2.2 ◦C above preindustrial levels by the same period.

2.6. Variable Selection

First, all layers of environmental and human predictors (Table 1) were resampled
to the same pixel size as the climatic data (30 arc-seconds per side, approximately 1 km
at the equator) using the nearest neighbor process. This standardization is essential for
ensuring consistent analysis across all variables. We then analyzed the variable set to
select the most important uncorrelated predictors, aiming to develop parsimonious and
interpretable models [37], a critical step in machine learning models for fire prediction. We
utilized the functions of “SDMtune” version 1.3.1 [38] to perform an optimized selection
of 24 continuous variables. The process began with exploring variable correlation by
extracting 10,000 background locations using the “randomPoints” function from the “dismo
package” version 1.3-14, processed in the R program version 4.4.0. The algorithm then
ranked the variables based on their percent contribution. It checked if the variable ranked
as the most important was highly correlated with any other variables, using a Spearman
correlation coefficient (|rs| ≤ 0.7). If correlated variables were found, a leave-one-out
Jackknife test was performed among them. The variable that had the least impact on the
model’s performance, measured by the area under the curve (AUC) of the receiver operating
characteristic (ROC), was then discarded. This process was repeated until the remaining
variables had a correlation coefficient lower than the provided threshold (|rs| ≤ 0.7).
Additionally, we considered removing variables ranked with very low contribution to
reduce model complexity. Using the “reduceVar” function, variables with a permutation
importance lower than 2% were removed, but only if their removal did not decrease the
model’s performance.

Table 1. List of parameters evaluated for assessing Amazon fire propensity, including a brief descrip-
tion of the data, spatial resolution, type of variable, and source (all accessed November 2023).

Class Variable (Unit) Description of Data Resolution Type 1 Source

Climate normals

Tavg (◦C) Annual Mean Temperature 30 arc-seconds Cont

[32] for
the

period
1971–
2000

and [33]
for

future
fire

models

∆Tdiurnal (◦C) Annual Mean Diurnal Range (Mean of
monthly (max temp − min)) temp)) 30 arc-seconds Cont

Isother (%) Isothermality (∆Tdiurnal/∆Tannual × 100) 30 arc-seconds Cont

Tseason (◦C) Temperature Seasonality
(Standard Deviation) 30 arc-seconds Cont

Tmax (◦C) Max Temperature of Warmest Month 30 arc-seconds Cont
Tmin (◦C) Min Temperature of Coldest Month 30 arc-seconds Cont
∆Tannual (◦C) Annual Temperature Range 30 arc-seconds Cont
Twet (◦C) Mean Temperature of Wettest Quarter 30 arc-seconds Cont
Tdry (◦C) Mean Temperature of Driest Quarter 30 arc-seconds Cont
Twarm (◦C) Mean Temperature of Warmest Quarter 30 arc-seconds Cont
Tcold (◦C) Mean Temperature of Coldest Quarter 30 arc-seconds Cont
PPT (mm) Annual Precipitation 30 arc-seconds Cont

PPTwet (mm) Precipitation of Wettest Month (max([PPTi,
. . ., PPT12])) 30 arc-seconds Cont

PPTdry (mm) Precipitation of Driest Month (min([PPTi,
. . ., PPT12])) 30 arc-seconds Cont

PPTseason (%) Precipitation Seasonality (coefficient of
variation) 30 arc-seconds Cont

PPTwet (mm) Precipitation of Wettest Quarter 30 arc-seconds Cont
PPTdry (mm) Precipitation of Driest Quarter 30 arc-seconds Cont
PPTwar (mm) Precipitation of Warmest Quarter 30 arc-seconds Cont
PPTcold (mm) Precipitation of Coldest Quarter 30 arc-seconds Cont

Land use and
land cover LULC (class) Landsat-based classification of

Pan-Amazonian for 2022
30 m resampling

for 30 arc-seconds Cat [26]
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Table 1. Cont.

Class Variable (Unit) Description of Data Resolution Type 1 Source

Vegetation Dis_Veget (km) Euclidean distance calculated from a binary
vegetation raster Forest Natural Formation 30 arc-seconds Cont [26]

Anthropogenic
factor

Dist_Nonveg (km) Euclidian distance calculated from a binary
non vegetated area raster 30 arc-seconds Cont [26]

Dist_water (km) Euclidian distance calculated from a binary
water raster 30 arc-seconds Cont [26]

Dist_urban (km) Euclidian distance calculated from a binary
urban raster 30 arc-seconds Cont [26]

Dist_Farming (km) Euclidian distance calculated from a binary
farming raster 30 arc-seconds Cont [26]

1 Type: continuous (Cont) and categorical (Cat).

2.7. MaxEnt Modeling for Fire Prediction

This study focused on modeling fire occurrences using MaxEnt, a presence-only
machine learning algorithm, which iteratively contrasts predictor values at occurrence
locations (i.e., ignition points) with those at random locations across the study area [39].
This approach leads to the development of models that can effectively describe complex
relationships [40], making it a valuable tool for modeling fire occurrences, particularly in
most situations where obtaining precise absence data is challenging.

The model was trained and tested on a dataset split into 70% training data and 30%
test data. The model was evaluated using the area under the curve (AUC) metric, which
measures the model’s ability to distinguish between presence and absence locations. To
optimize the model hyperparameters, the authors used the “optimizeModel” function
(SDMtune package), which applies a genetic algorithm to expedite the process [38]. This
algorithm starts by generating a random initial population of models and evaluates their
fitness using the AUC metric on a validation dataset. Fitter models are retained, and
a small portion of fewer fit models is kept for diversity. The selected models are then
“bred” to create other individuals, with two parent models randomly selected to produce
a child model. The child model inherits hyperparameter values from one of the parents
through a process called “crossover”. Additionally, a “mutation” chance is introduced
to further increase variation. This process continues for several generations, with the
best-performing model selected as the final optimized model. The optimized model is then
used to make predictions on future climatic scenarios. Overall, this approach provides a
robust framework for modeling fire occurrences, especially in situations where obtaining
precise absence data is challenging [38].

2.8. Spatial Fire Distribution of the Baseline Model and Change Analysis

The output probability of fire was given by the complementary log–log transformation
(cloglog format), which provides an estimated value between 0 and 1, with higher values
demonstrating more fire-prone conditions. To carry out zonal analyses, we classified the
pixels of the models into five levels of adequacy: very low (0.00 < x ≤ 0.10 → 1), low
(0.10 < x ≤ 0.30 → 2), moderate (0.30 < x ≤ 0.50 → 3), high (0.50 < x ≤ 0.75 → 4), and very
high (0.75 < x ≤ 1.00 → 5). For the baseline model, we quantified the area occupied by each
habitat suitability class for fire occurrence in relation to its land use and cover.

Changes in fire probability in relation to future climate shifts were detected through
comparative analyzes between models in relation to the amount of cover occupied by
different classes of fire in optimistic and pessimistic scenarios for the 2030s. In addition,
we showed potential areas projected for fire invasion (by increasing in locations where
current probabilities of fire were low) and retreat (by decreasing in locations where current
probabilities of fire were high) in the future scenarios, applying a threshold value of 10%.
These results allowed us to identify potential “hotspots of change” for different scenarios.
Furthermore, in the Supplementary Materials, we present an analysis of classification agree-
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ment (pixel-to-pixel correspondence) calculated using the R package Greenbrown version
2.2 [41], allowing the generation of concordance maps (Supplementary Information).

3. Results
3.1. Performance of the Modelling Approaches

The AUC average test value for the baseline model developed for fire occurrence was
0.864. The AUC values for the 2030s optimistic and 2030s pessimistic models obtained
from the validation phase processing exhibited values of 0.866 and 0.857, respectively.
These results, as generally recognized by researchers in fire modeling [42], indicate that the
MaxEnt models demonstrated excellent predictive performance and goodness of fit with
the training datasets.

3.2. Variable Importance

In the analysis, the variables “Distance to Farming”, “Distance to Non-Vegetated
Areas”, and “Temperature Seasonality” emerged as the most influential predictors of fire
distribution for the present, as indicated by their substantial permutation importance
values (Table 2). Specifically, “Distance to Farming” exhibited a remarkable contribution of
53.4%, underscoring its critical role in determining fire propensity. Similarly, “Distance to
Non-Vegetated Areas” accounted for 11.2% of the model’s predictive power, followed by
“Temperature Seasonality” with a contribution of 9.3%.

Table 2. Permutation importance of variables used for fire modeling in the recent period.

Variable Permutation Importance (%)

Dist_Farming 53.4
Dist_Nonveg 11.2
Tseason (◦C) 9.3

PPTcold (mm) 9.0
Tmax (◦C) 4.6
PPT (mm) 3.8

PPTwet (mm) 3.3
PPTwar (mm) 2.9

Isother (%) 1.9
LULC 0.7

The AUC values calculated by the jack-knife metrics supported this overview and
revealed that “Distance to Farming” and “Distance to Non-Vegetated Areas” exhibited
substantial individual contributions, evidenced by their impact on AUC when removed
(Figure 3). Notably, “LULC” (land use and land cover) and “Annual Precipitation” exhib-
ited high AUC values when considered individually within the model. Despite their lower
percent contributions compared to other variables, their strong predictive performance
underscores their significant roles in capturing critical environmental gradients relevant
to fire occurrence. These findings emphasize the importance of considering comprehen-
sive sets of variables to fully capture the complexities of fire distribution dynamics in
ecological studies.

The response curves of the main factors affecting the possibility of fire occurrence high-
lighted some details regarding the patterns of distribution (Supplementary Figures S2 and S3).
Fire occurrence was negatively related to “Distance to Farming” (agriculture, pasture, and
forestry), indicating that closer proximity to these land use types enhances the likelihood
of fires. Categorical variable analysis (LULC) highlighted farming as the most influential
class, affirming its association with fire occurrence. Regarding the relationship between
the probability of fire occurrence and the variable “Distance to Non-Vegetated Areas”, the
response curve suggests that areas in close proximity to roads or urban areas have a higher
likelihood of experiencing fires, potentially due to human activities or environmental
characteristics.
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Moreover, in relation to variables affecting water availability, our findings revealed
that lower annual precipitation levels correlated with increased fire propensity, illustrat-
ing a negative relationship between precipitation and fire occurrence. Notably, climate
seasonality played a crucial role, as evidenced by “Temperature Seasonality” showing
a non-monotonic relationship with fire propensity. This suggests specific ranges of tem-
perature seasonality that increase the likelihood of fires; moderate seasonal temperature
variations are typically associated with higher fire incidence, whereas extremely low or
high variations may not favor fire-prone conditions. A possible physical explanation for
this behavior lies in the relationship between temperature seasonality and the availability
of fuel and moisture conditions for fires. Moderate temperature variations throughout the
year can create ideal conditions for biomass accumulation, such as dry leaves, branches,
and other plant material. These moderate variations are sufficient to sustain plant growth
and allow the gradual buildup of flammable material over time. In contrast, more extreme
seasonal temperature variations, such as those observed in flooded fields and dry forests of
the southern Amazon, can influence fire dynamics in different ways. Extreme temperature
fluctuations can potentially create conditions that favor fires by affecting the availability of
fuel and moisture. However, in these areas, additional local factors—such as the presence
of flooding regimes in wetlands or other environmental influences—can interact with
temperature variations to modulate fire propensity.

3.3. Baseline Model of Fire Probability

The baseline model revealed that approximately 26.5% of the Amazon is classified
within a “moderate” to “very high” fire propensity class, capturing a complex spatial
pattern of fire activity. The spatial pattern of fire probability, as depicted in the provided fire
distribution map (Figure 4B), reveals distinct regions within the Amazon basin that are most
susceptible to fire occurrences. In general, the central and northern regions of the Amazon
Basin exhibit predominantly “Very Low” and “Low” fire suitability (blue areas). On the
other side, areas highlighted in red, indicating the highest probability of fire occurrence,
are predominantly concentrated along the southern and southeastern edges, in the region
known as the “Arc of Deforestation”. This region extends from Paragominas (located east
of Pará) to Rio Branco (Acre), passing through the states of Mato Grosso and Rondônia.
Expanding this corridor, significant areas prone to fires were observed in the states of
Maranhão and Tocantins, current areas of expansion of agricultural and livestock activities
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(Figure 4A). Other disjunct areas to the north and northeast of the Amazon were also
considered fire-prone, corresponding, respectively, to a large part of the state of Roraima
and the savanna areas in Amapá. In addition, areas with a high probability of fire were
also mapped in areas on the banks of the Amazon River in its lower reaches.
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Figure 4. Overview of land use and land cover (LULC) and fire probability in the Legal Amazon:
(A) LULC showing various categories including forest, non-forest natural formation, farming, non-
vegetated areas, and water bodies, along with state boundaries obtained from MapBiomas [26].
(B) Fire probability distribution map, with cloglog output values from MaxEnt, indicating regions
with varying likelihoods of fire occurrences for the baseline period, with higher probabilities shown
in red and lower probabilities in blue.

The proportions of different types of LULC within each fire suitability class vary con-
siderably (Figure 5). In the “Very Low” and “Low” fire suitability classes (probability ≤ 0.3),
the representativeness of forest cover is approximately 74% (3.7 million km2), indicating a
lower probability of fire occurrence in areas sensitive to this impact (Figure 5). In contrast,
the fire suitability classes “High” and “Very High” (probability ≥ 0.5) show a significant
proportion of areas allocated to “Farming” (yellow) use, underlining the strong association
between agricultural activities and increased fire risks. Furthermore, “Non-Forest” areas
(light brown) show an increasing proportion with increasing fire suitability, particularly no-
table in the higher classes. These “Non-Forest” areas include savanna enclaves, grasslands,
and wetlands, which are more prevalent in regions prone to higher fire incidence.
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for each fire suitability class (Very Low, Low, Moderate, High, Very High). In the right panel (B), the
proportion of different LULC types within each fire suitability class is presented.
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3.4. Projected Future Fire Probabilities

The future fire distributions projected (Supplementary Figure S1) were transformed
into fire suitability maps (Figure 6), showing that large areas of Amazon are expected to
experience small near-term changes in fire probabilities. The divergences between the base
model and future scenarios are subtle, concentrating transitions from the lowest to the
highest fire suitability classes (Figure 6). Among the future scenarios, the trends are similar.
However, the pessimistic scenario shows a decrease in the “Very Low” class in relation
to the optimistic scenario, and a slight increase in the “Low” class. Therefore, although
these changes are not significant individually, they collectively indicate the potential for
increased fire risk in the future.
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Figure 6. Bar chart with the sum of the areas of the fire suitability levels for each projected fire model
(A) and predicted fire suitability maps created for the baseline period (B) and future climate change
scenarios in the 2030s: optimistic (C) and pessimistic (D). MaxEnt fire probabilities classified into five
suitability categories (levels of suitability for ignition occurrence): very low (0.00 < x ≤ 0.10), low
(0.10 < x ≤ 0.30), moderate (0.30 < x ≤ 0.50), high (0.50 < x ≤ 0.75), and very high (0.75 < x ≤ 1.00).

In relation to the spatial distribution of fire suitability (Figure 6), the Kappa concor-
dance results provide valuable insights into the agreement between present conditions and
future scenarios, as well as between the future scenarios themselves. Specifically, there is a
Kappa concordance of 65.94% between the present and the optimistic 2030 scenario, and
a slightly higher Kappa concordance of 67.18% between the present and the pessimistic
2030 scenario. Additionally, there is a Kappa concordance of 78.12% between the future
scenarios for 2030. These values suggest a moderate agreement between current conditions
and projected future scenarios, with stronger concordance observed between the two future
scenarios, reflecting common trends expected in the coming decade. The generated concor-
dance maps are included in the Supplementary Materials (Supplementary Figure S4).
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The accompanying figure illustrates these trends spatially, comparing fire suitability
changes under optimistic (Figure 7A) and pessimistic (Figure 7B) scenarios for the 2030s.
Despite the differences, the overall spatial patterns are similar for future fire niches, sup-
porting the greater Kappa agreement observed between future scenarios. In both scenarios,
large areas remain suitable for fires (salmon) while new areas become suitable (red), indi-
cating fire niche expansions. These expansions are mainly concentrated in the southern
and southeastern regions of the Amazon, as well as in areas on the margins of the Amazon
River in municipalities located close to the border of the states of Amazonas and Pará.
Regarding areas of fire niche retraction (blue), the optimistic scenario (Figure 7A) shows a
retraction of the fire, especially in areas of non-forest vegetation (campestrian and savannas)
located mainly in Roraima. This retraction was observed to a lesser extent in the pessimistic
scenario, which even appears to expand the fire niche to areas of savanna enclaves in
Amapá and northeast Pará. Therefore, in the coming decades, the fire propensity classes
predicted at present appear to remain suitable and expand for both the optimistic and
pessimistic scenarios.
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Figure 7. Projected ranges of fire suitability shifts for the (A) 2030s optimistic emission scenario;
(B) 2030s pessimistic emission scenario. Grey regions denote areas where fire is absent or has very
low occurrence at present and may remain unsuitable in the future (not suitable), red regions where
current fire probabilities are low and may increase in the future (expansion), salmon regions where
fire may remain with high probabilities in the future (remain suitable), and blue regions where current
fire probabilities are high and may decrease in the future (retreat).

4. Discussion

The performance of our models, indicated by AUC values consistently above 0.85 for
both reference and future scenarios, underscores the reliability of our approach. This
aligns with established benchmarks in fire modeling [42]. Despite the precision and
robustness of our models, it is important to acknowledge certain uncertainties present in the
MapBiomas Fire 1.0 dataset. These include potential underreporting of understory forest
fires and overreporting of fires in annual crop fields covered with dry material from the
harvest [4]. However, our fire niche modeling remains robust and conservative, based on a
historical fire dataset from a reliable source, which shows a tendency for more omission
than commission errors.

To make future predictions, we maintain a conservative modeling approach, assuming
that current land use and land cover patterns remain unchanged, with changes limited
to climate factors only. While this conservative stance ensures robustness in the face of
uncertainty, it is essential to interpret our results with caution given the intricate interplay
between climate and vegetation dynamics [43]. Moreover, the analysis of uncertainty effects
between CMIP6 models is outside the scope of this study.

Several other studies have also employed MaxEnt to model fire occurrence in the
Amazon, providing valuable comparative insights [44–48]. Their findings corroborate our
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results, particularly in identifying the “Arc of Deforestation” (southern and southeastern
Amazon) as hotspots for fire activity [49]. This distribution is largely influenced by the
presence of major highways such as BR-163 (Cuiabá-Santarém), BR-319 (Manaus-Porto
Velho), BR-364 in Acre, and BR-230 (Transamazônica Highway), which leads to the inference
that there is a strong association of fire with forest clearing and pasture maintenance
practices [3]. Nevertheless, the present study contributes to knowledge, spatializing an
even larger fire-prone area, which comprises a more extensive zone located in the savanna–
forest transition (ecotone zone between the Cerrado and Amazon biomes), covering the
states of Maranhão and Tocantins. This region, known as the agricultural frontier, is
characterized by historical patterns of agricultural and livestock expansion [2,4]. Another
significant contribution of the present study was the mapping of fire-prone areas in the
northern and northeastern regions of the Amazon. Although these regions are naturally
adapted to fire, they are becoming increasingly susceptible due to fire and anthropogenic
pressures [30].

Our spatial fire distribution models highlight the profound interconnection between
fire occurrence, climate conditions, and anthropogenic factors. Notably, the significant con-
tribution of “Distance to Agriculture” (53.4%) to the predictive power of the baseline model
highlights the strong association between fire propensity and agricultural and livestock
activities. This finding is consistent with previous studies that highlight the increased risk
of fire in the Amazon due to deforestation fires to remove primary or secondary vegetation,
as well as fires used in agricultural or pasture management [2,3,21,29,48–50]. It is worth
noting that in recent decades, the management of low-productivity pastures, where fire
is used to rejuvenate vegetation and eliminate unwanted weeds, has become the main
cause of fires in the Amazon, which contains the largest area of pastures in Brazil [4].
Concerning pasturelands, it has been demonstrated that fire activity can begin years before
land use conversion (with deforestation and slash-and-burn practices) and remain elevated
for several years after conversion (maintenance fires), especially in forest–pasture transi-
tions [50]. Therefore, we can infer that the most fire-prone areas modeled in the present
study are correlated with a combination of factors linked to climate, vegetation cover, and
the management of farming areas, especially areas designated for pasture.

Regarding climate variables, “Annual Precipitation” and “Temperature Seasonality”
were significant predictors in our fire propensity model in the current decade, especially
in regions with little human occupation located in the northwest and central of the Ama-
zon, identified as having a low fire propensity. These fire-free areas rarely experience
conditions conducive to biomass burning—such as seasonality, low humidity levels, or
windstorms—due to their closed canopy structure, maintaining high humidity even during
dry periods [10,20,51]. Conversely, areas of the southern Amazon biome were modeled as
having high propensity to fire, demonstrating an association with lower precipitations and
greater seasonality. Numerous studies highlight the significance of drought-driven fires
in the Amazon, which are closely linked to natural variations in precipitation associated
with El Niño events and sea surface temperatures in the North Atlantic [11,13,52–56]. In
addition, global observations indicate positive correlations between “Fire Weather Index”
and burned areas in tropical moist broadleaf forests, with a notable rise occurring in the
southern Amazonia [7,15,57] during the September to November season [58]. Therefore,
climatic variables and biomass richness continue to play important roles in the Amazon,
especially where human activities have not yet broken the pyrogeographic barriers that
regulate fires.

For the next few decades, regardless of land use change projections, our fire models
indicate subtle but significant shifts, suggesting a trend towards heightened fire risk across
the Amazon. Regarding the emission scenario analyzed, the spatial changes in probability
distribution compared to the present indicate that both optimistic and pessimistic scenarios
agree on the expansion of the fire niche towards the southern borders of the Amazon. This
result corroborates previous studies predicting that increased anthropogenic warming
would amplify the potential for high-intensity fires at the Amazon–Cerrado frontier [2,59].
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Another important consideration is that if the future follows a pessimistic scenario, regions
of the eastern interior near the Amazon River mouth could become areas of concern. These
regions, where current fire probabilities are low, had already been mapped as areas of
potential fire invasion in the near future (2010–2039) under a medium–high emission
scenario [20].

The Kappa concordance results show moderate agreement between current condi-
tions and the optimistic scenario (SSP1–2.6), surpassing the variabilities predicted in the
pessimistic scenario (SSP5–8.5). This contradicts the expectation that an optimistic scenario
would present fewer changes than a pessimistic one. However, upon careful examination,
we note that the main discrepancy arises from the decrease in fire probabilities in savanna
enclaves located in the north and northeast of the Amazon. These results can be explained
by complex interactions and non-linear responses among climatic variables.

The significant roles of current land use, as well as projected future climate factors in
fire risk, highlight the need for integrated management strategies that address both human
and environmental dimensions. Our results allow us to infer that it is necessary to adopt
policies or actions to mitigate the use of fire in agricultural and pasture areas throughout the
Legal Amazon. In relation to spatial arrangement, activities to mitigate present and future
fire risks should be intensified in areas along the northeast–southwest arc of the Amazon
and on the banks of the Amazon River. On the other hand, in areas of savanna enclaves,
mainly located in the north and northeast of the Amazon, integrated fire management is
recommended, as long periods without burning can make these areas more flammable.
Previous studies have already emphasized the importance of integrated fire management
in reducing fire risks and promoting ecosystem resilience [10,60].

Some researchers have demonstrated actions that could be implemented to improve
fire suppression, such as preventive measures, control of illegal burnings, and the ex-
pansion of fire brigades [2]. We agree with these authors but add that a more holistic
and integrated approach can be adopted, including measures that promote sustainable
development and social inclusion. In this regard, it is essential to promote policies that
incentivize sustainable and technological agricultural practices, reducing the dependence
on fire. Training programs and financial subsidies should be expanded to facilitate the
transition to land management techniques that do not rely on fire, such as agroforestry and
precision agriculture.

A further step in enhancing fire suppression involves establishing rapid response
fire brigades within local communities, ensuring that community members themselves
are equipped to provide initial responses, thereby increasing combat effectiveness. Socio-
economic activities that rely on slash-and-burn systems also require a tailored approach.
It is necessary to develop and implement fire management techniques adapted to these
communities, ensuring that these practices are safe and do not pose risks to neighboring
forests. Establishing education and awareness programs for small farmers, traditional
communities, and indigenous peoples can foster the use of safe and innovative techniques,
simultaneously promoting environmental conservation and economic sustainability. These
integrated strategies will not only strengthen Brazil’s capacity to protect its remaining
forests but also promote more resilient and sustainable rural development.

Future research should focus on refining predictive models by incorporating data
on fire behavior, as well as projections of land use changes and vegetation dynamics,
to more accurately predict fire risks. Additionally, investigating the impact of fire on
biodiversity and ecosystem services in the Amazon will provide a deeper understanding of
fire dynamics and inform conservation strategies. By integrating these elements, future
studies can enhance our ability to predict and manage fire occurrences in the Amazon,
ensuring the long-term sustainability of this vital ecosystem.

5. Conclusions

This research significantly advances the understanding of fire dynamics in the Legal
Amazon, laying a robust foundation for future studies and policy development aimed at fire
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risk mitigation. By identifying areas with high fire probability, this study provides critical
insights that can enhance strategic decision making. Resources can be more efficiently
allocated by prioritizing high-risk zones, ensuring that fire prevention and suppression
efforts are concentrated where they are most needed. Furthermore, the spatial mapping
and findings from this research can serve as essential tools for technical panels involved in
integrated fire management, helping to create tailored strategies that consider the diverse
ecosystems of the Legal Amazon. Strengthening the use of these data in management and
conservation planning will improve strategic responses and contribute to the long-term
preservation of the Legal Amazon’s complex and vital ecosystems.

The central role of current land use and projected climate changes in driving fire
propensity highlights the urgent need for integrated fire management strategies that address
both human and environmental factors. The study’s findings emphasize the need to
rethink fire use in agriculture and pasture management across the Legal Amazon, as
human-driven fires, especially those related to land clearing and pasture maintenance, are
major contributors to the region’s elevated fire propensity. A transformative shift in fire
management practices is required to reduce these risks, including the implementation of
sustainable land use practices and improved landscape management, which can help lower
the frequency and intensity of fires.

Additionally, this research fills a crucial knowledge gap by identifying areas likely
to experience local variations in fire propensity under different climate change scenarios
in the coming decades. These insights provide valuable guidance for future planning
and adaptation strategies. Future studies can integrate these fire propensity predictions
into broader climate adaptation frameworks—such as conservation planning, ecosystem
restoration, and sustainable land use policies—thereby enhancing the resilience of both
natural ecosystems and human communities against the impacts of fire and climate change.

Finally, the data from this research not only supports fire management but also holds
great potential for advancing conservation and restoration efforts. Future studies can
incorporate the fire propensity models generated here as input layers into species distri-
bution models to enhance habitat conservation strategies. These models can guide the
establishment of buffer zones around vulnerable ecosystems by identifying areas where
fire risk is highest and overlaps with critical habitats. This approach will help prioritize
regions for reforestation and landscape connectivity efforts. By leveraging these models
to target areas where fire dynamics intersect with biodiversity conservation, stakeholders
can implement more effective measures to protect habitats and strengthen the long-term
resilience of the Legal Amazon’s ecosystems.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/fire7100338/s1. Figure S1. Fire probability distribution map,
cloglog output values from MaxEnt, indicating regions with varying likelihoods of fire occurrences
for: (A) Optimistic 2021–2040 and (B) Future Pessimistic 2021–2040. Higher probabilities are shown
in red, while lower probabilities are shown in blue. Figure S2. Univariate response curves showing
the relationship between the analyzed variable and the clog-log result for fire probability, presenting
the most important predictors: (A) distance to cultivation areas (Dist Farming); and (B) distance to
areas without vegetation (Dist Nonveg). Figure S3. Bar chart illustrating the univariate response of
the Land Use and Land Cover (LULC) categorical variable on the predicted fire probability. Each
bar represents a different LULC category, highlighting its respective influence on fire likelihood.
Figure S4. Classification agreement maps in the 2030s for the Legal Amazon, showing the spatial
comparison of fire probability between: (A) current conditions and an optimistic scenario (SSP1-2.6).
(B) current conditions and a pessimistic scenario (SSP5-8.5). (C) optimistic and pessimistic scenarios
for the 2030s. Color shades represent different levels of agreement from very low to very high.

Author Contributions: Conceptualization, methodology, analysis, writing, review, editing, M.M.M.d.S.,
R.N.d.V., E.M.N. and W.d.J.S.d.F.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

https://www.mdpi.com/article/10.3390/fire7100338/s1
https://www.mdpi.com/article/10.3390/fire7100338/s1


Fire 2024, 7, 338 15 of 17

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data utilized in the present article are openly accessible, free, and
available to the public. The climate data can be found on the WorldClim website (https://worldclim.
org/) and are distributed under the Creative Commons Attribution-ShareAlike 4.0 License (CC
BY-SA 4.0). The “fire scars” (used for sampling fire occurrence) and “land use and land cover” data
are provided by the MapBiomas project (https://plataforma.brasil.mapbiomas.org, accessed on 10
November 2023), also licensed under Creative Commons CC-BY-SA (DOI: https://doi.org/10.5
8053/MapBiomas/VJIJCL, accessed on 10 November 2023). These data can be accessed through
toolkits prepared on Google Earth Engine (GEE), with instructions and codes available on GitHub
(https://github.com/mapbiomas-brazil/user-toolkit, accessed on 10 November 2023).

Acknowledgments: We gratefully acknowledge the University of the State of Amapá (UEAP) for
their financial support towards the publication of this manuscript and for providing the necessary
infrastructure for conducting the research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Santín, C.; Moustakas, A.; Doerr, S.H. Searching the flames: Trends in global and regional public interest in wildfires. Environ. Sci.

Policy 2023, 146, 151–161. [CrossRef]
2. Brando, P.M.; Soares-Filho, B.; Rodrigues, L.; Assunçao, A.; Morton, D.; Tuchschneider, D.; Fernandes, E.C.M.; Macedo, M.N.;

Oliveira, U.; Coe, M.T. The gathering firestorm in southern Amazonia. Sci. Adv. 2020, 6, eaay1632. [CrossRef] [PubMed]
3. Silvestrini, R.A.; Soares, B.S.; Nepstad, D.; Coe, M.; Rodrigues, H.; Assunçao, R. Simulating fire regimes in the Amazon in

response to climate change and deforestation. Ecol. Appl. 2011, 21, 1573–1590. [CrossRef] [PubMed]
4. Alencar, A.A.C.; Arruda, V.L.S.; da Silva, W.V.; Conciani, D.E.; Costa, D.P.; Crusco, N.; Duverger, S.G.; Ferreira, N.C.; Franca-Rocha,

W.; Hasenack, H.; et al. Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning.
Remote Sens. 2022, 14, 2510. [CrossRef]

5. Libonati, R.; Pereira, J.M.C.; Da Camara, C.C.; Peres, L.F.; Oom, D.; Rodrigues, J.A.; Santos, F.L.M.; Trigo, R.M.; Gouveia, C.M.P.;
Machado-Silva, F.; et al. Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian
Amazon. Sci. Rep. 2021, 11, 4400. [CrossRef] [PubMed]

6. Giglio, L.; Randerson, J.T.; van der Werf, G.R.; Kasibhatla, P.S.; Collatz, G.J.; Morton, D.C.; DeFries, R.S. Assessing variability and
long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 2010, 7, 1171–1186. [CrossRef]

7. Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad.
Sci. USA 2016, 113, 11770–11775. [CrossRef]

8. Bowman, D.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.;
Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [CrossRef]

9. Zheng, B.; Ciais, P.; Chevallier, F.; Chuvieco, E.; Chen, Y.; Yang, H. Increasing forest fire emissions despite the decline in global
burned area. Sci. Adv. 2021, 7, eabh2646. [CrossRef]

10. Cochrane, M.A.; Laurance, W.F. Fire as a large-scale edge effect in Amazonian forests. J. Trop. Ecol. 2002, 18, 311–325. [CrossRef]
11. Aragao, L.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva, C.H.L.; Arai, E.; Aguiar,

A.P.; et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun.
2018, 9, 536. [CrossRef] [PubMed]

12. Sayedi, S.S.; Abbott, B.W.; Vannière, B.; Leys, B.; Colombaroli, D.; Romera, G.G.; Slowinski, M.; Aleman, J.C.; Blarquez, O.;
Feurdean, A.; et al. Assessing changes in global fire regimes. Fire Ecol. 2024, 20, 18. [CrossRef]

13. Brando, P.M.; Balch, J.K.; Nepstad, D.C.; Morton, D.C.; Putz, F.E.; Coe, M.T.; Silvério, D.; Macedo, M.N.; Davidson, E.A.; Nóbrega,
C.C.; et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl. Acad. Sci. USA 2014, 111,
6347–6352. [CrossRef] [PubMed]

14. de Oliveira, H.; de Oliveira, J.F.; da Silva, M.V.; Jardim, A.; Shah, M.; Gobo, J.P.A.; Blanco, C.J.C.; Pimentel, L.C.G.; da Silva, C.;
da Silva, E.B.; et al. Dynamics of Fire Foci in the Amazon Rainforest and Their Consequences on Environmental Degradation.
Sustainability 2022, 14, 9419. [CrossRef]

15. Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der
Werf, G.R.; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726.
[CrossRef]

16. van Marle, M.J.E.; Field, R.D.; van der Werf, G.R.; de Wagt, I.A.E.; Houghton, R.A.; Rizzo, L.V.; Artaxo, P.; Tsigaridis, K. Fire and
deforestation dynamics in Amazonia (1973–2014). Glob. Biogeochem. Cycles 2017, 31, 24–38. [CrossRef] [PubMed]

17. Cano-Crespo, A.; Oliveira, P.J.C.; Boit, A.; Cardoso, M.; Thonicke, K. Forest edge burning in the Brazilian Amazon promoted by
escaping fires from managed pastures. J. Geophys. Res.-Biogeosci. 2015, 120, 2095–2107. [CrossRef]

https://worldclim.org/
https://worldclim.org/
https://plataforma.brasil.mapbiomas.org
https://doi.org/10.58053/MapBiomas/VJIJCL
https://doi.org/10.58053/MapBiomas/VJIJCL
https://github.com/mapbiomas-brazil/user-toolkit
https://doi.org/10.1016/j.envsci.2023.05.008
https://doi.org/10.1126/sciadv.aay1632
https://www.ncbi.nlm.nih.gov/pubmed/31950083
https://doi.org/10.1890/10-0827.1
https://www.ncbi.nlm.nih.gov/pubmed/21830703
https://doi.org/10.3390/rs14112510
https://doi.org/10.1038/s41598-021-82158-8
https://www.ncbi.nlm.nih.gov/pubmed/33623067
https://doi.org/10.5194/bg-7-1171-2010
https://doi.org/10.1073/pnas.1607171113
https://doi.org/10.1126/science.1163886
https://doi.org/10.1126/sciadv.abh2646
https://doi.org/10.1017/S0266467402002237
https://doi.org/10.1038/s41467-017-02771-y
https://www.ncbi.nlm.nih.gov/pubmed/29440640
https://doi.org/10.1186/s42408-023-00237-9
https://doi.org/10.1073/pnas.1305499111
https://www.ncbi.nlm.nih.gov/pubmed/24733937
https://doi.org/10.3390/su14159419
https://doi.org/10.1029/2020RG000726
https://doi.org/10.1002/2016GB005445
https://www.ncbi.nlm.nih.gov/pubmed/28286373
https://doi.org/10.1002/2015JG002914


Fire 2024, 7, 338 16 of 17

18. Sorrensen, C. Contributions of fire use study to land use/cover change frameworks: Understanding landscape change in
agricultural frontiers. Hum. Ecol. 2004, 32, 395–420. [CrossRef]

19. Barbosa, M.L.F.; Delgado, R.C.; Andrade, C.F.; Teodoro, P.E.; Silva Junior, C.A.; Wanderley, H.S.; Capristo-Silva, G.F. Recent trends
in the fire dynamics in Brazilian Legal Amazon: Interaction between the ENSO phenomenon, climate and land use. Environ. Dev.
2021, 39, 100648. [CrossRef]

20. Krawchuk, M.A.; Moritz, M.A.; Parisien, M.A.; Van Dorn, J.; Hayhoe, K. Global Pyrogeography: The Current and Future
Distribution of Wildfire. PLoS ONE 2009, 4, e5102. [CrossRef]

21. Alencar, A.A.; Brando, P.M.; Asner, G.P.; Putz, F.E. Landscape fragmentation, severe drought, and the new Amazon forest fire
regime. Ecol. Appl. 2015, 25, 1493–1505. [CrossRef] [PubMed]

22. Le Page, Y.; Morton, D.; Hartin, C.; Bond-Lamberty, B.; Pereira, J.M.C.; Hurtt, G.; Asrar, G. Synergy between land use and climate
change increases future fire risk in Amazon forests. Earth Syst. Dyn. 2017, 8, 1237–1246. [CrossRef]

23. Moritz, M.A.; Parisien, M.A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions
to global fire activity. Ecosphere 2012, 3, 1–22. [CrossRef]

24. Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in
wildfire science and management. Environ. Rev. 2020, 28, 478–505. [CrossRef]

25. Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.;
Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938.
[CrossRef]

26. Mapbiomas_Project. Collection 5. 2022. Available online: http://mapbiomas.org (accessed on 10 November 2023).
27. Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol.

Z. 2013, 22, 711–728. [CrossRef]
28. Wright, J.S.E.A. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA 2017, 114, 8481–8486.

[CrossRef]
29. Valente, F.; Laurini, M. A spatio-temporal analysis of fire occurrence patterns in the Brazilian Amazon. Sci. Rep. 2023, 13, 12727.

[CrossRef]
30. Santana, M.M.M.d.; Vasconcelos, R.N.d.; Mariano-Neto, E. Fire propensity in Amazon savannas and rainforest and effects under

future climate change. Int. J. Wildland Fire 2023, 32, 149–163. [CrossRef]
31. MapBiomas_Project. Fire Collection 3. 2023. Available online: http://mapbiomas.org (accessed on 10 November 2023).
32. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37,

4302–4315. [CrossRef]
33. Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description

and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12,
2727–2765. [CrossRef]

34. Melo, K.D.; Delgado, R.C.; Pereira, M.G.; Ortega, G.P.; Sirca, C. The Consequences of Climate Change in the Brazilian Western
Amazon: A New Proposal for a Fire Risk Model in Rio Branco, Acre. Forests 2024, 15, 211. [CrossRef]

35. O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework
for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [CrossRef]

36. Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; van Vuuren, D.P.; van den Berg, M.; Feng, L.; Klein, D.;
et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions
trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [CrossRef]

37. Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why
inputs and settings matter. Ecography 2013, 36, 1058–1069. [CrossRef]

38. Vignali, S.; Barras, A.G.; Arlettaz, R.; Braunisch, V. SDMtune: An R package to tune and evaluate species distribution models.
Ecol. Evol. 2020, 10, 11488–11506. [CrossRef]

39. Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib.
2011, 17, 43–57. [CrossRef]

40. Parisien, M.A.; Snetsinger, S.; Greenberg, J.A.; Nelson, C.R.; Schoennagel, T.; Dobrowski, S.Z.; Moritz, M.A. Spatial variability in
wildfire probability across the western United States. Int. J. Wildland Fire 2012, 21, 313–327. [CrossRef]

41. Forkel, M.; Wutzler, T. Greenbrown—Land Surface Phenology and Trend Analysis. A Package for the R Software. 2015. Available
online: http://greenbrown.r-forge.r-project.org/ (accessed on 11 April 2024).

42. Vilar, L.; Gómez, I.; Martínez-Vega, J.; Echavarría, P.; Riaño, D.; Martín, P. Multitemporal Modelling of Socio-Economic Wildfire
Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning
Algorithms. PLoS ONE 2016, 11, e0161344. [CrossRef]

43. Hantson, S.; Pueyo, S.; Chuvieco, E. Global fire size distribution is driven by human impact and climate. Glob. Ecol. Biogeogr. 2015,
24, 77–86. [CrossRef]

44. Ferreira, I.J.M.; Campanharo, W.A.; Barbosa, M.L.F.; da Silva, S.S.; Selaya, G.; Aragao, L.; Anderson, L.O. Assessment of fire
hazard in Southwestern Amazon. Front. For. Glob. Chang. 2023, 6, 1107417. [CrossRef]

https://doi.org/10.1023/B:HUEC.0000043513.47895.a8
https://doi.org/10.1016/j.envdev.2021.100648
https://doi.org/10.1371/journal.pone.0005102
https://doi.org/10.1890/14-1528.1
https://www.ncbi.nlm.nih.gov/pubmed/26552259
https://doi.org/10.5194/esd-8-1237-2017
https://doi.org/10.1890/ES11-00345.1
https://doi.org/10.1139/er-2020-0019
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
http://mapbiomas.org
https://doi.org/10.1127/0941-2948/2013/0507
https://doi.org/10.1073/pnas.1621516114
https://doi.org/10.1038/s41598-023-39875-z
https://doi.org/10.1071/WF21174
http://mapbiomas.org
https://doi.org/10.1002/joc.5086
https://doi.org/10.5194/gmd-12-2727-2019
https://doi.org/10.3390/f15010211
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.5194/gmd-12-1443-2019
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1002/ece3.6786
https://doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.1071/WF11044
http://greenbrown.r-forge.r-project.org/
https://doi.org/10.1371/journal.pone.0161344
https://doi.org/10.1111/geb.12246
https://doi.org/10.3389/ffgc.2023.1107417


Fire 2024, 7, 338 17 of 17

45. Fonseca, M.G.; Alves, L.M.; Aguiar, A.P.D.; Arai, E.; Anderson, L.O.; Rosan, T.M.; Shimabukuro, Y.E.; de Aragao, L. Effects of
climate and land-use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Glob. Chang. Biol.
2019, 25, 2931–2946. [CrossRef] [PubMed]

46. Fonseca, M.G.; Anderson, L.O.; Arai, E.; Shimabukuro, Y.E.; Xaud, H.A.M.; Xaud, M.R.; Madani, N.; Wagner, F.H.; Aragao, L.
Climatic and anthropogenic drivers of northern Amazon fires during the 2015-2016 El Nino event. Ecol. Appl. 2017, 27, 2514–2527.
[CrossRef] [PubMed]

47. Fonseca, M.G.; Aragao, L.; Lima, A.; Shimabukuro, Y.E.; Arai, E.; Anderson, L.O. Modelling fire probability in the Brazilian
Amazon using the maximum entropy method. Int. J. Wildland Fire 2016, 25, 955–969. [CrossRef]

48. Devisscher, T.; Anderson, L.O.; Aragao, L.; Galván, L.; Malhi, Y. Increased Wildfire Risk Driven by Climate and Development
Interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE 2016, 11, e0161323. [CrossRef]

49. Morton, D.C.; Defries, R.S.; Randerson, J.T.; Giglio, L.; Schroeder, W.; van Der Werf, G.R. Agricultural intensification increases
deforestation fire activity in Amazonia. Glob. Chang. Biol. 2008, 14, 2262–2275. [CrossRef]

50. Ribeiro, A.F.S.; Santos, L.; Randerson, J.T.; Uribe, M.R.; Alencar, A.A.C.; Macedo, M.N.; Morton, D.C.; Zscheischler, J.; Silvestrini,
R.A.; Rattis, L.; et al. The time since land-use transition drives changes in fire activity in the Amazon-Cerrado region. Commun.
Earth Environ. 2024, 5, 96. [CrossRef]

51. Ray, D.; Nepstad, D.; Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape.
Ecol. Appl. 2005, 15, 1664–1678. [CrossRef]

52. Marengo, J.A.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol.
2016, 36, 1033–1050. [CrossRef]

53. Marengo, J.A.; Tomasella, J.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A. The drought of 2010 in the context of historical droughts
in the Amazon region. Geophys. Res. Lett. 2011, 38, L12703. [CrossRef]

54. Marengo, J.A.; Souza, C.A.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.M.; Soares, W.R. Changes in Climate and
Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 2018, 6, 228. [CrossRef]

55. Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaria-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; van der Schrier, G.
Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Nino 2015–2016. Sci. Rep. 2016,
6, 33130. [CrossRef] [PubMed]

56. Panisset, J.S.; Libonati, R.; Gouveia, C.M.P.; Machado-Silva, F.; França, D.A.; França, J.R.A.; Peres, L.F. Contrasting patterns of the
extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin. Int. J. Climatol. 2018, 38, 1096–1104. [CrossRef]

57. Bedia, J.; Herrera, S.; Gutiérrez, J.M.; Benali, A.; Brands, S.; Mota, B.; Moreno, J.M. Global patterns in the sensitivity of burned
area to fire-weather: Implications for climate change. Agric. For. Meteorol. 2015, 214, 369–379. [CrossRef]

58. Baijnath-Rodino, J.A.; Le, P.V.V.; Foufoula-Georgiou, E.; Banerjee, T. Historical spatiotemporal changes in fire danger potential
across biomes. Sci. Total Environ. 2023, 870, 161954. [CrossRef] [PubMed]

59. Ribeiro, A.F.S.; Brando, P.M.; Santos, L.; Rattis, L.; Hirschi, M.; Hauser, M.; Seneviratne, S.I.; Zscheischler, J. A compound
event-oriented framework to tropical fire risk assessment in a changing climate. Environ. Res. Lett. 2022, 17, 065015. [CrossRef]

60. Balch, J.K.; Nepstad, D.C.; Curran, L.M.; Brando, P.M.; Portela, O.; Guilherme, P.; Reuning-Scherer, J.D.; de Carvalho, O. Size,
species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For. Ecol. Manag.
2011, 261, 68–77. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/gcb.14709
https://www.ncbi.nlm.nih.gov/pubmed/31304669
https://doi.org/10.1002/eap.1628
https://www.ncbi.nlm.nih.gov/pubmed/28922585
https://doi.org/10.1071/WF15216
https://doi.org/10.1371/journal.pone.0161323
https://doi.org/10.1111/j.1365-2486.2008.01652.x
https://doi.org/10.1038/s43247-024-01248-3
https://doi.org/10.1890/05-0404
https://doi.org/10.1002/joc.4420
https://doi.org/10.1029/2011GL047436
https://doi.org/10.3389/feart.2018.00228
https://doi.org/10.1038/srep33130
https://www.ncbi.nlm.nih.gov/pubmed/27604976
https://doi.org/10.1002/joc.5224
https://doi.org/10.1016/j.agrformet.2015.09.002
https://doi.org/10.1016/j.scitotenv.2023.161954
https://www.ncbi.nlm.nih.gov/pubmed/36736401
https://doi.org/10.1088/1748-9326/ac7342
https://doi.org/10.1016/j.foreco.2010.09.029

	Introduction 
	Materials and Methods 
	Study Area 
	Overview 
	Fire Occurrence Data 
	Environmental and Human Predictors 
	Climatic Variables 
	Variable Selection 
	MaxEnt Modeling for Fire Prediction 
	Spatial Fire Distribution of the Baseline Model and Change Analysis 

	Results 
	Performance of the Modelling Approaches 
	Variable Importance 
	Baseline Model of Fire Probability 
	Projected Future Fire Probabilities 

	Discussion 
	Conclusions 
	References

