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Abstract: Forest fuels are the core element of fire management; each fuel component plays an
important role in fire behavior. Therefore, accurate determination of their characteristics and spatial
distribution is crucial. This paper introduces a novel method for mapping the spatial distribution of
litter and duff fuel loads using data collected by unmanned aerial vehicles. The approach leverages a
very high-resolution multispectral data analysis within a machine learning framework to achieve
precise and detailed results. A set of vegetation indices and texture metrics derived from the
multispectral data, optimized by a “Variable Selection Using Random Forests” (VSURF) algorithm,
were used to train random forest (RF) models, enabling the modeling of high-resolution maps of litter
and duff fuel loads. A field campaign to measure fuel loads was conducted in the mixed forest of the
natural protected area of “Sierra de Quila”, Jalisco, Mexico, to measure fuel loads and obtain field
reference data for calibration and validation purposes. The results revealed moderate determination
coefficients between observed and predicted fuel loads with R2 = 0.32, RMSE = 0.53 Mg/ha for litter
and R2 = 0.38, RMSE = 13.14 Mg/ha for duff fuel loads, both with significant p-values of 0.018 and
0.015 for litter and duff fuel loads, respectively. Moreover, the relative root mean squared errors were
33.75% for litter and 27.71% for duff fuel loads, with a relative bias of less than 5% for litter and less
than 20% for duff fuel loads. The spatial distribution of the litter and duff fuel loads was coherent with
the structure of the vegetation, despite the high complexity of the study area. Our modeling approach
allows us to estimate the continuous high-resolution spatial distribution of litter and duff fuel loads,
aligned with their ecological context, which dictates their dynamics and spatial variability. The
method achieved acceptable accuracy in monitoring litter and duff fuel loads, providing researchers
and forest managers with timely data to expedite decision-making in fire and forest fuel management.

Keywords: fuel loads; high-resolution; spatial distribution; multispectral data; random forest

1. Introduction

Forest fires are simultaneously considered agents of disturbance and ecosystem
shapers. Their occurrence increases every year due to various factors, with climate change
being one of the most important [1]. A trend in their increment has been identified in
recent years, associated with more frequent heat waves and prolonged drought periods [2].
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However, this trend is not uniformly distributed globally. Some areas present precipitation
and humidity increases, favoring the accumulation of forest fuels [3]. Future projections
indicate climate as a highly relevant factor in global fire trends, even surpassing the cur-
rent human influence on both their ignition and extinction [4]. Moreover, according to
IPCC forecasts (2024) [5], climatic conditions will favor the presence and spread of fires,
particularly large fires around the world [6]. Forest fire implications involve a wide range
of ecological, economic, and social impacts [7,8]. Globally, wildfire suppression has been
widely implemented [9]. However, in many ecosystems this approach can lead to coun-
terproductive outcomes, resulting in an excessive buildup of forest fuels leading to more
severe wildfires, especially in the context of climate change [10]. Therefore, accurate spatial
information on forest fuels is crucial for effective fire planning and management [11–13].

Some countries, such as Mexico, have recently implemented forest fire management
policies for which forest fuels are considered a core element [14]. Forest fuels comprise dead
organic matter and living vegetation that can potentially burn when exposed to an ignition
source [15]. Fuel load is the most common concept used to describe the amount of fuel per
unit area, and it is calculated for each component of the fuel complex [16], including dead
organic matter (such as down woody debris [DWD], litter, and duff) and living vegetation
(like herbs, shrubs, and trees). Understanding fuel load distributions across landscapes
is essential for assessing fire behavior, predicting fire spread, and planning effective fire
management strategies. Fuels are usually stratified according to their vertical position
(e.g., ground, surface, and canopy fuels) [17]. Due to their dissimilar characteristics, each
fuel stratum typically results in different types of fires: ground fires primarily burn duff
fuels; surface fires spread through litter, DWD, and understory vegetation; and crown fires
mainly spread through canopy fuels.

Accurate descriptions of forest fuels are important for fire risk reductions. Canopy
fuels direct crown fires, often causing severe effects that require human intervention [18].
Nevertheless, the majority of the world’s wildfires originate from surface fuels. Most
ecosystems in the world contain surface fuel litter, herbs, shrubs, and down woody material.
Litter can dry quickly and is highly flammable, allowing for the fast spread of fire [15].
When surface fuels are exposed to an ignition source, the spread of fire can be very high
and can eventually ignite ground and canopy fuels [19]. The most common ground fuel is
duff, which is usually present as a result of surface fuel decomposition [20]. Duff provides
a slow spread of fire, but high intensity that remains latent for a long time, causing severe
consequences in ecosystems [21]. Forest fuel stratifications have been useful for feeding
fuel classification and fire behavior modeling systems [22,23]. However, for high-resolution
forest fuel management, each fuel component must be considered in an independent
way [15].

Developing high-resolution, accurate maps of the different fuel components remains
a challenge [24]. Because forest fuels interact dynamically with the environment, a shift
in approach is necessary to enhance estimations within a natural ecological context. The
complex biophysical processes occurring in ecosystems play a pivotal role in determining
the dynamics of fuel production, deposition, and decomposition, further complicating the
mapping process [15].

The environment plays a crucial role in shaping and interacting with forest fuels.
Chávez-Durán et al. (2022) [25] developed a method that utilizes environmental variables
as a framework for structuring sampling designs to characterize forest fuels. This method
identifies areas with similar conditions, referred as to homogeneous response areas (HRAs),
using as variables altitude, precipitation, vegetation index, and forest canopy height. For
instance, in “Sierra de Quila” Jalisco, Mexico, four HRAs have been identified, each char-
acterized by unique environmental conditions. In “Sierra de Quila” HRA1, for instance,
litter is the prominent surface fuel due to low solar radiation transmission through the
canopy, a result of the area’s high forest canopy height and dense vegetation. This limited
sunlight inhibits understory growth, leading to sparse understory vegetation [26,27]. Addi-
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tionally, the decomposition of litter in the HRA1 produces abundant duff, especially under
deciduous canopies due to their mass loss characteristics [20].

Employing ecological frameworks is valuable for structuring sampling designs for
field measurements, which are essential for creating high-resolution fuel load maps. Tra-
ditional fieldwork is notoriously labor-intensive, but the process of obtaining accurate
measurements for litter and duff fuel loads requires even greater attention. Beyond the
fieldwork itself, samples must be transported, classified, dried, weighed, and stored in the
laboratory, making the entire process both costly and time-consuming [21,28]. As a result,
the most common strategy involves using small, limited sampling plots with minimal
remeasurements [29,30].

Remote sensing offers a sound alternative to complement fieldwork and laboratory
processes. They promise an alternative for incorporating spatial variability to produce
detailed maps of fuel load distribution, as well as for creating and updating fuel load maps
across extensive areas [31,32]. However, the literature indicates that remote sensing ap-
proaches are primarily used for estimating fuels in the upper strata, i.e., canopy fuels, while
other fuel components are often under-represented [33–35]. Furthermore, a trend towards
the estimation of discrete fuel class maps has been identified, summarizing fuel loads by
types or by models [36,37]. This approach to mapping fuel classes is very useful, especially
for regional planning purposes. However, under the current global scenario, these maps
need to be complemented with continuous detailed and accurate maps of fuel loads, suit-
able for fire management [38]. However, remote sensing techniques for high-resolution
mapping surface and ground fuel loads are still in the early stages of development.

Several studies have reported significant variations in accuracy, influenced by factors
such as the study area, sensors used, and the scale of the research [39,40]. Labenski
et al. (2023) [41] utilized airborne light detection and ranging (LiDAR) in conjunction
with multispectral data from Sentinel-2, employing random forest (RF) regressions to
quantify surface fuels. On the other hand, Li et al. (2021) [42] utilized terrestrial LiDAR
data and linear logarithmic regression models to estimate surface fuels. However, despite
LiDAR’s advantages, its use remains expensive and the availability of high-density LiDAR
sensors is still low. Nevertheless, Keane (2015) [15] argued that forest canopy significantly
influences the characteristics of fuels beneath it, by affecting their production, deposition,
and decomposition. As a result, forest fuel loads below tree canopy cover can be estimated
using high-resolution images.

Technological advances, including the use of unmanned aerial vehicles (UAVs) [43],
have led to the development of platforms capable of carrying multiple sensor types. UAVs
provide the ability to capture high-resolution images with temporal flexibility and relia-
bility [44]. Despite these capabilities, the use of UAV technology for the high-resolution
estimation of surface and ground fuels has been poorly documented [45].

The aim of this paper was to develop a method for mapping the spatial distribution of
surface and ground fuel loads, specifically litter and duff, using field georeferenced data,
high-resolution multispectral imagery, and machine learning techniques. The underlying
hypothesis was that machine learning techniques can find relationships between the upper
canopy observed by UAV sensors and field measurements of surface and ground fuel loads
providing accurate and efficient mapping of the high-resolution spatial distribution of
litter and duff fuel loads. The approach aims to produce detailed and reliable fuel load
maps that reflect their variability as a result of their ecological context, thereby assisting
researchers and forest managers in making timely and informed decisions regarding fire
and forest fuel management. The integration of high-resolution imagery and machine
learning, such as random forest models, could improve the way ground and surface fuel
loads are assessed, leading to more accurate predictions of fire behavior and improved
forest management practices.
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2. Materials and Methods
2.1. Study Area

The study was carried out in the natural protected area “Sierra de Quila,” Jalisco,
Mexico, located at bounding coordinates 20◦14.65′ N to 20◦21.67′ N and -103◦56.79′ W
to -104◦7.98′ W (Figure 1), within an altitudinal range spanning from 1357 to 2544 m asl.
The area comprises 15,192.50 ha, with vegetation mainly dominated by temperate forests,
composed of Pinus and Quercus genus, with Pinus douglasiana and Quercus resinosa as
the most abundant species. The potential fire regime is characterized by frequent, low-
severity surface fires [46,47]. However, due to fire suppression, the potential fire regime has
been altered and devastating crown fires have occurred, with strong implications for both
ecosystem and forest fighters [48]. Previous studies classified the area into four HRAs [25]
and the spatial distribution of canopy fuel loads (CFLs) has been studied [32].
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Figure 1. Image depicting the study area location and showing sampling plots. The projection
coordinate system used is Universal Transverse Mercator Zone 13 North (UTM 13N).

2.2. Data and Materials Description

The estimation of the litter and duff fuel load spatial distribution comprised three
stages: data collection, processing, and mapping. The data collection stage involved:
(1) direct field measurements of fuel loads using permanent sampling plots, and (2) the
acquisition of UAVs imagery. The processing stage involved fuel load estimates which were
derived from field measurements and integrated with UAV metrics in a machine learning
framework. Finally, the mapping stage involved the application of trained RF algorithms
to estimate litter and duff fuel loads from remote sensing data (Figure 2).
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Figure 2. Flowchart for estimating the spatial distribution of litter and duff fuel loads using variable
selection with random forests (VSURF).

2.2.1. Field Data

The field data collection was carried out in May 2022. Three square sampling perma-
nent plots of 1 ha (100 × 100 m) each were established in the study area. The plot corners
were delineated with 2 cm precision, using Ruide Total Station RTS-833, georeferenced
with a Topcon GR-5 Global Navigation Satellite System (GNSS). The plot coordinates were
referenced to the Universal Transverse Mercator, Zone 13 North (UTM 13N) (Figure 1).
In each plot, 25 subplots 400 m2 (20 × 20 m) were established using a Sokkisha TM10E
theodolite (Figure 3A). Within each subplot, four nanoplots of 0.09 m2 each (0.30 × 0.30 m)
were established (Figure 3B) and litter and duff were collected within each one. This setup
resulted in a total of 300 observations for each type of fuel.
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subplots. (B) A subplot showing nanoplots of 0.09 m2 (0.30 × 0.30 m).

The depth of each layer was recorded using Truper® measuring tape (Truper, Mexico
City, Mexico). After the depth measurement, the forest fuels from the nanoplots were
carefully collected and transferred into plastic bags for transportation to the laboratory
(Figure 4A). In the laboratory, the samples were sorted into categories such as duff, Pinus
leaves, Quercus leaves, and other materials (e.g., seeds, flowers, and tree barks) (Figure 4B).
Each sample was then weighed, dried at 70 ◦C until a constant weight was achieved, and
recorded to ensure accurate measurement [21].
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The fuel load variables collected in the field were averaged at the subplot level (400 m2)
to establish the reference values. Descriptive statistics were then applied as part of the
exploratory data analysis. To assess the differences among the plots, the non-parametric
Kruskal–Wallis test was employed, as the assumption of homoscedasticity was not met
according to the Levene test (p-value < 0.05) [49,50]. For subsequent pairwise comparisons,
the Wilcoxon–Mann–Whitney test was used [51].

Previous studies have highlighted the significance of spatial autocorrelation in achiev-
ing high-resolution estimates of fuel loads [28,52]. To ensure the assumption of sample
independence, Moran’s index (MI) was applied to assess the spatial distribution of litter
and duff. The mean values for each fuel component at the subplot level (400 m2) and their
spatial coordinates were used to identify the distribution patterns, following the approach
outlined in Equation (1) [53].

MI =
n
W

∑n
i=1 ∑n

j=1 Wi,jzizj

∑n
i=1 z2

i
(1)

where MI is Moran’s index; n is the number of observations; W is the sum of weights Wi,j,
zi is the difference of fuel loads in position i with respect to its mean (Xi − X), and zj is the
difference of attribute in position j with respect to its mean (Xj − X).

2.2.2. Remote Sensing Data and Multispectral Analysis

Remote sensing data were collected in September 2022 using a Sensefly Ebee® UAV
(AgEagle Aerial Systems Inc., Wichita, KS, USA) equipped with a Parrot Sequoia+®

multispectral camera (Parrot, Paris, France). Spectral information was recorded in four
bands: green (530–570 nm), red (640–680 nm), red edge (730–740 nm), and near-infrared
(770–810 nm). The UAV was flown at a height of 212 m above the ground, resulting in
a spatial resolution of 20 cm. Before each flight, a target calibration panel was used to
produce images radiometrically corrected [54]. In each 1 ha plot, 25 images were captured
with 80% forward overlap and 60% side overlap. For all flights, ground control points
(GCPs) were established to correct the georeferencing of images, and flight plans were
created using eMotion 3.5.0® software and grid flight missions [55].

The data were processed using Agisoft Metashape 1.6.4 software, which enables the
generation of orthomosaics by spectral calibration data and the structure-from-motion (SfM)
algorithm [56]. The internal and relative orientation of individual images was determined
based on their metadata spatial reference, ensuring the accurate integration of the imagery.
Subsequently, the relative coordinates were transformed into absolute coordinates using
GCPs, achieving horizontal and vertical average RMSE values of less than 0.50 m and
0.80 m, respectively. The results were exported as multispectral orthomosaics with their
original spatial resolution [57].

The multispectral orthomosaics were used to compute twelve vegetation indices, as
described in Chávez-Durán et al. (2024) [32]. They comprise: the normalized difference



Fire 2024, 7, 408 7 of 21

vegetation index (NDVI); soil adjusted vegetation index (SAVI); modified soil adjusted
vegetation index (MSAVI); 2-band enhanced vegetation index (EVI2); difference vegetation
index (DVI); green normalized vegetation index (GNDVI); green ratio vegetation index
(GRVI); green difference index (GDI); green red difference index (GRDI); red edge normal-
ized difference vegetation index (NDVIre); red edge simple ratio (SRre); and Datt4. These
vegetation indices provided detailed spectral information related to vegetation con-dition
and cover [58,59].

Moreover, eight textures metrics for each spectral band (Table 1) were derived from
273 the spectral orthomosaics. Texture bands were used to estimate the local spatial
variation [60], using the “gray level co-occurrence matrix” (GLCM) which is one of the
most efficient and widely used texture estimation methods. GLCM makes it possible to
obtain the texture information contained in an image based on the spatial dependencies of
the pixel values within a kernel, describing the frequency of individual pairs of values in a
window, to estimate the spatial variation of the gray levels [61]. A kernel of 5 × 5 pixels was
used to compute different texture metrics such as mean, variance, homogeneity, contrast,
dissimilarity, entropy, second moment, and correlation.

Table 1. Equations used to estimate texture indicators using gray level co-occurrence matrix (GLCM)
from Haralick et al. (1973) [62]. Number of distinct gray levels in the quantized image (Ng);
(i, j)th entry in a normalized gray-tone spatial dependence matrix (P(i, j)); ith entry in the marginal-
probability matrix obtained by summing the rows and columns of P(i, j) (Pi and Pj); and means and
standard deviations of Pi and Pj (µi, µj, σi, σj).

Texture Indicator Equation

Mean
Ng
∑

i=1

Ng
∑

j=1
i·P(i, j)

Variance
Ng
∑

i=1

Ng
∑

j=1
(i − µ)2P(i, j)

Homogeneity
Ng
∑

i=1

Ng
∑

j=1

1

1 + (i − j)2 P(i, j)

Contrast
Ng
∑

i=1

Ng
∑

j=1
P(i, j)(i − j)2

Dissimilarity
Ng
∑

i=1

Ng
∑

j=1
P(i, j)|i − j|

Entropy −
Ng
∑

i=1

Ng
∑

j=1
P(i, j)log(P(i, j))

Second Moment
Ng
∑

i=1

Ng
∑

j=1
{P(i, j)}2

Correlation ∑i ∑j (ij)P(i,j)−µiµj
σiσj

2.2.3. Litter and Duff Fuel Load Spatial Distribution

The spatial distribution of the litter and duff fuel loads was estimated using random
forest (RF) models, one for each fuel component. RF is a highly effective machine learning
algorithm that employs regression techniques through bagging and random subspace
methods [63,64]. The metrics from the subplots were pooled and then split into training
(70% of the sample) and validation (30% of the sample) datasets. The litter and duff fuel load
reference values served as the response variable; to optimize the selection of explanatory
variables and avoid collinearity, the “variable selection using random forests” (VSURF)
algorithm was used. VSURF is an algorithm included as an R library that makes it possible
to select explanatory variables. A two-stage strategy was implemented based on the
ranking of the explanatory variables through random forests permutation. The first stage
produced a subset of important variables including some redundancy but with potential
for interpretation purposes. Based on the score of importance, the second stage resulted in
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a smaller subset of important variables, seeking to avoid redundancy and focusing more
closely on the prediction objective [65]. The importance of each explanatory variable was
assessed using the mean decrease accuracy method [66]. The algorithm was calibrated
and implemented using the “randomForest, raster and sf” libraires [67–69] available in
R-project 4.4.0 [70]. The 95% confidence interval for each predicted fuel was computed
using bootstrapping pairs [71,72].

The models’ performance was assessed using independent validation data, employing
the R2 coefficient, root mean squared error (RMSE) and relative root mean squared error
(rRMSE) [73]. In addition, both absolute and relative biases in fuel loads were calculated.
Absolute bias was used to assess the performance of the RF-trained model on individual
plots, while relative bias enabled comparisons between the plots [74]. These assessments
were conducted according to Equations (2) and (3).

Biasabs = ∑N
i F̂Li−∑N

i FLi (2)

Biasrel =
∑N

i F̂Li−∑N
i FLi

∑N
i FLi

·100 (3)

where, Biasabs and Biasrel correspond to the absolute and relative bias, respectively; F̂Li
is the estimated fuel load for each subplot and FLi is the fuel load observed from the
field data.

Statistical analyses were conducted using the following R libraries: “readr, northest,
car, FactoMineR, ranger and ggplot2” [75–80], available in R-project 4.4.0 [70].

3. Results
3.1. Field Data

Litter fuel loads showed mean values (95% confidence interval) of 1.62 ± 0.14 Mg/ha
for P1, 1.89 ± 0.34 Mg/ha for P2, and 1.19 ± 0.20 Mg/ha for P3, with significant statistical
differences among the plots as indicated by the Kruskal–Wallis test: H(2) = 14.89, p = 0.0006.
According to Wilcoxon–Mann–Whitney test, the litter fuel loads in P1 and P2 were statisti-
cally different from P3 with p-value < 0.05. Pinus leaves accounted for 64.27% of the total
litter fuel load, Quercus leaves for 21.29%, and others fuel materials for 14.44%. The duff fuel
load showed mean values of 54.84 ± 8.83 Mg/ha for P1, 54.58 ± 11.39 Mg/ha for P2 and
50.36 ± 7.88 Mg/ha for P3; there were no significant statistical differences among the plots
according to the Kruskal–Wallis test: H(2) = 0.64, p = 0.73. Moreover, the Moran’s index
analysis showed that both litter and duff fuel loads were distributed randomly, showing no
spatial autocorrelation. For litter, the MI values were as follows: MIP1 = 0.23, MIP2 = 0.23
and MIP3 = 0.10. For duff, MI values were: MIP1 = 0.00, MIP2 = 0.23 and MIP3 = 0.04. All
the MI values had a p-value > 0.05, indicating a lack of significant spatial autocorrelation.

3.2. Litter and Duff Fuel Load Spatial Distribution

As a result of digital photogrammetry, a set of raw multispectral orthomosaics was ob-
tained (Figure 5), followed by vegetation indices and texture bands. The VSURF algorithm
identified the following uncorrelated potential explanatory variables, with a percentage
increase of mean squared error in parentheses according to Liaw et al. (2020) [67]. For
the litter fuel loads, the variables were GNDVI (5.15), green band homogeneity texture
(2.94), red band homogeneity texture (1.32), NDVI (1.03), and green band variance texture
(0.55). For the duff fuel loads, the identified variables were the red edge band homogeneity
texture (5.00), green band second moment texture (3.49), GRVI (3.42), Datt4 (2.69), red edge
band contrast texture (2.66), and NDVIre (0.50) (Appendix A).
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The mean values for the spatial distribution of the litter fuel loads based on the re-
mote sensing data were 1.67, 1.81 and 1.18 Mg/ha for P1, P2, and P3, respectively; for the 
duff fuel loads, the mean values were: 49.51, 46.38, and 48.00 Mg/ha for P1, P2, and P3, 
respectively. Additionally, the highest relative uncertainties were associated with the 

Figure 5. Multispectral orthomosaics for P1, P2, and P3 from the Parrot Sequoia sensor. False-color
composition: Green, red, and red edge bands.

The data validation revealed that models based on remote sensing analysis achieved
R2 = 0.32, p-value = 0.018, RMSE = 0.53 Mg/ha for litter and R2 = 0.38, p-value = 0.015,
RMSE = 13.14 Mg/ha for duff fuel loads (Figure 6). Furthermore, rRMSE was 33.75% for
litter and 27.71% for duff, while the mean relative bias was less than 5% for litter and less
than 20% for duff (Table 2).
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Table 2. Accuracy of litter and duff fuel loads among plots. Absolute bias (Biasabs) and relative bias
(Biasrel).

Fuel Component P1 P2 P3

Litter
Mean Predicted (Mg/ha) 1.67 1.81 1.18
Biasabs (Mg/ha) 0.05 −0.08 −0.01
Biasrel (%) 3.01 4.15 0.75

Duff
Mean Predicted (Mg/ha) 49.51 46.38 48.00
Biasabs (Mg/ha) −5.34 −8.20 −2.37
Biasrel (%) 9.73 15.02 4.70

The mean values for the spatial distribution of the litter fuel loads based on the remote
sensing data were 1.67, 1.81 and 1.18 Mg/ha for P1, P2, and P3, respectively; for the
duff fuel loads, the mean values were: 49.51, 46.38, and 48.00 Mg/ha for P1, P2, and P3,
respectively. Additionally, the highest relative uncertainties were associated with the lower
values, specifically less than 1.00 Mg/ha for litter and less than 30 Mg/ha for duff fuel
loads (Figures 7 and 8).
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4. Discussion
4.1. Field Data

The results from the spatial autocorrelation analysis indicate that litter and duff fuel
loads are randomly distributed, showing high variability even at short distances. This
finding aligns with the results reported by Chávez-Durán et al. (2021) [28], who also
found no spatial autocorrelation for litter and duff fuel loads, with differences greater than
100 Mg/ha in samples separated by less than 80 m. Although their study was in “Sierra de
Quila”, the sampling plot was in another HRA with different environmental conditions.
Ulrich et al. (2014) [81] similarly observed that, at high resolution, vegetation exhibits
significant heterogeneity due to the interplay of chemical and physical soil properties with
abiotic environmental conditions through the water balance [82]. In our study, the high-
resolution data analysis revealed similarly high levels of heterogeneity. These results can
be attributed to the significant influence of the vegetation canopy on the characteristics of
litter and duff fuel loads [15]. Therefore, our study highlights the importance of conducting
high-resolution studies to accurately capture local variability in litter and duff fuel loads,
which is essential for understanding the intricate ecological processes occurring within
smaller spatial extents.

Litter serves as the primary source of highly flammable and continuous fuel. Our
values were lower than those reported by Chávez-Durán et al. (2021) [28], who observed
mean values of 17.95 Mg/ha for litter fuel loads. In our study, the majority of the litter
fuel loads were derived from Pinus leaves. Chávez-Durán et al. (2024) [32] found that
Pinus trees exhibited the highest CFLs values, contributing over 70% in each plot. They
also recorded the highest values of other structural variables such as basal area, tree height,
and vegetation cover, within the same 1-hectare permanent sample plots in the “Sierra de
Quila”. These characteristics explain the significant contribution of Pinus leaves to the total
litter fuel loads. Moreover, the limited solar radiation penetrating the canopy results in
fewer saplings, herbs, and bushes [26,27]. Consequently, litter becomes the most important
surface fuel load, playing a critical role in driving the spread of surface fires [15].

Duff fuels showed the highest fuel loads in our study, with values exceeding those
reported by Chávez-Durán et al. (2021) [28], who recorded mean values of 33.12 Mg/ha.
Nevertheless, unlike their study, the field data used in our study were collected from
the HRA with the highest values of average annual precipitation. Duff is formed from
the decomposition of litter through biophysical processes [15]. According to Kwon et al.
(2021) [83], in mixed forests, the forest floor accumulates leaf litter from a variety of tree
species, which may differ in terms of the timing, quantity, and quality of litter production, as
well as in decomposition rates. Factors such as structural stability, chemical properties, and
environment conditions are predominant in leaf litter decomposition, leading to varying
degrees of decomposition [84]. For practical purposes, most studies treat duff as a single
component [22].

Pérez-Suárez et al. (2011) [20] found that rainfall explained 97% of litter mass loss
in a mixed forest in central Mexico, with the Pinus genus showing a slower rate of leaf
litter mass loss due to its highly significant lignified leaf tissue. In contrast, the Quercus
genus showed a greater mass loss, which is attributed to its higher concentration of soluble
compounds and lower lignin content. Therefore, in our study, the duff fuel loads were
primarily composed of Pinus leaves that remained on the floor for an extended period.

4.2. Litter and Duff Fuel Load Spatial Distribution

Vegetation indices and textures derived from high-resolution UAV multispectral data
allowed for an accurate estimation of the litter and duff fuel loads. The vegetation indices
provided valuable insights into canopy cover [59], while the textures revealed complex
spatial variations in vegetation patterns with a high level of detail [61,85]. The optimized
subsets of the potential explanatory variables identified by the VSURF algorithm proved
highly beneficial for model development. The algorithm effectively discarded irrelevant
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variables, retaining only those predictors that were directly related to the response variable
and avoiding collinearity [65].

The RF regression models facilitated the creation of continuous, high-resolution maps
of litter and duff fuel loads, effectively capturing their inherent spatial variability. The
RMSE and rRMSE values achieved for the litter and duff fuel loads were found to be
satisfactory. These estimations were indirectly derived from the spectral response of the
vegetation cover. According to Keane (2015) [15], vegetation cover plays a significant role
in shaping the characteristics of underlying fuel layers. Understanding these interactions is
essential for comprehending the complex biophysical dynamic processes that govern the
forest environment and fuel loads. Our results from multispectral sensors are consistent
with those reported by Labenski et al. (2023) [41], who found that fuel loads beneath the
tree canopy are primarily influenced by canopy characteristics, which can be effectively
modeled using multispectral data. Canopy characteristics influence the understory through
complex relationships with the biophysical processes that occur in it. Canopy architecture
affects solar radiation regimes, affecting the vegetation characteristics in the understory [26];
the leaf area index and canopy phenology influence leaf litterfall [86] and water balance
plays a key role in litter decomposition to duff [12]. Moreover, the canopy type and tree
distribution have been found to be the main drivers of duff moisture [87]. Furthermore, the
forest canopy frequently changes in response to environmental conditions, disturbances,
and vegetation phenology, affecting the understory forest fuels.

Predictions of litter and duff fuel loads exhibit significant spatial coherence with CFLs.
The least accurate predictions for both the litter and duff fuel loads were observed in P2.
According to Chávez-Durán et al. (2024) [32], P2 recorded the highest total height of trees
but also the lowest number of trees and ground crown cover. This suggests that predictions
of fuel loads beneath the tree canopy and their accuracy may be influenced not only by
CFLs but also by the structural characteristics of the vegetation. This finding aligns with
Rubio-Camacho (2013) [88], who reported that the structural characteristics of vegetation
have complex relationships with fuels beneath the tree canopy, and direct correlations
between canopy and fuels loads below tree canopy cover are usually not straightforward.

The confidence interval for the models showed that larger uncertainties were observed
for lower fuel loads. These findings are consistent with García et al. (2017) [72], who
estimated canopy fuel loads using machine learning techniques. Similarly to our results,
they found that greater uncertainties stemmed from the heterogeneity of fuels within pixels,
as well canopy gaps and soil effects on the spectral signal. Relatively high uncertainty
values can be a result of high variances in decision trees employed by RF. Nevertheless,
the final averages from the algorithm achieved acceptable accuracies. The continuous,
high-resolution maps of litter and duff fuel loads generated using the proposed method
enabled us to account for the natural distribution, spatial variability, and uncertainties of
the forest fuel loads, providing valuable tools for decision-making.

The development of this method demonstrates significant potential for accurately
estimating the high-resolution spatial distribution of litter and duff fuel loads in the context
of native mixed forests characterized by high structural complexity [16,89]. Our results
indicate that, although machine learning algorithms did not achieve high determination
coefficients, the p-values were significant and the bias was minimal, thereby demonstrat-
ing the method robustness, the results of which could be improved in future studies by
increasing the sample size. This study introduces a method to optimize both the costs
and time associated with estimating litter and duff loads, particularly in laboratory work.
Usually, this estimation requires laborious processes of classification, weighing, and dry-
ing samples obtained from the field, involving time-consuming and expensive logistics
processes [29,30]. In contrast, our proposed method requires only a few hours of data
processing. Furthermore, the application of trained machine learning extends the method’s
efficiency and applicability to regions with similar ecological contexts.

The field data used in this research were collected from the same HRA within the
study, all area sharing a common ecological context. This consistency allows the in situ
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data to be extrapolated to other areas with similar characteristics, and can be replicated
across different latitudes [25]. Moreover, the method’s applicability can be extended from
local to broader geographical regions through upscaling techniques, thereby enhancing its
overall utility and impact [72,90].

5. Conclusions

This research introduces a novel method for rapidly mapping the continuous high-
resolution spatial distribution of litter and duff fuel loads using UAV-derived data and
machine learning modeling. A UAV equipped with a multispectral camera facilitated
the acquisition of high-resolution images, ensuring an appropriate temporal alignment
between fieldwork and remote sensing data collection. In addition, the collection of a large
volume of field data over a relatively small area provided a robust dataset for the effective
training of machine learning models.

Textures and vegetation indices, as explanatory variables, enhance the estimation of
litter and duff fuel loads by leveraging the natural influence of canopy physiological and
structural characteristics on the underlying fuel layers, thereby enabling the estimation of
understory fuel loads. The spatial distribution of litter and duff fuel loads was found to
align with the forest environment and the inherent complexity of mixed forests in the study
area. The developed method, using RF modeling based on remotely sensed data, offers
an efficient alternative to traditional approaches that require labor-intensive fieldwork,
costly and time-consuming laboratory processes. Moreover, once trained, RF models can
be readily applied to UAV-derived data, delivering satisfactory results in just a few hours.

This capability is particularly crucial for timely and reliable information, which is
essential to the transition toward more effective fire management policies. This research
provides a robust method for monitoring litter and duff fuel loads, which can also be
extended to model their temporal dynamics, thereby enhancing the effectiveness of fire
management strategies.

Understanding the spatial distribution of litter and duff fuel loads is critical for captur-
ing the natural complexity of forest fuels, comprehending their dynamics, and deciphering
their spatial variability within the diverse forest ecological context. The study of these
elements is vital for researchers, academics, and forest managers as it provides a cen-
tral foundation for data-driven decision-making in forest fuel management and wildfire
mitigation efforts.
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Appendix A

According to the VSURF algorithm, two vegetation indices and three texture bands
were identified as potential explanatory variables to estimate the spatial distribution of
the litter fuel loads (Figures A1 and A2). Three vegetation indices and three texture bands
were identified for the duff fuel loads (Figures A3 and A4).
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