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Abstract: Wildfires occur frequently in various regions of the world, causing serious damage to
natural and human resources. Traditional wildfire prevention and management methods are often
hampered by monitoring challenges and low efficiency. Digital twin technology, as a highly integrated
virtual simulation model, shows great potential in wildfire management and prevention. At the
same time, the virtual–reality combination of digital twin technology can provide new solutions for
wildfire management. This paper summarizes the key technologies required to establish a wildfire
digital twin system, focusing on the technical requirements and research progress in fire detection,
simulation, and prediction. This paper also proposes the wildfire digital twin (WFDT) model, which
integrates real-time data and computational simulations to replicate and predict wildfire behavior.
The synthesis of these techniques within the framework of a digital twin offers a comprehensive
approach to wildfire management, providing critical insights for decision-makers to mitigate risks
and improve emergency response strategies.
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1. Introduction

With global warming and the expansion of human activities, adverse conditions have
led to the frequent occurrence of wildfires around the world [1]. Wildfires, as major global
natural disasters, have become one of the serious challenges facing forest ecosystems and
human societies globally. Wildfires not only cause devastating damage to human beings,
biodiversity, and ecosystems but also often consume a large amount of human, material
and financial resources [2,3]. The “Black Summer” wildfire that lasted for several months
in Australia in 2019 [4], the California wildfires in the United States in 2020 [5], and the
wildfire in Liangshan, Sichuan Province, China [6], have had a serious impact on the
resources of various countries and even the world. The prevention and control of wildfires
has become a global problem. Traditional wildfire management and response methods
often face limitations. Therefore, there is a need to introduce new technological tools to
improve the efficiency of fire response and suppression and to reduce the damage caused
by fires.

Digital twin (DT) is a virtual digital copy with a physical entity. It refers to the tech-
nology behind the modeling, simulation, and analysis of physical entities, processes, or
systems through digital technology to achieve the monitoring, simulation, prediction, and
optimization of its real-time operating state [7]. With the development of computer tech-
nology, fire spread simulation has become an important tool for wildfire prevention and
control [8]. Digital twin technology, as an emerging concept, integrates advanced technolo-
gies such as virtual reality, analog simulation, data analysis, and artificial intelligence [9]. It
provides new ideas and methods for the approximate simulation of wildfire.

Recent studies have highlighted the inherent complexity and unpredictability of wild-
fire spread dynamics [10]. Traditional methods of wildfire prevention and control often
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struggle with limited data, slow response times, and difficulty accurately predicting fire
behavior [11]. To address these challenges, we propose developing a wildfire digital twin
model using digital twin technology. A digital twin offers a dynamic, real-time virtual
representation of the physical environment [12], enabling more precise modeling and
simulation of wildfire scenarios. This technology has been shown to enhance real-time situ-
ational awareness [13], improve the accuracy of wildfire predictions, and optimize resource
allocation during firefighting efforts. The wildfire digital twin model can provide a basis
for monitoring, early warning, prediction, approximate simulation, and decision-making
in wildfire management [14,15]. It can also support virtual training for fire emergency re-
sponders, helping them improve their response speed and capabilities [16]. Consequently,
the application of digital twin technology to wildfire management holds considerable
theoretical and practical significance.

This paper first introduces the definition and fundamental principles of digital twin
technology, followed by a systematic review of the relevant technologies required for a
digital twin system tailored to the wildfire spread process. Focusing on the entire life cycle
of wildfire spread, we discuss the latest advancements and practical applications in areas
such as wildfire monitoring and early warning, fire spread simulation, and digital modeling,
providing a detailed categorization of the associated technologies and methods. Through
an analysis of various research outcomes, we propose, for the first time, a comprehensive
wildfire digital twin model designed to assist related researchers in leveraging digital
twin systems for wildfire management. The advantages and challenges of digital twin
technology in wildfire management are also analyzed. This review aims to provide valuable
insights and guidance for researchers and decision-makers, thereby promoting the broader
application and development of digital twins in wildfire prevention and response.

2. Materials and Methods
2.1. Data Collection and Analysis

To establish the research background and assess the current status of studies related
to the topic of our review, we conducted a comprehensive literature analysis in the Web
of Science (https://www.webofscience.com/wos/, accessed on 12 July 2024) database.
Common wildfires typically include forest fires, grass fires, crown fires, and bushfires [17].
Studies were selected based on the inclusion of specific keywords related to wildfire man-
agement and digital twin technology. So, we established the following search keywords in
this database: “forest fire”, “wildfire”, “wildland fire”, “grass fire”, “crown fire”, “bush-
fire”, and “fire”. Then, we combined these keywords with “digital twin” for advanced
search. Since digital twin is a relatively new technological concept, the data collection for
this study primarily focused on the past five years. Some early, sporadic foundational
research may have been excluded, but after evaluation, this was found not to affect the
comprehensiveness of our trend analysis. Only peer-reviewed journal articles, conference
papers, and reviews were included to ensure the quality and reliability of the sources. Thus,
the data in Figure 1 were obtained.

The results in Figure 1 show a growing trend in the number of research papers related
to the application of digital twin technology in wildfire and fire studies over the past
five years. Notably, the number of papers on “fire” combined with “digital twin” has
steadily increased from 10 in 2020 to 36 in 2024. In contrast, studies specifically focused
on “wildfire” have also risen, though at a slower rate, starting from 3 papers in 2020 and
reaching 12 papers by 2023. This trend suggests an increasing interest in integrating digital
twin technology into fire management research, highlighting its potential value. However,
there are still fewer studies on “wildfire” compared to the broader category of “fire”. This
suggests a gap in research focused on applying digital twin technology to wildfires. The
increasing trend emphasizes the importance of developing more refined digital twin models
tailored specifically to the unique characteristics and challenges of wildfires, such as rapid
spread and unpredictable behavior.

https://www.webofscience.com/wos/
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From this data, we can see that there are still obvious theoretical and technological
gaps in the research of digital twin for wildfires. The purpose of writing this review is to fill
this gap by gathering current research and providing new directions to relevant researchers.
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“digital twin”. Data include studies published until August 2024.

2.2. Data Overview

As we have found, there is less research on the application of digital twin in wildfires.
And the few existing applications of digital twin in conjunction with fires in the relevant
literature often lack comprehensive integration [18–20]. In fact, through our research
on the relevant literature [21], the digital twin has been found to have great potential
and advantages in fire management (Figure 2). In the field of environmental monitoring,
such as wildfire management, digital twin technology enables real-time monitoring of
environmental conditions [22]. However, due to the complexity and variability of the forest
environment and the high suddenness of fires, there is a relative lack of research results
on the application of digital twin to the field of wildfires. Previously, this technology was
mostly used in the field of fire for indoor building fires.
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In terms of fire prevention, artificial intelligence is widely applied in fire safety and
has become a key engine driving the development of digital twin intelligent fire protection.
Ding et al. proposed an intelligent emergency digital twin system based on computer
vision and deep learning. The evacuation data generated by the system helps evacuate fire
scenes, achieving detection, tracking, and privacy protection of evacuees [23]. Zhang et al.
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proposed a new Artificial Intelligence Digital Firefighting (AID-Fire) framework using AI
engine-driven for real-time recognition of complex building fire information, including
fire development, fire spread, and fire movement [24]. In terms of fire response, the
digital twin can simulate fire scenarios in real time, including the spread of the fire, the
types of combustibles, and the distribution of smoke, to provide decision support and
command plans for firefighters [25]. In interactive fire suppression simulation, Meng et al.
constructed different combustible models and successfully visualized the occurrence and
extinguishing behavior of forest fires in 3D scenes [26]. Providing a foundation for the
application of wildfire digital twin. Dourvas et al. combined cellular automata and digital
twin for the first time and proposed a digital twin platform to monitor the humidity and
temperature conditions inside a building that predicts and simulates the spread of fire
within a building [27]. Similarly, Zhang et al. proposed a digital twin system for tunnel
firefighting (Figure 3). They constructed a 3D digital twin through numerical simulation
and full-size tunnel fire tests, demonstrating the feasibility of using 3D environments and
digital twin in real-time fire safety management [28]. The “Wildfire Digital Twin” project,
planned by NASA for 2024, is currently the most comprehensive application combining
digital twin technology with wildfire management [29]. It represents a major step forward
in this field. The digital twin system built in this project will use artificial intelligence and
machine learning to predict potential burn spread paths in real time, merging data from
multiple sensors to produce global models with high precision. It will provide a valuable
advanced tool for firefighters and fire managers.
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3. Digital Twin Technology
3.1. Definition of Digital Twin

The term “Digital Twin” was not formally introduced until 2010 in a National Aero-
nautics and Space Administration (NASA) technical report [30]. NASA defined it as a
simulation process that fully utilizes physical models, sensors, operational history, and other
data to integrate multi-disciplinary, multi-physics, multi-scale, and multi-probability [31].
Since then, digital twins have begun to have an impact in both academia and industry.
Related concepts such as cyber–physical worlds and the metaverse are also beginning to
be widely disseminated and applied by scholars in a variety of research fields and indus-
trial applications [32], such as industrial manufacturing, architecture and planning, and
aerospace [33].

3.2. Technical Framework of Digital Twin

The core of digital twins lies in creating one or more highly detailed virtual models that
reflect the state of physical entities, which are fully synchronized with their physical ver-
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sions [34]. This synchronization is based on sensors and other data acquisition technologies,
which theoretically continuously monitor real-time data about physical objects (position,
temperature, humidity, pressure, etc.) and transmit these data back to the digital model. In
addition, digital twins also include a data analysis framework for processing input data
and simulating predicted future states, allowing for more effective decision-making and
predictive maintenance [35]. Driven by data, frameworks, and models [36], digital twins
can monitor, simulate, predict, and optimize their physical entities.

In this paper, the composition of the digital twin framework is divided into the
following three parts: physical entity, digital twin core entity, and user entity, each with
different functions (Figure 4). The physical entity is the cornerstone of the digital twin.
The digital twin core entity is the key part of realizing the virtualization and simulation of
physical entities. Additionally, the user entity is the final application link of the digital twin.
Digital twin technology organically combines the above three parts, covering the complete
process from data acquisition, processing, and analysis to user interaction, and realizing
the dynamic mapping of physical entities and user entities.
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3.3. The Application of Digital Twin

In the process of continuous development and maturity of the technology, digital
twin has become an advanced virtual simulation and prediction tool. It is now gradually
expanding to a mixture of fields, including manufacturing, energy, healthcare, and so on
(Figure 5).
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In Industry 4.0, digital twin is used to improve productivity and reduce costs through
the real-time monitoring of production lines, predictive maintenance of equipment, and
simulation of manufacturing processes [37]. In addition, the technology is widely used in
product design, production, forecasting, and cycle management [38,39].

Digital twin is widely used to enhance urban infrastructure management [40], optimize
traffic flow [41] and emergency response and management [42], and assist in smart city
management and improve the sustainability of cities [43–46].

In medical care, digital twin combined with related technologies provide new solutions
for patient care, predictive analysis, and clinical operation training [47–49].

In aerospace, digital twin helps predict and solve potential problems by simulating
the life cycle of aircraft, from design to manufacturing, use to maintenance [50,51]. In
addition, digital twin technology is widely used for satellite systems, spacecraft, and lunar
exploration [52].

Digital twin enables the monitoring, prediction, and optimization of energy and
environmental systems by creating digital copies of physical entities [53]. Digital twin
effectively monitors air quality [54] and water resources [55], predicting environmental
change trends through real-time data collection and virtual model simulation. In ecosystem
management, digital twin helps to understand the dynamic changes of ecosystems and
develop more effective conservation and restoration strategies [56,57].

4. Wildfire Detection and Real-Time Data Acquisition

The development of a wildfire digital twin relies heavily on advanced methods and
technologies for real-time monitoring and data collection. This section discusses key
advances in wildfire detection and real-time data collection methods to highlight their role
in the wildfire digital twin model.

4.1. Wildfire Detection

To reduce losses from wildfires, countries around the world attach great importance
to wildfire detection, which is an essential part of wildfire management. The initial phase
of fire management involves the timely and accurate detection of fires, and once detected,
continuous monitoring is essential to assess their development and potential threat. The
real-time data provided by wildfire detection is an important input source for the wildfire
digital twin model. Accurate and effective detection data can ensure that the digital twin
model truly reflects the real-time status of the fire scene.

The measures for wildfire detection can usually be categorized into four spatial levels,
namely, ground patrol, near-ground observation, aerial patrol, and space satellite mon-
itoring [58]. Various technologies, such as IoT sensors, remote sensing, and drones, are
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employed to gather high-quality data. Table 1 shows the detection measures and related
technologies for the four spatial levels: ground patrol, near-ground observation, aerial
patrol, and space satellite monitoring.

Table 1. Summary of wildfire detection measures and technologies.

Spatial Levels Measures Related Technology Scope of Application Sketch Map

Ground
1. Manual patrol
2. Ground monitoring

station

Internet of Things
(IoT)/Wireless sensor
networks/Wireless
communication

Small forest areas
Easily accessible regions
Fixed locations
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UAV detection is the deployment of UAVs to forest sites, using equipped infrared
sensors, cameras, and other devices to capture real-time details of the fire scene. UAVs allow
for high-altitude views or close views of the fire scene. The advantage is the ability to access
high-altitude, remote, and hazardous areas, providing high-quality aerial fire imagery
and hotspot maps. The current innovative approach to wildfire prevention is the use of
UAVs equipped with advanced fire detection models. Saydirasulovich et al. proposed a
target detection model customized for the UAV imagery environment, which enhances
the effectiveness of fire detection [59]. Zhang developed a specialized UAV system for
wildfire detection, based on which Zhao designed a saliency detection method to enhance
the efficiency of locating and identifying wildfires in aerial images [60]. Li et al. designed
an image acquisition platform consisting of a tripod head and a camera for unmanned
aerial vehicles. It uses intelligent recognition technology to real-time identify and detect
the occurrence of fire, which is suitable for the on-site monitoring of actual fire [61]. Chen
et al. proposed a lightweight wildfire smoke detection model for UAV imagery [62] that
contributes to the intelligence of UAV detection. However, there are some challenges and
limitations in UAV detection, such as the effect of weather conditions on UAV flight, the
endurance of UAVs, and the stability and security of data transmission [63]. Therefore,
when utilizing UAVs for fire detection, various factors need to be fully considered to ensure
the effectiveness and safety of UAV detection.

4.1.2. Satellite Monitoring

Remote sensing technology plays a crucial role in wildfire detection. The use of
satellite remote sensing technology for fire detection is currently a relatively efficient
method [64]. It detects fires by observing features such as hotspots and smoke on the
ground through images [65]. Satellite monitoring can achieve the monitoring of large-
scale fires and provide high-resolution fire monitoring data. In recent years, with the
abundance of Earth observation data and the deployment of new remote sensing satellites,
the spatiotemporal resolution of wildfire detection has been significantly improved [66].
In particular, geostationary (Meteosat, GOES, Himawari), medium-resolution satellites
(such as Landsat-8 or Sentinel-2), and other high-resolution, high-speed repetitive satellites
provide powerful tools for monitoring of wildfires [65]. Liu et al. proposed a new method
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for extracting fire spread rate in near real-time based on Himawari-8 satellite data [67].
Ban et al. used a deep learning-based framework to study Sentinel-1 SAR dense time
series [68], used for the monitoring of wildfire progression through smoke, clouds, and
nighttime. In addition, distributed satellite systems (DSS) have also demonstrated their
potential applicability in wildfire monitoring, providing wide coverage and short revisit
intervals [69]. However, the use of satellite monitoring for wildfires is limited by spatial
and temporal resolution, as well as interference from other factors. It is difficult to realize
early small fire point detection and rapid real-time detection. Therefore, it is less suitable
for the high real-time demands of the digital twin wildfire detection module.

4.1.3. Ground Monitoring

In the field of wildfire detection, the most traditional methods usually rely on manual
observation, such as ground monitoring stations and watchtowers [70]. Ground monitoring
stations are established in forest areas, equipped with various commissioners, sensors,
and monitoring equipment to conduct real-time monitoring of fire-related environmental
parameters such as temperature, humidity, wind speed, and wind direction [71]. In early
research on wildfire detection, the strategic layout and networking of watchtowers were
crucial to the establishment of an effective fire detection system [72,73]. In the past decade,
the technology and equipment for ground detection have been significantly improved.
Automation and intelligent technologies are gradually being introduced into watchtowers.
For example, improvements were made by combining technologies such as automated
vision systems and sensor networks [74]. In addition, the ground monitoring station has
also adopted advanced wireless communication and IoT technologies, contributing to the
establishment of wildfire monitoring command network [75].

Although ground-based monitoring can achieve continuous monitoring and data
collection of fires, this manual observation process is susceptible to a variety of external
factors, including data transmission, communication problems, and weather conditions,
which may lead to inefficient monitoring. In addition, existing monitoring facilities still
have some limitations, such as limited coverage, inability to cover all detection areas, and
high maintenance costs [76]. Therefore, wildfire research at this spatial level has been
decreasing in recent years.

4.1.4. Wildfire Detection Technology

Fire detection based on computer vision technology is currently the most suitable
method for integrating with digital twin models in wildfire management. This process
begins with capturing images or video streams through surveillance cameras or UAVs.
These visuals undergo preprocessing to enhance their quality, such as noise reduction and
image enhancement. Subsequently, fundamental features like color, motion, texture, and
shape are extracted from these processed images. These features are then fused to create a
comprehensive dataset. Various algorithms, including machine learning and deep learning
techniques, analyze these data to monitor fires and simulate or predict their propagation.
Ultimately, this enables specific applications in early warning systems, intelligent fire
management, and real-time updates (Figure 6).

Traditional fire detection mostly uses pattern recognition for feature extraction, which
is categorized into flame detection and smoke detection according to the detection ob-
ject [77]. Most of the previous studies mostly analyzed the static and dynamic features of
flames and smoke to perform fire detection. The relevant features include shape, location,
texture, color characteristics, and motion characteristics. For example, Toreyin et al. de-
scribed a fire detection method based on color and motion characteristics to detect fires and
flames in real time by processing video data generated by ordinary cameras monitoring
the scene [78]. Toulouse et al. proposed a logistic regression-based fire pixel monitoring
method using the size, color, space, and motion characteristics of fire [79]. Li et al. proposed
a flame detection framework based on flame color, dynamics and flickering characteristics
to develop an autonomous flame detection method [80]. Combining spectral, spatial, and



Fire 2024, 7, 412 9 of 25

temporal features and fuzzy reasoning, Ho et al. proposed a machine vision-based fire
early detection algorithm [81].
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However, the examples cited above are traditional fire detection methods. In recent
years, with the advancement of science and technology and the development of intelligence,
fire detection methods have become more diversified and efficient. As computer arithmetic
has grown, many researchers have begun to use deep learning models in conjunction with
UAVs, surveillance cameras, or satellite imagery for fire spot monitoring tasks [82,83]. This
class of methods can improve the real-time accuracy of fire detection techniques required
for digital twin systems.

Since 2014, deep learning has been gradually introduced into fire detection [84]. Target
detection models such as you only look once (YOLO), regions with convolutional neural
network (R-CNN), faster-RCNN, and single-shot multibox detector (SSD) are used for
fire detection tasks in fire monitoring to achieve the identification and localization of fire
points in images. Li et al. develop fire detection algorithms based on advanced target
detection convolutional neural network (CNN) models such as faster R-CNN, region-based
fully convolutional networks (R-FCN), SSD, and YOLO v3 [85]. The results show that
the CNN-based algorithm is significantly better than the traditional algorithm, and the
YOLO-based algorithm has optimal accuracy and speed. Since YOLOv1 was proposed in
2016 [86], the YOLO series has become the leader in the field of real-time object detection,
and its different versions have attracted much attention for their application effects in fire
detection tasks [59,87].

After the YOLOv3 [88] and YOLOV5 [89–91] models, the YOLOv8 model has been
dramatically optimized structurally and is designed to be fast, accurate, and easy to use.
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Enhanced model detection of small targets is important for small target detection tasks
such as flames. Leon et al. adopted and implemented the recent YOLO model to detect
and locate smoke and wildfires using ground and aerial imagery [92]. Mohamed adapted
and optimized the YOLOv8 and YOLOv7 models for smoke and flame detection, which
improves fire detection accuracy [93].

In addition to the YOLO series, other deep learning algorithms have shown potential
for fire detection [94]. The convolutional neural network is a network structure commonly
used in deep learning, and image recognition algorithms based on this network can ef-
fectively learn and extract complex image features automatically [95]. Researchers have
trained CNN models to enable fire detection (Figure 7). For example, in one study, Khan
et al. proposed a deep learning-based method for wildfire detection. The method synergis-
tically combines CNNs and recurrent neural networks (RNNs) for wildfire classification
and detection in smart urban environments [96]. Huang et al. improved the accuracy of
the visual fire detection method by combining CNN-based spatial features and wavelet
transform-based spectral features [97]. Many studies have proposed lightweight CNN
models for fire detection on resource-constrained devices. For example, Pan et al. proposed
a novel fire–smoke cooperative region detection and classification framework for fire mon-
itoring. The framework uses weakly supervised fine segmentation and the lightweight
faster R-CNN technique [98].
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Furthermore, there are image segmentation models such as U-Net and mask R-CNN
for the task of flame region segmentation in fire monitoring. Using an image segmentation
model, the flame region in an image can be separated from the background to achieve
accurate identification and localization of the fire region. Ref. [99] optimizes local contextual
and global index methods based on physical mechanisms, while a new U-Net model is
developed for accurate fire detection. Ref. [100] proposes a new instance segmentation
method based on the mask R-CNN model for early wildfire detection and segmentation.

In summary, various researchers and scholars have adopted various techniques and
methods in wildfire monitoring to realize timely monitoring, early warning, and emergency
response to wildfires. By integrating the above techniques and methods, the wildfire digital
twin can realize real-time and efficient detection, improving the accuracy and reliability of
the model.

4.2. WFDT Data Collection

To build a robust wildfire digital twin, comprehensive wildfire data collection is
critical [101]. Various technologies, such as IoT sensors, remote sensing, and drones, are em-
ployed to gather high-quality data [102]. IoT sensors can be strategically placed throughout
forested areas to continuously monitor environmental variables like temperature, humidity,
soil moisture, and wind speed [103]. These sensors offer granular, localized data, helping
to detect early signs of wildfire risks. Remote sensing technologies, including satellites and
aerial platforms, provide a broader perspective, capturing large-scale data on vegetation,
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fuel loads, and fire spread [104]. Remote sensing tools can deliver valuable information on
the characteristics of fires, surface, and smoke [105]. UAVs further enhance data collection
capabilities by offering high-resolution, real-time imagery, and thermal data in areas that
are difficult or dangerous for humans to access. Equipped with multispectral and thermal
cameras, UVAs can monitor hotspots and fire fronts, providing up-to-date information
to ground teams and decision-makers [103]. The digital twin uses these real-time data
to model fire behavior, simulate various scenarios, and evaluate potential intervention
strategies. Additionally, feedback from the physical environment—such as sudden changes
in wind direction or unexpected fire spread—is incorporated into the digital twin through
these continuous data streams. This feedback loop allows the digital twin to adjust its
simulations and predictions promptly.

The integration of these technologies ensures a continuous and comprehensive flow
of data into the wildfire digital twin, allowing it to maintain a high degree of accuracy in
representing the physical environment.

5. Simulation and Prediction Model of Wildfire Spreading Process

The model of the wildfire spread process is the theoretical basis for designing and
developing a digital twin system for wildfires. The digital twin system simulates the spread
process of fires approximately by applying wildfire spread models and data-driven models.
This section provides an overview of existing wildfire spread models and algorithms.

5.1. Model of Wildfire Spread Speed

Globally, many countries that are frequently troubled by wildfires have established
several sets of wildfire spread models, among which the more widely used ones are the
Rothermel model from the U.S., the McArthur model from Australia, the Wang Zhengfei
wildfire spread model from China, the Canadian forest fire spread model [106], etc. When
establishing the digital twin system, the appropriate wildfire spread rate model should be
selected according to the specific application requirements and available data resources.
This section summarizes the existing wildfire spread models into three categories (Table 2):
physical model, empirical model, and semi-empirical model [107].

Table 2. Advantages and disadvantages of wildfire spread rate model in digital twin system.

Category Classical Model Performance and
Benefits Drawbacks Applicable

Scenarios

Physical Model
Models based on
fluid dynamics,

thermodynamics, etc.

Highly accurate,
strong adaptability

High computational
complexity and data

requirements

High-precision
simulation

Empirical Model
McArthur model,

Canadian forest fire
spread model, etc.

Computationally efficient,
easy-to-use

Limited accuracy and
strong limitations

Rapid initial
assessment and

real-time monitoring

Semi-Empirical
Model

Wang Zhengfei
model, Rothermel

model, etc.

High computational efficiency,
good accuracy,
high flexibility

Strong dependency,
may require frequent

calibration and updates

Balance calculation
efficiency and

simulation accuracy

5.1.1. Physical Model

The physical model is based on the analysis and description of the physical and
chemical processes involved in the spread of fire. The model not only uses physical and
chemical principles to simulate the behavior of wildfires but also takes into account the
interactions between the fire and its environment. Examples include heat transfer, pyrolysis
processes, and the effects of wind and topography. The physical model is suitable for
high-precision simulations and can accurately describe the fire spread process for a wide
range of fuel types and conditions.
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A typical model of wildfire spread based on physical processes was proposed in a
paper by Fons in 1946, and the principles of this model involved the basic thermodynamic
and aerodynamic mechanisms of flame propagation [108]. In recent years, researchers
have progressively developed physical models based on more complex mechanisms. For
example, Pirk et al. proposed a tree combustion model that combines heat transfer with
fluid dynamics [109]. Similarly, Hadrich et al. proposed a new mathematical formulation
for the plant combustion process by integrating the effects of heat transfer, char insulation,
and mass loss [110], which realistically simulates the pyrolysis of wood and thus the
propagation process of forest fires (Figure 8).
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5.1.2. Empirical Model

The empirical model relies on historical fire data and established empirical formulae
to predict fire spread and is usually simple and efficient. It is suitable for large-area fire
simulations. Typical empirical models include the McArthur model from Australia and the
Canadian forest fire spread model. The McArthur model is based on many point-burning
experiments to investigate quantitative relationships between wildfire spread rates and key
parameters. On this basis, fire spread rate, flame height, and fire intensity are calculated to
predict fire behavior [111]. This model is one of the most widely used empirical models for
predicting the risk and behavior of forest and grassland fires in Australia [112]. Similarly,
the Canadian forest fire spread model was developed based on many field experiments and
historical fire data and is widely used in Canada’s fire management and prediction systems.
The main ones include the Canadian forest fire behavior prediction system (FBP) and the
fire weather index system (FWI) [113]. Although empirical models are usually based on
historical data and may not be as accurate as physical models, their predictions are still
highly informative in most cases.

5.1.3. Semi-Empirical Model

The semi-empirical model combines the advantages of physical and empirical models,
using existing observation methods and data to make feedback corrections to parameterized
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physical models. By studying the relationship between observed and predicted values,
systematic errors can be eliminated to improve the accuracy and practicality of predictions.
Examples include the Wang Zhengfei model in China and the Rothermel model in the
United States.

Wang Zhengfei wildfire spread model is a semi-empirical model from China that com-
bines physical models and empirical formulae by taking fuel characteristics, meteorological
conditions, and topographical factors into account [114]. This model is able to predict
the rate and direction of fire spread more accurately. The Rothermel model, developed in
the United States as a semi-empirical model based on the law of conservation of energy,
provides an estimate of the rate of fire spread by analyzing fuel, weather, and terrain data.
It is one of the most commonly used fire spread models [115]. The Van Wagner model is
a semi-empirical model for Canadian forests that considers factors such as canopy fuels,
wind speed, and flame height. It is used to predict the rate of spread and fire behavior of
predicted crown fires [116].

In fact, existing fire spread models mainly rely on numerical experiments and sim-
ulations of small-scale fire experiments, lacking validation of full-scale and large-scale
real fire scenarios. In this situation, assessing the spread accuracy of wildfire digital twin
remains a critical but unresolved issue. Although laboratory environments and small-scale
simulations provide important theoretical foundations, the applicability and reliability of
their results in actual large-scale fires still need to be validated. Therefore, how to test and
verify the performance of wildfire digital twin systems in real environments to ensure their
effectiveness in practical applications remains an important research direction.

5.2. Methods for Spatial Propagation of Wildfire Spread

To simulate the dynamic spread of wildfires effectively, researchers must select suit-
able spatial propagation methods [117]. These methods should be based on the chosen
fire spread rate model to ensure that the simulation results tend to be accurate. Spatial
propagation methods for wildfire spread can be categorized into grid-based simulation
and vector-based simulation.

Grid-based simulation is represented by cellular automata. The cellular automata
model is a discrete model that divides geographic space into regular grids, with each grid
cell updated based on the state of surrounding cells [26]. They are commonly used to
simulate physical systems [118]. Figure 9 shows the principle of cellular automata applied
in 3D simulation of wildfire spread. In order to simulate the spread of real-time interactive
tree crown fires, Liu et al. introduced a new cellular automaton model based on reaction
and radiation physics equations and verified the functionality of the model [119]. Rui
et al. artificially improved the spatiotemporal consistency of the wildfire spread model
by combining the cellular automata model with the Wang Zhengfei wildfire model. A
temporal correction factor was also added to improve the accuracy of wildfire spread
prediction [120].

In addition, vector-based simulations often employ the Huygens principle to model
the spread of wildfires. The fire spread model based on Huygens’ principle operates by
considering the fire front as a continuous curve, which expands over time. Each point on this
curve acts as a source of secondary wavelets that propagate outward, influenced by factors
such as fuel type, slope, meteorological conditions, and time step [121]. The cumulative
effect of these wavelets determines the overall shape and progression of the fire front.
This approach allows for an approximate yet effective simulation of the dynamic behavior
of a spreading fire, accommodating the complex interactions within the environment.
For example, the FARSITE fire growth simulator based on the U.S. Forest Service’s Fire
Behavior Prediction System is a vector-based Huygens-type model, which simulates the
expansion of fire by continuously propagating a wavelet of the flame front. Using this
vector-based computational approach, FARSITE can accurately simulate changes in the
shape and location of the flame front [122]. Some scholars have carried out new theoretical
research based on Huygens’ principle. For example, Dehkordi et al. combined the Randers
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metric and Huygens’ principle to propose several models for the propagation of flatland
wildfires in the presence of wind [123].
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After refining the corresponding spatial propagation spread model, the researchers
combined the spread model with visualization techniques to develop the digital interactive
system. Meng et al. proposed a lightweight cellular automata-based forest fire spreading
method to be applied to the virtual 3D world. They captured the burning process of
individual plants realistically by using cells to represent a library of plant models of
different plants and by constructing 3D geometric models of plants [26]. The occurrence,
spread, and extinguishing behavior of wildfires were successfully visualized in a virtual
3D scene. Cai et al. used a flame spread model based on cellular automata to construct
a typical forest scene in the southwestern mountainous area of China in Unity3D, thus
achieving a digital twin of forest fire spread [124]. Meng et al. used the improved Huygens
principle as the theoretical basis for the spread of wildfires and simulated the spread of
wildfires in three-dimensional scenes [125].

6. Visualization Technology and Tools

Visualization of physical entities is one of the core tasks in digital twin [7]. The
technology is to visualize physical entities through an intuitive graphical interface or
simulation, including from simple data visualization to complex 3D models and virtual
reality [126]. In order to simulate the spread of fire and recreate real wildfire scenes in real
time, the wildfire digital twin requires detailed digital simulations of physical entities such
as forest environment, vegetation distribution, and flames. Using 3D modeling technology,
high-precision forest digital twin visualization models can be constructed. The main
components include static modeling and dynamic display.

6.1. Visual Modeling

The nonrigid, multi-scale, and complex physicochemical mechanisms of wildfires
increase the difficulty of modeling [112]. The wildfire digital twin uses geometric modeling
techniques and related tools to achieve accurate simulation and display of forest terrain,
vegetation, and flames.

In terrain modeling, the development of high-resolution remote sensing technologies
(including stereo vision [127], synthetic aperture radar [128], UAV photogrammetry [129],
Lidar [130], and oblique photography [131]) has significantly boosted the accuracy and
efficiency of digital elevation model (DEM) data acquisition and terrain modeling [132].
Through the fusion of remotely sensed data and GIS technologies, terrain features, including
slope, slope direction, and elevation, are accurately constructed. Furthermore, in order
to achieve large-scale and detailed terrain, a rule-based system and noise function-based
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programmatic terrain generation methods have been widely applied in game development
and virtual reality environments [133].

In vegetation modeling, detailed 3D combustible models are created based on the
growth characteristics and distribution of different vegetation types (e.g., trees, shrubs, and
grasses). Researchers used parametric modeling [134] and the Lindenmayer System [135]
to generate diverse vegetation models by defining parameters of vegetation growth (e.g.,
height, density, branching angle). In addition, hyperspectral imaging and point cloud
modeling are also commonly used methods [130]. These techniques allow for the creation
of detailed 3D models of vegetation, which can be applied in fields such as ecological
monitoring and forest management.

Flame modeling is the most challenging part of the wildfire digital twin system.
In flame modeling, advanced graphic processing techniques are used to generate high-
quality fire visualization images. Thus, the dynamic change and spreading process of
the flame is simulated. In recent years, significant progress has been made in flame
visualization technology based on ray tracing [136], particle systems [137,138], and volume
rendering [139] techniques. With the continuous improvement of computer hardware
performance and the continuous optimization of algorithms, achieving 3D visualization of
flame propagation through numerical simulation and artificial intelligence is also a current
research hotspot [140].

6.2. 3D Dynamic Simulation

The 3D visualization simulation in the field of digital twin requires the support
of powerful visualization techniques and real-time 3D technologies [141]. The process
begins with the creation of high-fidelity 3D models using software such as 3ds Max,
Maya, AutoCAD (https://www.autodesk.com/, accessed on 28 July 2024), and Blender
(https://www.blender.org/, accessed on 28 July 2024) [142]. These tools enable the detailed
modeling of the forest environment, including terrain, vegetation, and other physical
entities (Figure 10).

Fire 2024, 7, x FOR PEER REVIEW 16 of 26 
 

 

accessed on 28 July 2024). Unity 3D and Unreal Engine are both advanced 3D game en-
gines that provide high-quality 3D rendering effects [143]. They are widely used in vari-
ous real-time 3D visualization applications [144]. Li et al. used Unity3D to construct a 
digital twin-oriented poplar plantation system based on a virtual forest modeling and 
data analysis framework [20]. Cirulis et al. used Unity3D combined with Oculus headsets 
to create digital twins suitable for any swamp ecosystem for experimenting with various 
interactions in replicated virtual environments [56]. In addition, Cesium is an open-source 
3D geographic information platform. It is built on WebGL technology and can process and 
display large-scale geographic spatial data [145], suitable for three-dimensional geo-
graphic display of fire spread. 

 
Figure 10. Flow chart of WFDT 3D simulation tool. 

7. The Overall Framework of Wildfire Digital Twin (WFDT) 
The wildfire digital twin (WFDT) framework provides a comprehensive architecture. 

It is designed to achieve real-time detection, prediction, and decision-making manage-
ment of fire spread by creating digital copies of wildfires. The model combines generic 
support technologies such as the Internet of Things, sensors, and artificial intelligence al-
gorithms, aiming to improve the efficiency and science of fire management. (Figure 11) 

Figure 10. Flow chart of WFDT 3D simulation tool.

Once the models are created, they are integrated into visualization development
platforms such as Unreal Engine (https://www.unrealengine.com/, accessed on 28 July

https://www.autodesk.com/
https://www.blender.org/
https://www.unrealengine.com/


Fire 2024, 7, 412 16 of 25

2024), Unity3D (https://unity.com/, accessed on 28 July 2024), and Cesium (https://
cesium.com/, accessed on 28 July 2024). Unity 3D and Unreal Engine are both advanced 3D
game engines that provide high-quality 3D rendering effects [143]. They are widely used
in various real-time 3D visualization applications [144]. Li et al. used Unity3D to construct
a digital twin-oriented poplar plantation system based on a virtual forest modeling and
data analysis framework [20]. Cirulis et al. used Unity3D combined with Oculus headsets
to create digital twins suitable for any swamp ecosystem for experimenting with various
interactions in replicated virtual environments [56]. In addition, Cesium is an open-source
3D geographic information platform. It is built on WebGL technology and can process and
display large-scale geographic spatial data [145], suitable for three-dimensional geographic
display of fire spread.

7. The Overall Framework of Wildfire Digital Twin (WFDT)

The wildfire digital twin (WFDT) framework provides a comprehensive architecture.
It is designed to achieve real-time detection, prediction, and decision-making management
of fire spread by creating digital copies of wildfires. The model combines generic support
technologies such as the Internet of Things, sensors, and artificial intelligence algorithms,
aiming to improve the efficiency and science of fire management. (Figure 11)
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This section will discuss the design of the wildfire digital twin framework. Figure 12
shows the overall framework structure of the WFDT, which consists of a physical entity
layer, a virtual entity layer, a data layer, and an application layer. Below, we provide a
detailed description of each component and its role within the WFDT framework.

• Physical entity layer
The physical entity layer is the foundation of the digital twin system, which includes
the actual physical environment and devices [146]. The physical world component is
responsible for the collection of real-time data related to wildfire dynamics and the
surrounding environment.
First, sensor networks are deployed in the forest to monitor environmental parameters
such as temperature, humidity, wind speed, and rainfall. These parameters are crucial
for understanding fire behavior as they influence fire ignition, spread, and intensity.
In addition, surveillance cameras are installed at key locations to provide real-time
video data of fire occurrence and spread. Sensors and surveillance cameras provide
localized data, while remote sensing offers a broader view, allowing for comprehensive
coverage of the wildfire area. Remote sensing imaging technology is used to obtain
high-resolution images to ensure comprehensive monitoring of large forest areas.
These devices and technologies together form a multi-level, real-time monitoring
system that provides reliable data support for the digital twin model.

https://unity.com/
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• Virtual entity layer
The virtual world component forms the core of the wildfire digital twin, where col-
lected data are used to create a dynamic and interactive digital replica of the physical
wildfire environment [147]. Live data feeds from IoT sensors, drones, and remote sens-
ing platforms continually update the virtual entity of the WFDT, ensuring it reflects
the current situation of the fire scene.
The virtual entity layer transforms data from the physical entity layer into virtual
models for simulation and detection, mainly including wildfire simulation models and
fire monitoring models. The wildfire simulation model combines a spread rate model
and a spatial propagation model to simulate the behavior of fire approximately under
different environmental conditions. On the other hand, the fire monitoring model inte-
grates functions for fire prediction, detection, and tracking. The fire prediction module
uses real-time data to forecast potential fire outbreaks and their likely paths, while the
detection module identifies the location of existing fires. The tracking module continu-
ously monitors the fire’s progression, updating the virtual environment as new data
becomes available. In addition, the virtual entity layer includes a virtual visualization
module. By visualizing fire behavior, terrain, and vegetation, decision-makers can
more intuitively observe the development trend of fires and make effective decisions.

• Data layer
The data layer acts as a bridge between the physical world and the virtual world, en-
suring that data is effectively collected, processed, and utilized [148]. It is responsible
for several key functions, including data collection, storage, processing, and integra-
tion [149]. The real-time database stores live data from sensors and monitoring devices
at the fire scene, while the field database maintains historical data and geographic
information. In the data module, data are continuously gathered from various sources
in the physical world and undergoes data fusion and integration processes. Then,
the data analysis module performs in-depth analysis to extract effective information
and provide feedback to the physical and application layers. Finally, processed data
are securely stored to ensure easy access and retrieval by the various components of
the WFDT.
The digital twin system integrates feedback from the physical environment through
these data streams, allowing it to model fire behavior, simulate various scenarios, and
evaluate potential intervention strategies.

• Application layer
The application layer leverages the outputs from the virtual world and the insights
gained from data analysis to support various wildfire management. As the final
display and application part of the WFDT, this layer is crucial for practical applications,
including real-time fire monitoring, early warning, approximate simulation, decision-
making, and ecological restoration. Specifically, it enables early detection and alerts
of potential wildfires, supports decision-makers in developing effective response
strategies, and assists in training emergency responders through immersive simulation
scenarios. By integrating these capabilities, the application layer ensures that the
WFDT is effectively employed in diverse wildfire management tasks, enhancing both
preparedness and response.

In summary, the WFDT framework can build an all-round wildfire management
and emergency response system. WFDT is constructed through real-time monitoring
at the physical entity layer, simulation and prediction at the virtual entity layer, data
processing and analysis at the data layer, and practical application and decision support at
the application layer.

The WFDT framework incorporates a synchronous interaction mechanism between the
physical and virtual worlds. Data collected from the physical world is continuously fed into
the virtual world to update fire simulations and visualizations. In turn, the virtual world
generates feedback based on these simulations, which can be used to adjust monitoring
strategies, enhance data collection, or optimize resource deployment in the real world fire
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scene. This iterative feedback loop ensures that the digital twin remains accurate, relevant,
and responsive to changing conditions at the fire scene.
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By incorporating continuous, real-time data streams and simulations, the WFDT model
provides a more accurate and responsive wildfire management system. This integration of
real-time monitoring and predictive modeling represents a significant advancement over
existing techniques. The existing traditional wildfire risk platforms typically rely on satellite
data and are limited by the frequency of data collection and image resolution [150,151].
This limits their practicality in implementing decisions. Unlike traditional platforms that
rely on periodic data updates, digital twins integrate data from sensors, drones, and
other monitoring tools in real time. Most fire behavior models use predetermined, static
simulations. These models cannot adapt to rapidly changing conditions. In contrast,
digital twins enable predictive simulations that are continuously refined with new data
inputs [152].

However, the following challenges remain in the design and development of WFDT:
First, data collection and processing is the major challenge. The system relies on

high-cost IoT devices for real-time data collection. It also needs to effectively integrate
heterogeneous data from multiple sources such as surveillance, meteorology, and ground
observation. Therefore, it is a great challenge to acquire and process these heterogeneous
data economically and efficiently.
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Second, the accuracy and real-time performance of the model is another key challenge.
Due to the complexity and uncertainty of the fire-spreading process, existing models are
often deficient in accuracy and real-time performance. Therefore, how to improve the
computational efficiency and real-time performance of the models while ensuring their
accuracy is an urgent problem.

Third, the scalability and adaptability of the system are also important challenges in
WFDT. With increasing demand for fire monitoring and emergency response, the system
should ideally have scalability and adaptability. This would allow it to be deployed flexibly
across different scenarios, with adjustments and optimizations suited to various fire types
and environmental conditions.

Therefore, how to assess the accuracy, scalability, and economic benefits of wildfire
digital twin remains an important scientific question that needs to be addressed in this field.
These challenges emphasize the need for further research to improve the scientific rigor
and effectiveness of smart wildfire digital twin in fire management.

8. Conclusions

It is well established that traditional wildfire management methods face limitations
in efficiency and accuracy. Digital twin, by integrating advanced technologies like real-
time monitoring, AI-driven prediction, and dynamic simulations, has shown promise
in overcoming these challenges. In recent years, influenced by the latest scientific and
technological revolution and industrial changes, digital twin has emerged as a powerful
tool for fire management. In this context, we review the progress of the application of digital
twin technology in wildfire detection, simulation, and prediction. It is shown that digital
twin can have significant advantages in practical applications of wildfire management. It
can combine external monitoring, prediction, and feedback mechanisms to provide timely
guidance for firefighting.

The wildfire digital twin (WFDT) model proposed here establishes a foundational
framework for a more comprehensive and responsive wildfire management system. One of
the primary advantages of the WFDT model is its ability to offer near real-time simulation
and predictive capabilities. Furthermore, the WFDT model’s integration of monitoring,
prediction, and feedback mechanisms creates a closed-loop system, providing continuous
updates that enable firefighting teams to make timely adjustments based on evolving
conditions. Notably, this approach focuses on large-scale approximate simulations rather
than precise modeling of physical or chemical processes, providing a practical, scalable
solution for analyzing wildfire dynamics. While this may slightly reduce accuracy, it allows
us to study and simulate wildfires on a larger scale without very precise information on
forest stand.

Despite its promising potential, digital twin technology in wildfire management
remains in the early stages. Future research should focus on enhancing model precision
and exploring the integration of multiple models to create more adaptable and flexible
systems. In particular, coupling digital twins with other data-driven or physics-based
models could improve compatibility and expand application scenarios. Furthermore,
coupling digital twin models with advances in remote sensing, machine learning, and IoT
technologies could further refine simulations. Given the limited real-world validation so
far, it is crucial to expand field studies and implement pilot projects that utilize digital twin
systems. These practical applications will provide essential data to evaluate and validate
the accuracy of the proposed models. Moving forward, it is important to conduct more
experiments or field tests to verify the validity of these models in real-world conditions.

In summary, while the application of digital twin in wildfire management shows
great promise, further research is needed to refine these models and validate their effec-
tiveness with real-world scenarios. By continuously deepening theoretical research and
technological innovation, the digital twin could become a powerful tool in moderniz-
ing wildfire prevention and control, aiding in the modernization of forest protection and
disaster management.
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