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Abstract: Departures from historical wildfire regimes due to climate change have significant impli-
cations for the structure and composition of forests, as well as for fire management and operations
in the Alberta region of Canada. This study analyzed the relationship between climate and wildfire
and used a random forest algorithm to predict future wildfire frequencies in Alberta, Canada. Key
factors driving wildfires were identified as vapor pressure deficit (VPD), sea surface temperature
(SST), maximum temperature (Tmax), and the self-calibrated Palmer drought severity index (scPDSI).
Projections indicate an increase in wildfire frequencies from 918 per year during 1970–1999 to 1151
per year during 2040–2069 under a moderate greenhouse gas (GHG) emission scenario (RCP 4.5) and
to 1258 per year under a high GHG emission scenario (RCP 8.5). By 2070–2099, wildfire frequencies
are projected to increase to 1199 per year under RCP 4.5 and to 1555 per year under RCP 8.5. The peak
number of wildfires is expected to shift from May to July. These findings suggest that projected GHG
emissions will substantially increase wildfire danger in Alberta by 2099, posing increasing challenges
for fire suppression efforts.

Keywords: climate change; wildfire; random forest; VPD; RCP

1. Introduction

Boreal forests account for approximately 30% of the world’s forest area [1]. Boreal
forests play an important role in global forest ecosystems due to their ecosystem functions
and carbon sequestration capacity [2,3]. Anthropogenic climate warming is rapidly chang-
ing boreal forest environments [4] and complicating forest disturbance mechanisms such
as wildfires in boreal forest-covered areas [5].

Previous studies have shown that higher temperatures [6], drought [7], and vapor
pressure deficits [8] can lead to an increase in the number of wildfires, an earlier wildfire
season, and increased wildfire risk and severity. Increased wildfire activity has been docu-
mented in a variety of forest ecosystems, including the United States [9,10], Canada [11],
and Russia [12].

Previous studies have also shown that machine learning (such as models based on
deep learning [13], deep neural networks [14], graph neural networks [15], multi-layer
neural networks [16], etc.) has a higher predictive ability for wildfires than fire hazard
weather indices. For example, Spyros K. et al. used deep learning to predict the risk of
wildfires in fire-prone areas of the Eastern Mediterranean the next day, and the results
showed that this method paved the way for more robust, accurate, and reliable data-driven
predictions of wildfires [13].

Since the 1970s, increasingly severe fire weather has led to an increasing area burned
by wildfires in western Canada [17,18]. Due to extreme weather and limited firefighting re-
sources, western Canada is facing significant issues from spring wildfires [19]. For example,
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extensive wildfires broke out in the spring in 2011 (Alberta), 2014 (Northwest Territories),
2015 (Alberta and Saskatchewan), 2016 (Alberta), 2017 and 2018 (British Columbia), 2019
(Alberta), and 2023 (Alberta).

In Alberta, nearly all structural losses are associated with spring wildfires [20]. There-
fore, the ongoing and expected changes in wildfire disturbance regimes have attracted
widespread attention. This study used a random forest algorithm to analyze the key cli-
mate factors that affect wildfire occurrence in Alberta, as well as the intra-annual and
inter-annual changes in Alberta wildfires under the background of future climate change.

2. Materials and Methods
2.1. Study Area

The province of Alberta is located between 49◦–60◦ N and 110◦–120◦ W, cut off in
the southwest by the Canadian Rockies (Figure 1). The province has a total land area
of approximately 661,000 km2, with landscapes ranging from farmland in the south to
foothills, grasslands, and boreal forests in the north. Alberta has a semiarid continental
climate, with mean annual precipitation ranging from less than 350 mm in the southeast
to more than 500 mm in the northwest [21]. Winters are cold, with temperatures typically
ranging from −25.1 ◦C to −9.6 ◦C. Summers are warm, with temperatures ranging from
8.7 ◦C to 18.5 ◦C. Mean annual temperatures range from 3.6 ◦C to 4.4 ◦C [22]. The majority
of conifer species in the study area are Picea abies (black spruce), Picea Picea (white spruce),
Pinus pine (jack pine), and Larix laricina (eastern larch). Most broadleaved tree species
include Populus tomentosa (Quake Populus), Populus euphratica (Basmatiaceae Populus),
and Betula alba (Betula platyphylla) [23].
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Figure 1. Spatial and temporal distribution characteristics of wildfires in the Alberta region, Canada.
(a) spatial distribution of wildfires; (b) monthly distribution of wildfire numbers from 1961 to 2021;
(c) time series of annual wildfire numbers from 1961 to 2021.

2.2. Datasets

The Alberta Forest Service initiated the modern era of wildfire recordkeeping in 1931,
the first complete fire season under provincial jurisdiction. Starting in 1961, reports were
entered and stored on a mainframe. Historical wildfire data for Alberta from 1961 to
2021 are available from the Alberta Open Government Program (https://open.alberta.
ca/opendata (accessed on 10 May 2023)). These wildfire datasets include information on
the cause, size, location (latitude and longitude, legal land description, and forest area),
time and duration, weather conditions, staffing, physical resources used to fight the fire,
and area burned. This is a very complete fire history dataset from which we used fire
occurrence. The UK Commodity Research Institute observational climate dataset for the
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period 1901–2022, this dataset offers long-term historical climate data, which we used
to examine climate trends over the century and correlate these with changes in wildfire
patterns. Temperature (Temp), minimum temperature (Tmin), maximum temperature
(Tmax), diurnal temperature range (DTR), precipitation (Prec), cloud cover (CC), self-
calibrating Palmer Drought Severity Index (scPDSI), Arctic Oscillation (AO), Atlantic
Multidecadal Oscillation (AMO), and sea surface temperature (SST) are from this dataset.
The ERA5 reanalysis climate dataset covering January 1950 to the present, provided by
the ECMWF, includes relative humidity (RH), U-wind (U), V-wind (V), and wind speed
(WS) reanalysis data. Its high spatial and temporal resolution makes it particularly useful
for detailed climate condition analysis at the times and locations of recorded wildfires.
And CMIP5 datasets for historical and future periods (1861–2100) have been downloaded
from the following websites: https://climexp.knmi.nl/ (accessed on 14 August 2023) and
https://rda.ucar.edu/ (accessed on 14 August 2023). These datasets include climate indices
and model outputs that help in understanding broader climatic influences and potential
future scenarios of climate change.

2.3. Methods

In this study, Temp, Tmin, Tmax, DTR, Prec, CC, scPDSI [24], VPD, RH, U, V, WS, AO,
AMO, and SST [25] were used as predictors to estimate the number of wildfires occurring.

VPD is an important fire-related meteorological quantity [8]. It combines temperature
and water vapor content information. Following the equations used by Murray [26], we
first calculated the saturation vapor pressures (SVP, Pa) using the temperature (Temp, ◦C)
and relative humidity (RH, %):

SVP = 610.78 × exp(Temp/(Temp + 237.3) × 17.2694) (1)

Then, VPD (Pa) is calculated as follows:

VPD = (1 − RH/100) × SVP (2)

We used a random forest model to rank the relative importance of wildfire drivers in
Alberta, which mainly include Temp, Tmin, Tmax, DTR, Prec, CC, scPDSI, VPD, RH, U, V,
WS, AO, AMO, and SST [27]. To reduce overfitting, we employed five-fold cross-validation
during the training of the random forest model. In each run of the five-fold cross-validation,
we selected data from three consecutive years between 1961 and 2021 as out-of-bag samples.
This approach helped reveal the true performance of the model in predicting wildfires.
To validate our model, we compared its predictions with actual historical wildfire data
from the Alberta Open Government Program dataset covering the period from 1961 to
2021. We used the F1 Score, precision, recall, and accuracy metrics to assess the accuracy
and reliability of the model. We further used accumulated local effects (ALE) maps to
examine detailed relationships between wildfires and key drivers. We then analyzed the
intra-annual and inter-annual variability of wildfires in Alberta under moderate and high
greenhouse gas emissions scenarios (RCP 4.5 and RCP 8.5). The analysis was performed in
the R environment using the randomForest package and the rfPermute package [28–31].

3. Results
3.1. Drivers of Wildfires

Of all climate factors, 80% of the data are used to train the model, 10% of the data are
used to test the model, and 10% of the data are used to validate the model. The random
forest model performed well in simulating the number of wildfires, with an overall accuracy
of 68% based on cross-validation of the observed data. The F1 score (0.90), accuracy (0.97),
recall rate (0.84), and accuracy (0.83) metrics demonstrate the accuracy and reliability of
the model. Variable importance analysis showed that the top four predictors of wildfire
occurrence were VPD, SST, Tmax, and scPDSI (Figure 2). VPD was the most important
variable driving these predictions, consistent with previous research [8].
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Figure 2. Main predictors of wildfires in the Alberta region, Canada. The figure shows the random
forest mean predictor importance (the percentage of increase in the mean variance error (MSE))
of meteorological variables on wildfires. The cross-validated R2 and significance of random forest
models are shown. Significance levels: ** p < 0.01; * p < 0.05; n.s., non-significant (p > 0.05).

The ALE graph shows that VPD and SST have an approximately linear growth relation-
ship with the number of wildfires, while PDSI has an inverse linear relationship. However,
Tmax has an exponential growth relationship with the number of wildfires (Figure 3).
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3.2. Intra-Annual Changes of the Future Wildfires

During the period 1961–2021, the number of wildfires in Alberta peaked in May and
reached an annual minimum in winter (December to February). Simulation results show
that under the RCP4.5 and RCP8.5 scenarios, the number of wildfires in Alberta in May in
the mid- and late-21st century is not significantly different from historical periods, while
the number of wildfires in July–September will increase significantly. In addition, under
the RCP4.5 and RCP8.5 scenarios, the number of wildfires in Alberta will peak in July in the
mid- and late-21st century, respectively. Moreover, the number of wildfires in the summer
is expected to increase by 93% by the late-21st century under RCP 8.5 (Figure 4). As shown
in Figure 5, under the RCP4.5 and RCP8.5 scenarios, VPD, SST, Tmax, and PDSI in Alberta,
Canada, change significantly in the mid- and late-21st century compared with the historical
period, especially from July to September (Figure 5). Specifically, the Vapor Pressure Deficit
(VPD) and the Palmer Drought Severity Index (PDSI) show more pronounced changes
during the summer months. High VPD, indicative of drier air, and lower PDSI, signaling
drought conditions, both contribute to increased wildfire risk during this period. These
conditions facilitate the drying of vegetation, making it more flammable and susceptible to
ignition. Conversely, the maximum temperature (Tmax) exhibits a notable increase during
the winter months. However, there is also a discernible rising trend in summer Tmax
values. This rise in temperatures can exacerbate the drying conditions, further enhancing
the likelihood of wildfires. Sea Surface Temperature (SST) changes are more pronounced
during the winter. While SST primarily influences climatic patterns over broader timescales
and regions, its impact on regional climate systems can alter precipitation patterns and
temperatures, indirectly affecting wildfire conditions. The interplay of these factors is
critical in shaping the seasonal and annual patterns of wildfire occurrences. During summer,
the combination of high VPD, low PDSI, and elevated Tmax creates optimal conditions
for wildfires. In winter, while the direct influence of Tmax and SST on wildfires is less
pronounced, their role in shaping broader climatic patterns cannot be overlooked.
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Figure 4. Seasonal variations in the earth system model (ESM) ensemble mean number of wildfires.
Monthly wildfire numbers for the end of the 20th century (1970–1999) and the middle (2040–2069) and
end (2070–2099) of the 21st century in the Alberta area are shown. Wildfire number simulations for the
moderate (RCP4.5) and high (RCP8.5) emission climate change scenarios are compared here. Meaning
of boxplot elements: central line: median, box limits: upper and lower quartiles, upper whisker: min
(max (x), Q3 + 1.5 × IQR), lower whisker: max (min (x), Q1 − 1.5 × IQR), black dots: outliers.
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3.3. Changes of the Future Wildfires

The simulation results show that the number of wildfires in Alberta will continue to
increase in the mid- and late-21st century under the RCP 4.5 and RCP 8.5 scenarios. By
the mid-21st century (2040–2069), the average annual number of wildfires in Alberta will
increase from 918 in the historical period (recorded in 1970–1999) to about 1151 under
the RCP 4.5 scenario, and the average annual number of wildfires will increase to 1258
under the RCP 8.5 scenario. By the end of the 21st century (2070–2099), the average annual
number of wildfires in Alberta will increase from 918 in the historical period (recorded in
1970–1999) to about 1199 under the RCP 4.5 scenario, and the average annual number of
wildfires will increase to 1555 under the RCP 8.5 scenario (Figure 6). Based on CMIP5 data,
we calculated the historical and future inter-annual changes of VPD, SST, Tmax, and scPDSI.
The results show that under the RCP4.5 and RCP8.5 scenarios, Alberta will experience
varying degrees of warming and drying in the mid- and late-21st century compared to
historical periods (Figure 7).
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Figure 6. Earth system model (ESM) ensemble means the simulated annual number of wildfires. Both
the historical (grey, 1961–2020) and future (blue/tan, 2021–2099, blue: moderate emission scenario,
RCP4.5, tan: high emission scenario, RCP8.5) variations of these variables are shown. Shaded areas
represent ±1 standard deviation. A low-pass filter was applied to remove the highest 20% frequencies
to reduce noise in the time series.
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emission scenario, RCP4.5, tan: high emission scenario, RCP8.5) variations of these variables are
shown. Shaded areas represent ±1 standard deviation.

4. Discussion

The random forest model has robustness when dealing with large datasets with
complex nonlinear relationships between variables. Random forests effectively capture
complex, nonlinear interactions between variables, which is crucial in accurately modeling
wildfire occurrences that depend on a myriad of interlinked factors. Unlike some other
algorithms, random forests require minimal data preprocessing and are less sensitive to
outliers, making them ideal for ecological data that often contain anomalies. While the
random forest model is generally robust, random forests can still overfit if not properly
tuned, especially when dealing with very noisy data. And the model can be computationally
demanding, which might limit its applicability in real-time prediction scenarios.

Previous research has established that Vapor Pressure Deficit (VPD) and maximum
temperature (Tmax) are critical drivers of wildfires [8,32]. Increases in both VPD and
Tmax have been shown to significantly affect vegetation growth [33,34] and increase forest
mortality [35]. Furthermore, these increases can limit transpiration across various biomes
by altering the behavior of plant stomata [36], thereby drying out fuels and making them
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more flammable and likely to ignite. Drought conditions, often exacerbated by atmospheric
ridges and blocking, reduce the moisture content in fuels, subsequently increasing wildfire
activity [37]. Moreover, both average and extreme temperature rises contribute to the
dryness of fuels, leading to more frequent and severe wildfires [9,38]. In Alberta, warmer
and drier conditions are shifting the wildfire regime towards more frequent, severe, and
widespread fires [23,39]. This trend is consistent with findings from other boreal forest
regions in western Canada [17] and across North America [40]. However, it is important to
note that the increased frequency of wildfires in Alberta is not confined to boreal forests but
affects various ecosystems, including grassland areas. Studies documenting rising trends in
fire activity across boreal biomes [41,42] further support this broader pattern. The significant
relationship between climate change and increased wildfire activity in Alberta underscores
the need to consider the impacts of VPD and Tmax across all ecological zones within the
region. This comprehensive approach will provide a more accurate understanding of the
dynamics at play and enhance the effectiveness of wildfire management strategies.

Under the RCP 4.5 and RCP 8.5 scenarios, the peak wildfire period in Alberta during
the mid- to late-21st century shifts from May to July. This shift is likely due to wildfires
reducing the viability of conifer seeds [43,44] and altering the soil substrate required for tree
regeneration [45]. Over time, conifer regeneration densities decrease after wildfire [46] and
shift toward less flammable, dominant broadleaf species [47]. Wildfires in areas covered
by non-flammable, predominantly broadleaf forests require higher VPD, Tmax, and more
severe drought conditions. Under the high GHG emission scenario (RCP 8.5), the VPD,
Tmax, and drought severity in July of the mid-20th century were much greater than those
in May (Figure 5). The same pattern was observed under the moderate greenhouse gas
emissions scenario (RCP 4.5). By the end of the 21st century, the differences in these
parameters between July and May became even more significant under the RCP 4.5 and
RCP 8.5 scenarios, respectively (Figure 5). Although the observed shift in peak fire activity
to July might initially suggest a response to changes in vegetation types and densities, it is
important to clarify that such vegetative dynamics are not explicitly modeled in the current
framework. Instead, the shift is more likely attributable to changes in climatic variables
such as Vapor Pressure Deficit (VPD) and Palmer Drought Severity Index (PDSI), which are
projected to peak during this month. Therefore, any inference regarding vegetation change
affecting fire regimes should be approached with caution, as the model primarily reflects
climatic influences rather than direct biological responses of vegetation to changing climate
or fire recovery processes.

5. Conclusions

In the past 60 years, the climate in western Canada has become noticeably warmer
and drier, which has directly affected the frequency of local wildfires. We have observed
a significant increase in the number of wildfires during this period. Looking ahead, we
also predict that the peak period for wildfires will shift from May to July. These changes in
wildfire characteristics correspond to climate change. Our significant correlation analysis
indicates that climate change will continue to alter wildfire characteristics in the boreal
forests of western Canada. As climate change continues, we can expect these changes in
wildfire characteristics to persist and possibly accelerate, posing even greater challenges
for wildfire and forest management.
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