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Abstract

:

Forest fires not only cause severe damage to ecosystems and biodiversity but also directly threaten the safety of human societies. Given the significant increase in both the frequency and intensity of forest fires worldwide, especially under extreme climate conditions, efficient fire detection and initial attack (IA) are particularly critical. The initial attack is a key stage in forest fire control, and the time taken for fire detection is a crucial factor influencing the success of the initial attack. In response to the challenges of forest fire prevention and control, this study explores Unmanned Aerial Vehicle (UAV) cruising strategies, aiming to develop appropriate approaches based on regional characteristics and provide efficient periodic monitoring solutions for areas with high ecological value and challenging accessibility. By optimizing UAV patrol routes, this research seeks to maximize coverage in areas with lower initial attack success rates and significantly reduce fire detection time, thereby improving detection efficiency. We developed and applied four optimization strategies, random search, high-risk first (HRF), nearest high-risk first (NHRF), and a genetic algorithm-based (GA-based) strategy, to compare different UAV flight routes. To evaluate the deployment effectiveness of the four UAV cruise strategies, we introduced two evaluation metrics: Average Grid Risk (AGR) and Average Distance Risk (ADR). Experimental results showed that the NHRF and GA-based strategies performed better. Specifically, NHRF achieved the highest high-risk coverage, ranging from 51.5% to 71.3%, significantly outperforming the random search strategy (4–7%) and the HRF strategy (23.1–37.5%). The GA-based algorithm achieved the highest grid coverage, ranging from 30% to 59.8%, far surpassing the random search strategy (4–6.6%) and the HRF strategy (10.2–19.1%). Additionally, the NHRF and GA-based strategies delivered the best AGR and ADR performance, respectively. The application of these innovative strategies and evaluation metrics enhances forest fire prevention through periodic monitoring and supports more efficient firefighting efforts.
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1. Introduction


As one of the most important ecosystems on Earth, forests provide abundant natural resources and ecosystem services for humans, including oxygen production, carbon storage, biodiversity maintenance, and soil and water conservation. However, with the intensification of human activities and the impact of global climate change, forests are facing increasing threats, among which forest fires are one of the most serious threats. Forest fires not only cause direct damage to forest resources but also lead to severe ecosystem degradation, deterioration of air quality, increased carbon emissions, and biodiversity loss. In addition, forest fires threaten the safety and property of human communities living around forests, causing huge economic losses and casualties [1].



In recent years, the frequency and intensity of forest fires have shown a significant increase in the world, especially under extreme weather conditions caused by climate change, drought, high temperatures, strong winds, and other factors, which have greatly increased the risk of forest fires [2,3]. The occurrence of forest fires is highly random and complex, which makes its prevention and control extremely difficult. Although it is almost impossible to completely prevent a fire from occurring, it is still possible to drastically reduce the hazards of a fire with effective preventive measures and a quick emergency response [4].



In the process of fire prevention and control, the initial attack plays a crucial role as a fire extinguishing action in the early stage of fire spread [5]. A successful initial attack minimizes the damage caused by a fire by extinguishing it before it spreads to the point where it is difficult to control. However, the success rate of an initial attack is affected by a variety of factors, such as weather conditions, terrain complexity, fire detection time, etc. [6]. Among them, fire detection time is one of the key factors affecting the success or failure of the initial attack, and it is also the link that is most likely to be optimized by technical means.



At present, there are two main ways to reduce the time of fire detection: The first type is with the volunteer reporting system, such as reporting the occurrence of fires through travelers, residents, etc. The second type is operational detection systems, such as the deployment of fire observation points, the deployment of UAVs to patrol the area, etc. [7]. However, in practice, because the volunteer reporting system requires a lot of human and material resources, and fire is a relatively dangerous natural disaster, the volunteer reporting system can only play a certain auxiliary role and needs a lot of resources to shorten the monitoring time [8]. Therefore, we are mainly talking about how to reduce the detection time by deploying UAVs in the detection system.



UAVs have been widely utilized in monitoring and preventing forest fires. Olsson et al. (2007) [9] reviewed the integration of remote sensing technologies with UAVs to achieve automatic forest fire monitoring, detection, and suppression. However, due to the limitations of remote sensing in terms of resolution and weather conditions, it cannot be effectively applied to the monitoring of small-scale fires. In recent years, the rapid development of drone technology, artificial intelligence, and remote sensing equipment has accelerated the advancement of strategies combining image recognition technology with UAVs. For instance, Chen et al. (2004) [10] implemented an RGB (red, green, blue) color space model based on chromaticity and disorder measurements to extract flame and smoke pixels, enabling fire detection and aiding fire departments in identifying the location and size of fires at an early stage. Subsequently, Vipin et al. (2012) [8] adopted the    YC b   C r    color space as an alternative to the traditional RGB color space, achieving real-time forest fire detection functionality.



The cruise strategy of UAVs primarily focuses on the planning of UAV cruise paths. Giitsidis et al. (2015) [11] designed a method to determine personnel and firepower analysis images by having UAVs patrol at an altitude of approximately two kilometers above the territory. Karma et al. (2015) [2] proposed an evaluation of the advantages and disadvantages of UAVs in forest fire search and rescue operations based on field trials. Yuan et al. (2017) [12,13] studied a novel forest fire detection method incorporating color and motion features, aimed at implementing forest firefighting through UAVs. Ghamry et al. (2016) [14] introduced a Fault-Tolerant Cooperative Control (FTCC) strategy for monitoring and detecting forest fires, even in the event of failures in one or more UAVs. Cruz et al. (2016) [15] proposed a real-time method for detecting forest fires using UAVs based on color indices. Ann et al. (2015) [16], focusing on maximizing the flight coverage area of UAVs, implemented flight path planning by employing clustering algorithms combined with graph theory.



The above are all methods for identifying flames through UAVs so as to plan paths, and in actual forest fires, in addition to the identification of flames, smoke is also a very important feature in forest fires [17,18]. Chen et al. (2006) [19] proposed a smoke detection method for a fire early warning system based on video processing through the static decision rule based on chromaticity and the dynamic feature decision rule based on diffusion. Chuny et al. (2010) [20] proposed a video smoke detection method that uses both color and motion features and experimentally proved that the algorithm is of great significance for improving the accuracy of video smoke detection and reducing false alarms. In recent years, some scholars have also combined smoke recognition in forest fires with deep learning, and Cao et al. (2019) [21] proposed an attention-enhancing two-way LSTM (Long Short-Term Memory) mechanism and used it for smoke recognition in early forest fires.



Since the path planning problem of UAVs has proved to be a Nondeterministic Polynomial hard (NP-hard) problem [22], some scholars have tried to use the genetic algorithm (GA) to solve it. Sonmez et al. (2015) [23] regarded UAV route planning as a Traveling Salesman Problem (TSP) and used the distance flown as a measure of fitness, realizing the problem of optimizing UAV cruise routes. Roberge et al. (2012) [24] set the fitness as a multi-objective cost function, realized the real-time path planning strategy through the genetic algorithm, compared the method with the particle swarm optimization algorithm, and concluded that the genetic algorithm produces a better trajectory than the particle swarm optimization algorithm. Recently, Internet of Things technology has been utilized for forest monitoring to acquire monitoring data from large-scale forest environments [25,26].



Due to the rapid development of artificial intelligence, some scholars have attempted to use neural networks to solve the problem of UAV path planning. Wai et al. (2019) [27] combined neural networks with UAV route planning to achieve optimal path planning and anti-disturbance control for UAV surveillance systems, leveraging the artificial neural network’s (ANN) capability to approximate complex functions accurately. Although ANN can quickly plan UAV routes and find feasible solutions, it is possible to obtain local optimizations rather than global optimizations. Gautam et al. (2014) [28] employed a combination of artificial neural networks and genetic algorithms to address the issue of ANN potentially converging to a locally optimal solution rather than a globally optimal one, thereby achieving effective UAV route planning in a three-dimensional environment.



In recent years, significant progress has been made in the application of deep learning for processing UAV aerial images and remote sensing images in disaster scenarios across multiple fields [29]. For example, Xie et al. (2024) [30] focused on the recognition of natural disasters, utilizing aerial images to analyze landslides, and enhanced the accuracy and efficiency of recognition by considering the contextual relationships within the images. Meanwhile, Zhu et al. (2024) [31] proposed a cross-view intelligent personnel search method based on multi-feature constraints, which effectively improved the accuracy of personnel recognition in images captured from different angles. Additionally, the BEMRF-Net developed by Cao et al. (2024) [32] not only enhanced the boundaries of buildings in remote sensing images but also improved image analysis quality through multiscale refinement fusion network, significantly promoting the efficiency and accuracy of image recognition. These studies not only demonstrate the broad applications of deep learning in disaster scenarios but also highlight its importance and effectiveness in practical operations.



In summary, various research and methods exist to monitor and detect fires in forest fire management through UAVs. In recent years, with the rapid development of UAV technology, UAVs have been widely used to reduce the impact of forest fires. However, the starting point of most of the research is to process images or videos with UAVs to detect fires and monitor them after, which is not ideal for the actual firefighting process and is difficult to implement [33]. There are still many studies that only pursue the maximization of the observation area of the area and optimize the detection time without combining these with the fire fighting process, which lacks certain feasibility in practice. Thus, it is often difficult to play a corresponding role in the actual fire fighting operation [11,34].



How to reduce the harm and loss caused by forest fires has always been a topic of concern for many researchers, and in actual firefighting operations, a successful initial attack can greatly reduce the impact of fires [35]. As for the initial attack, it is constrained by many factors and can be divided into two categories from the perspective of whether it can be controlled by humans, which are controllable factors and uncontrollable factors [5]. Typical uncontrollable factors include weather conditions and the rate of fire spread. The controllable factors are fire detection time, fire protection resources, etc. Since the determination of firefighting resources is closely related to comprehensive practical factors such as the geographical conditions of each firefighting station and different regions, it is more complicated to improve the success rate of the region by changing the firefighting resources. Therefore, this study explores UAV cruising strategies, aiming to develop appropriate approaches based on regional characteristics and provide efficient periodic monitoring solutions for areas with high ecological value and challenging accessibility. By deploying optimized UAV cruise routes, fire detection time can be shortened, thereby contributing to an improved initial attack success rate in various regions.



Based on this, this paper proposes four UAV cruise strategies based on initial attack by optimizing the fire detection time. By optimizing the cruising path of the UAV, we strive to maximize the coverage of areas with a low initial attack success rate so as to achieve the goal of improving the efficiency of fire detection and thus the success rate of the initial attack. In order to verify the effectiveness of the strategy, this paper compares and analyzes different UAV cruise strategies through a series of simulation experiments. This study provides new technical means and ideas for the prevention and control of forest fires and contributes to the protection of forest resources and the ecological environment.




2. Materials and Methods


2.1. Study Area


The study area, Lushan, is located at the center of the Liangshan Yi Autonomous Prefecture in Sichuan Province, China, a region renowned for its striking natural beauty Figure 1.



The 30 m digital elevation model (DEM) acquired from the ASTGTMv003 series of imagery shows that the elevation in the area varies from 1476 m to 2326 m above sea level, creating a diverse landscape. This geographical diversity breeds a unique biosphere characterized by a mix of subtropical semi-arid evergreen broad-leaved forests and evergreen coniferous forests, contributing to a rich biodiversity. The region’s climate is tropical plateau monsoon, with mild winters and cool summers, plus abundant rainfall and abundant sunshine to support the lush vegetation. However, the region’s topography and climate also pose challenges, exacerbating the risk of forest fires in winter and spring. During the dry seasons of winter and early spring, vegetation becomes increasingly arid, elevating the risk of forest fires. The complex terrain, including steep slopes and dense vegetation, can create a microclimate that dries out vegetation more rapidly during these seasons. Additionally, the combination of low humidity and strong winds often experienced in winter and spring can facilitate the rapid spread of fires [36]. As shown in Figure 1, the roads within the study area are primarily distributed along the edges of the mountains. Due to the significant elevation changes in this region, the mountain roads are winding and rugged, which restricts accessibility and directly affects the efficiency of resource allocation during initial response efforts. In the event of a forest fire, the difficult accessibility of roads in such areas allows the fire to spread rapidly and complicates control efforts, thereby hindering firefighting and rescue operations. In order to study forest fire fighting and disaster prevention and mitigation measures, a 2 km wide buffer zone was set up outside the experimental area. This buffer zone also makes use of the natural barriers provided by the national highways, further protecting the surrounding ecosystem.




2.2. UAV Cruising Path Planning Based on Initial Attack


The overall flowchart of this chapter is shown in Figure 2; we first resample the area of the grid so that the observation range of the UAV can be suitable for the grid size of the experimental area and generate the corresponding grid image of the initial attack risk (Section 2.3). Among the methods, the calculation of initial attack risk utilizes the methods and data from [5]. The dataset is characterized according to four factors that influence initial attack success: fire detection time, resource arrival time, fire spread potential, and available firefighting resources. The results are presented in Table 1. For the fire point data extracted from the Fire Information for Resource Management System (FIRMS) covering the years 2008 to 2021 within the experimental area, we employed SMOTE (Synthetic Minority Over-sampling Technique) to oversample the dataset in order to balance the number of successful and failed initial attacks. Subsequently, we used the best-performing XGBoost (Extreme Gradient Boosting) model to simulate the probability of successful initial attacks under both regular and extreme conditions. XGBoost, an extreme gradient boosting method, is a powerful ensemble learning technique that can be used to address classification and regression problems. It is based on the boosting principle, iteratively training base learners, typically decision trees. Unlike other boosting algorithms, XGBoost focuses more on samples that were incorrectly predicted by the previous model in each iteration, assigning them higher weights. This mechanism effectively reduces model bias and enhances predictive accuracy. In this experiment, we utilized the XGBClassifier module from the xgboost library (https://xgboost.readthedocs.io/, accessed on 26 August 2023) and configured the ‘booster’ parameter as ‘gbtree’ to construct a tree-based model. Additionally, the learning rate, ‘eta’, was set to   0.1  , the maximum tree depth, ‘max_depth’, was set to 6, and the evaluation metric, ‘eval_metric’, was defined as ‘logloss’. Based on the results of this simulation, we then planned the UAV cruise path in the Lushan area. This method effectively predicts the initial response success rate of forest fires in the Lushan area with high accuracy and provides a scientific basis for us to identify potential high-risk areas.



At the same time, due to the endurance limitation of the UAV, a single UAV cannot achieve the coverage of the whole area, so we divide the entire experimental area in Section 2.4. Combining the initial attack high-risk grid image and the maximum cruising distance of the UAV, we propose four UAV cruising strategies, which are the random search strategy, high-risk first (HRF) strategy, nearest high-risk first (NHRF) strategy, genetic algorithm-based (GA-based) optimization strategy, and simulation test in a three-dimensional environment in Section 2.5. Finally, we propose two evaluation indicators, Average Grid Risk (AGR) and Average Distance Risk (ADR), to evaluate the effect of the four UAV cruise strategies in Section 2.6.




2.3. Grid Resampling


Due to the resolution of the grid data for initial attack calculations being set at 30 m, such as DEM and fire point data, and considering that the maximum compliant altitude for UAV flights is approximately 120 m, the area covered during high-altitude flights far exceeds the coverage area of individual grids. Therefore, we perform resampling on the grids delineated for the experimental area. Normally, when the UAV is flying at high altitude, it can be abstracted into the following scene in Figure 3, where the O point represents the position of the UAV flying at high altitude; assuming that the UAV shoots vertically downward, its viewing area is ABCD as the rectangle of the endpoint, OM is perpendicular to the surface ABCD, and ∠ AOC is  α .


  A C = 2 A M = 2 O M  ·  tan   α 2    



(1)






      A B =   4 5   A C       B C =   3 5   A C      



(2)







Currently, the main size of photos taken by UAVs is 4:3, so we can obtain the following relationship with Formulas (1) and (2). Obviously, the area of the surface ABCD is Formula (3), and assuming that the field of view (FOV) of the UAV is   84 ∘  , then  α  is   84 ∘  . Assuming that the UAV flies at an altitude of 100 m, i.e., OM is 100, then S is about   1.56 ×  10 4    m2. From this, we can obtain the side length of the grid to be divided into 125 m.


    S    =   12 25   A  C 2           =   48 25     O M  2   tan 2    α 2       



(3)







We divide all the points in the experimental area into deciles and select the last three high-risk intervals as the points with low initial attack success rate and then divide the experimental area into a grid of 125 × 125 m and record the number of points with a low initial attack success rate after segmentation on each grid and generate a grid image corresponding to the XGBoost model with a high initial attack risk, as shown in Figure 4.



Each grid contains statistics regarding the initial attack success rates of points within its boundaries. A higher value indicates a greater concentration of points with low initial attack success rates, signifying a higher-risk area. Conversely, a lower value represents a lower concentration of such points, indicating a lower-risk area. After resampling the grids, the experimental area was divided into 4878 grids, and after using XGBoost to simulate the initial attack scenario, there were 1894 grids with points with low initial attack success rate, about 29.6 km2.




2.4. Zoning


Due to the large scope of the overall experimental area, affected by the endurance of the UAV, it is impossible to experiment by relying on a single UAV because a single UAV cannot cover the experimental area. Therefore, K-means is used to divide the points in the region into sub-regions, and the elbow method is used to determine the optimal k value.



The elbow method determines the optimal number of sub-regions by calculating the Sum of Squared Errors (SSE). SSE represents the clustering error for all samples, and to a certain extent, indicates the quality of the clustering effect. As the number of clusters k increases, the partitioning of samples becomes finer, and the degree of aggregation within each sub-region improves. During this process, SSE gradually decreases. When k is less than the actual number of sub-regions, increasing k leads to a significant enhancement in aggregation within each sub-region, resulting in a relatively large decrease in SSE. Once k reaches the actual number of sub-regions, further increases in k yield diminishing returns in terms of aggregation, causing the rate of decrease in SSE to slow down. As k continues to increase, the trend of SSE changes stabilizes. When plotting SSE on the y-axis and k on the x-axis, the resulting graph exhibits an elbow shape, with the k value at the elbow representing the true number of sub-regions in the data. The SEE is calculated from Formula (4):


  S S E =  ∑  i = 1  k   ∑  p ∈  C i      p −  m i   2   



(4)




where   C i   is the ith sub-region, p is the sample point in   C i  , and   m i   is the centroid of   C i  . Due to the large difference in altitude of the selected experimental area, we consider the three dimensions of longitude, latitude, and altitude as the characteristic inputs of the K-means algorithm to calculate the SSE, where the range of k is selected as 1–10, and the result is shown as Figure 5. It is clear from the graph that the optimal k value is 4.



Therefore, we set k to 4 and cluster them by the K-means clustering algorithm and name the four sub-regions formed A0, A1, A2, and A3, as shown in Figure 6. The average altitude of region A0 is relatively high, and the distribution of high-risk points is more concentrated. As shown in Figure 1, the terrain in this region is highly undulating, which contributes to the concentration of high-risk points in high-altitude areas. Figure 4 indicates that the distribution of high-risk points is relatively dense. While this can improve the monitoring efficiency of UAVs, the region’s wide coverage and large span impose certain requirements on UAV endurance.



Region A1 is located at the northern edge of the study area, with the lowest overall altitude and relatively flat terrain. High-risk points in this region are sparse and scattered, directly resulting in the need for UAV monitoring to optimize the cruising path length when covering these points.



Region A2 exhibits moderate altitude and a medium number of high-risk points, with relatively gentle terrain variations. The distribution characteristics of high-risk points lie between those of regions A0 and A1, featuring neither large areas of high-density concentration nor the high degree of dispersion seen in region A1.



The average altitude of region A3 is similar to that of region A0, but it spans a smaller area. The high-risk points in this region are the most concentrated, a characteristic that significantly reduces the distance required for each UAV flight while increasing the risk value covered during the flight.




2.5. Path Planning


Here, we propose four route planning strategies, namely random search strategy, HRF strategy, NHRF strategy, and GA-based optimization strategy. It is worth noting that the experimental area is primarily forested and characterized by complex terrain, making reliance solely on two-dimensional route planning (considering only x and y coordinates) insufficient for practical applications. Therefore, we introduced DEM data to obtain elevation information for each point, allowing for the calculation of the actual three-dimensional distance between the current point and the target point. The use of DEM enables a more accurate representation of height variations in the terrain, facilitating the calculation of three-dimensional Euclidean distance (including x, y, and z coordinates). This approach significantly enhances the precision of UAV flight planning in complex terrains, ensuring safe and effective operations. In this process, we assume a constant flight speed for the UAVs, unaffected by other natural environmental factors. Additionally, we set the maximum flight distance of the UAV to 50,000 m. This distance is chosen based on the coverage requirements of the experimental area and the practical application scenarios of UAV operations. According to the performance of UAVs available on the market, commonly used industry-grade multirotor UAVs with long flight times and high endurance, such as the DJI Matrice 350 RTK and DJI Matrice 30, can meet this flight distance requirement. During the execution of the four algorithms, each flight distance (including the return distance) must remain within this maximum flight distance.



2.5.1. Random Search Strategy


The random search strategy is the simplest strategy in UAV route planning, which can easily and quickly find out the feasible flight route. As shown in Algorithm 1, it satisfies the maximum flight distance limit by continuously generating random points as the next destination and calculating the distance traveled and returned. As shown in Algorithm 1, the strategy consists of three parts: (1) randomly selecting a grid as the starting point for the UAV; (2) randomly selecting a grid as the next area to be visited; and (3) calculating whether the remaining cruising range of the UAV can complete the current distance. If it is satisfied, you can go there and repeat step 2; otherwise, it will end.



	Algorithm 1 Random search UAV routing strategy



	Require:    U A V _ d i s t a n c e  

Ensure:    v i s i t e d  

   Select random   b a s e (  A 0  )   as the start point

      v i s i t e d ← b a s e  

      t o t a l _ d i s t a n c e ← 0  

      b a c k 2 b a s e _ d i s t a n c e ← 0  

      i ← 0  

    while    U A V _ d i s t a n c e < t o t a l _ d i s t a n c e + b a c k 2 b a s e _ d i s t a n c e    do

        Select random   A  i + 1    where    A  i + 1   ∉ v i s i t e d  

          b a c k 2 b a s e _ d i s t a n c e ←   distance between   A  i + 1    and   b a s e  

        Add distance between   A  i + 1    and   A i   to   t o t a l _ d i s t a n c e  

          v i s i t e d ←  A  i + 1    

        i++

    end while

    Replace   A i   as   b a s e  











2.5.2. HRF Strategy


HRF refers to the selection of a risky area as the next passing site in the region, which can prioritize the risky areas as much as possible compared with the random search strategy so as to better improve the success rate of the initial attack in the region. As shown in Algorithm 2, the strategy consists of three parts: (1) randomly selecting a grid as the starting point for the UAV; (2) randomly selecting the grid with the highest risk in the region as the next area to be visited; and (3) calculating whether the remaining cruising range of the UAV can complete the current journey. If it is satisfied, you can go there and repeat step 2; otherwise, it will end.



	Algorithm 2 HRF-based UAV routing strategy



	Require:   U A V _ d i s t a n c e  

Ensure:   v i s i t e d  

   Select random   b a s e (  A 0  )   as the start point

      v i s i t e d ← b a s e  

      t o t a l _ d i s t a n c e ← 0  

      b a c k 2 b a s e _ d i s t a n c e ← 0  

      i ← 0  

    while    U A V _ d i s t a n c e < t o t a l _ d i s t a n c e + b a c k 2 b a s e _ d i s t a n c e    do

        Select the highest risk point as   A  i + 1    where    A  i + 1   ∉ v i s i t e d  

          b a c k 2 b a s e _ d i s t a n c e ←   distance between   A  i + 1    and   b a s e  

        Add distance between   A  i + 1    and   A i   to   t o t a l _ d i s t a n c e  

          v i s i t e d ←  A  i + 1    

        i++

   end while Replace   A i   as   b a s e  









2.5.3. NHRF Strategy


As shown in Figure 7, NHRF is an improved method of the HRF strategy. Compared to the HRF strategy, it first defines a neighborhood centered around the starting point or the currently traversed grid point before selecting the next grid point to visit. When choosing the next point, it does not consider grid points outside the neighborhood; instead, it traverses the points within the neighborhood and selects the one with the highest risk as the next point to visit. Additionally, each grid point is allowed to be visited only once. It is important to note that the neighborhood refers to a specified number of points closest to the starting point or the currently traversed point, with the exact number being adjustable based on practical considerations. In this study, the size of the neighborhood is defined as the 30 nearest grid points surrounding the starting point or the current traversed point. As shown in Algorithm 3, the algorithm is mainly divided into four steps: (1) randomly select a grid as the starting point of the UAV; (2) determine the scope of the neighborhood, and take the points in the neighborhood that have not been entered as candidate points; (3) pick the most risky point among the candidate points as the next point to be visited; and (4) calculate whether the remaining cruising range of the UAV can complete the current distance. If it is satisfied, you can go and repeat step 2; otherwise, it will end.



	Algorithm 3 NHRF-Based UAV Routing Strategy



	Require:    U A V _ d i s t a n c e  ,   n e i g h b o r _ n u m b e r  

Ensure:    v i s i t e d  

    Select random   b a s e (  A 0  )   as the start point

      v i s i t e d ← b a s e  

      c a n d i d a t e s ← N o n e  

      t o t a l _ d i s t a n c e ← 0  

      b a c k 2 b a s e _ d i s t a n c e ← 0  

      i ← 0  

    while    U A V _ d i s t a n c e < t o t a l _ d i s t a n c e + b a c k 2 b a s e _ d i s t a n c e   do

        Select   c a n d i d a t e s   near the   A i   where   c a n d i d a t e s ∉ v i s i t e d   and   l e n ( c a n d i d a t e s ) ≤ n e i g h b o r _ n u m b e r  



        Sort the   c a n d i d a t e s   by the descending order(base on risk)

        Select   c a n d i d a t e s [ 0 ]   as   A  i + 1   

          b a c k 2 b a s e _ d i s t a n c e ←   distance between   A  i + 1    and   b a s e  

        Add distance between   A  i + 1    and   A i   to   t o t a l _ d i s t a n c e  

          v i s i t e d ←  A  i + 1    

        i++

   end while

   Replace   A i   as   b a s e  









2.5.4. GA-Based Optimization Strategy


The GA was proposed by John Holland in the 1960s and is based on the genetic theory of Darwinian evolution and optimizes the problem by simulating the evolution of population solutions [37]. This strategy is based on a genetic algorithm to continuously optimize the cruising path of the UAV and make the individual continuously adapt to the environment through continuous crossing, mutation, and selection. Here, we innovatively use random sampling to select local grids to form the cruising path and encode the cruising path into genes so that there may be genes in each individual that do not exist in other individuals. Individual fitness is shown as Formula (5).


  f i t n e s s =  ∑  k = 1  n  N  (  D k  )  +  ∑  k = 1  n  N  (   1  R k    )  + F  



(5)







The formula consists of three parts: first,   D k   represents the distance to the grid k, which is used to constrain the length of the distance, and requires the overall distance to be as short as possible so as to increase the number of grids that the UAV can pass. The second part   R k   represents the risk value of the grid k, and the higher the risk of the grid passing through, the lower its fitness is by taking the reciprocal number so as to achieve the purpose of covering the high-risk grid as much as possible and improve the coverage rate of the overall high-risk grid. The third part, F, indicates the penalty item for exceeding the cruising range of the UAV, as shown in Formula (7), so as to meet the requirements that the cruising range of the UAV can meet the cruising path. At the same time, the normalization function in Formula (6) is added to the first two parts so that the value is between 0 and 1.


  N  ( x )  =    x − m i n   m a x − m i n     



(6)




where x is the input amount, and   m a x   and   m i n   are the maximum and minimum values of the property, respectively.


  F =     0    , r e a c h a b l e       n ( u n r e a c h a b l e )     , u n r e a c h a b l e       



(7)




where no penalty is applied when the overall cruising range of the UAV can meet the current path, and   F = 0  . When the cruising range of the UAV cannot meet the current path, the unreachable grid is penalized; in this case,   F = n ( u n r e a c h a b l e )  , which means that the value of F is the number of unreachable grids.



As shown in Algorithm 4, the overall algorithm consists of five parts: (1) Randomly select a specified number of grids in the experimental area as the grids to pass through (the number of selected grids needs to be less than the overall number of grids) to generate the primary population. (2) Carry out crossover operation on the population in Figure 8, and in the process of crossing, two groups of genes will be randomly selected, and a section of the selected two groups of genes will be randomly designated for gene exchange because it cannot pass through the site that has been visited, and so if there is a visited grid in the gene that needs to be exchanged, the corresponding gene will be removed and then the exchange operation will be carried out. (3) After all the parent genes are crossed, a mutation operation, in Figure 9, will be carried out, where the mutation of the gene is realized by flipping, and each gene randomly selects a length of gene fragments and flips them so as to achieve the effect of mutation. (4) After the crossover and mutation operations are completed, 120 new individuals will appear, and the fitness of all individuals will be calculated separately, and the individuals with low fitness will be selected through the tournament algorithm to optimize the overall fitness of the population. The tournament algorithm refers to the random selection of 10 to form a team for a total of 12 groups; in each group, the six best genes are selected to ensure that there are 60 individuals in each generation. Compared with the direct selection of individuals in the population, the algorithm can prevent falling into the local optimal situation. (5) Repeat the operation in step 2 until a certain number of iterations is reached.



	Algorithm 4 GA-based UAV routing strategy



	Require:    g e n e _ l e n g t h , g e n e r a t i o n _ n u m b e r , i n d i v i d u a l _ n u m b e r , m u t a t e _ p r o b a b i l i t y  

Ensure:    b e s t  

   Initialize   g e n e r a t i o n   with   r a n d o m ( i n d i v i d u a l )  

      f i t n e s s ←   compute every   i n d i v i d u a l   in   g e n e r a t i o n  

      b e s t ←   select the highest   f i t n e s s   in   g e n e r a t i o n  

      n e w _ g e n e r a t i o n ← N o n e  

      n e x t _ g e n e r a t i o n ← N o n e  

      i ← 1  

    while    g e n e r a t i o n _ n u m b e r < i    ;do

       while   g e n e r a t i o n   is not empty do

           Select random   g e n  e  f a t h e r     and   g e n  e  m o t h e r     as gene which wait for cross

           Select random   i n d e  x 1    and   i n d e  x 2    as head point and tail point

           Swap gene(  g e n  e  f a t h e r     and   g e n  e  m o t h e r    ) in range (  i n d e  x 1   ,  i n d e  x 2   )

              n e w _ g e n e r a t i o n ←   Generate   g e n  e  s o n 1   , g e n  e  s o n 2    

           Remove   g e n  e  f a t h e r     and   g e n  e  m o t h e r    

       end while

         m u t a t e _ g e n e s ←   select some random   g e n e s   in   n e w _ g e n e r a t i o n   which satisfied   m u t a t e _ p r o b a b i l i t y  



       Select random   i n d e  x 1    and   i n d e  x 2    as head point and tail point

       Reverse   g e n e ∈ m u t a t e _ g e n e s   in range (  i n d e  x 1   ,  i n d e  x 2   )

       Merge   n e w _ g e n e r a t i o n   and   g e n e r a t i o n   as   n e x t _ g e n e r a t i o n  

       Use tournament algorithm to select   g e n s ∈ n e x t _ g e n e r a t i o n  

   i++

end while

Replace   A i   as   b a s e  










2.6. Model Evaluation


In order to better measure the effectiveness of UAV path planning, we propose the Average Grid Risk (AGR) indicator, which is calculated as shown in Formula (8).


  A G R =     ∑  i = 1  n   R i   n    



(8)




where   R i   is the cell value of the first i grid, and n is the number of grids currently traversed. The range of AGR is between 1 and 16, and the closer AGR is to 16, the higher the proportion of high-risk grids it traverses; conversely, the closer it is to 1, the fewer high-risk grids it covers.



Average Distance Risk


In order to better measure the effectiveness of UAV path planning, we propose the Average Distance Risk (ADR) indicator, which is calculated as shown in the Formula (9).


  A D R =    D ( n )    ∑  i = 1  n   R i      



(9)




where   R i   is the cell value of the first i grid, n is the number of grids currently traveled, and   D ( n )   is the total distance currently flown. A lower ADR means the more high-risk grids it can cover per unit of distance and vice versa, which means that it needs to fly a longer distance on average to pass through a high-risk fire point.






3. Results


3.1. Path Planning Results


We conducted simulated flights in accordance with the maximum flight distance of the UAVs and used the random search strategy, the HRF strategy, the NHRF strategy, and the GA-based optimization strategy to plan the flight route. The results obtained are as shown in Figure 10. Among them, the optimal paths planned by different strategies in the sub-region are shown in detail in Table 2.



Due to the random search strategy designating grid points as the next destination randomly, the cruising path becomes dispersed and chaotic, with significant distances between the various flying grids, resulting in suboptimal performance. As shown in Figure 10 and Table 2, the connection between the grid points selected by the random strategy and high-risk points is weak, leading to a lack of concentration in the cruising path. Although the running time is very short, the number and coverage rate of high-risk areas are relatively low, with the average high-risk coverage rate in the four areas only around 4–7% and the covered grids ranging from 4% to 6.6%.



The HRF strategy prioritizes selecting high-risk grids within the area as the next target grid; therefore, all covered grids have higher risk values. Notably, in areas A1 and A2, the high-risk coverage rates reached 25.9% and 37.5%, respectively. However, due to the scattered distribution of high-risk points, this strategy often encounters long flying distances between two points, resulting in a lower grid coverage rate of 10.2–19.1%.



The NHRF strategy incorporates the concept of neighborhood into the HRF strategy to ensure that the next target point is not too distant, thereby allowing more grids to be accessed. The planning results indicate that NHRF passes through more sites compared to HRF, ensuring that high-risk grids are prioritized while also reducing the distance between adjacent grids compared to the previous two methods. Table 2 shows that NHRF significantly outperforms HRF across all regions. For example, in areas A1 and A2, the high-risk coverage reached 64.4% and 71.3%, respectively, while the number of covered grids also increased significantly, achieving grid coverage of 31–43.8%.



The GA-based strategy imposes penalties on flight distances exceeding a certain threshold, aiming to optimize UAV cruise routes from a global perspective. Unlike the local optimization approach of the NHRF strategy, this method is more suitable for scenarios requiring consideration of large-scale areas or complex flight environments. The fitness function not only restricts flight distance but also seeks to maximize the coverage of high-risk grids. After 20,000 iterations, experimental results indicate that the GA strategy demonstrates relatively balanced path-planning capabilities among the four methods, achieving a global optimization while maintaining a high-risk coverage rate comparable to NHRF. However, as the data show, the NHRF strategy slightly outperforms the GA in high-risk coverage across most areas (A1, A2, A4), with the GA exceeded by only 1.3% in area A3. In contrast, the GA strategy excels in area coverage, achieving optimal levels ranging from 30% to 59.8%. Thus, the GA strategy has an advantage in covering broader areas, making it more suitable for applications requiring a balance between global and risk coverage. On the other hand, the NHRF strategy may be better suited for scenarios emphasizing high-risk coverage. It is worth noting that the efficiency of the GA strategy comes at the cost of longer training times, which could pose certain limitations in practical applications.




3.2. Model Evaluation


3.2.1. Average Grid Risk


Figure 11 is the average grid risk for each sub-region after using the XGBoost model, from which we can see that the AGR of the stochastic strategy exhibits greater volatility across the four sub-regions and covers a smaller number of grids. The HRF strategy performed reasonably well on sub-regions A0, A2, and A3 but not well on A1. In the sub-regions A1, A2, and A3, the AGR of the NHRF strategy also decreases significantly with the increase in the number of covered grids. Although the AGR of the optimization strategy based on the genetic algorithm is not as good as that of HRF and NHRF, its AGR is stable between 12 and 14, and it covers the largest number of grids.




3.2.2. Average Distance Risk


Figure 12 is the average distance risk of each sub-region after using the XGBoost model, from which we can see that the stochastic strategy has a higher ADR in the four sub-regions and the value fluctuates greatly. Compared with the stochastic strategy, the HRF strategy can significantly reduce the ADR, but its grid coverage is smaller. The performance of the NHRF strategy and the optimization strategy based on the genetic algorithm is similar in sub-region A0, but the optimization strategy based on the genetic algorithm in the three sub-regions A1, A2, and A3 is significantly higher than that of the NHRF strategy in terms of the number for grid coverage.



The effectiveness of the same method varies significantly across four different sub-regions, which is primarily related to the elevation and the distribution characteristics of high-risk points in each region [22]. For instance, in region A1, all four methods yielded the lowest average AGR and the highest ADR, indicating that the average risk value of monitoring a grid point in this area is relatively low, while the average distance to the next grid point is the longest. The underlying reason for this phenomenon lies in the relatively low elevation of region A1, which results in a lower overall initial attack risk, with few and scattered high-risk grid points. In contrast, the performance of all four methods in terms of AGR and ADR was significantly superior in regions A0 and A3. Both regions have higher average elevations and higher initial attack risks, leading to shorter flight distances and higher risk levels in the areas covered. These factors, in combination, significantly improve the monitoring efficiency of different methods in high-risk and high-elevation regions. The altitude of the A2 region and the number of high-risk points are at moderate levels, enabling UAVs to achieve relatively balanced performance in this area. Overall, the geographical characteristics and risk distribution of different regions have a substantial impact on the effectiveness of monitoring strategies, providing important references for optimizing UAV patrol paths. Particularly in low-risk and low-elevation areas, balancing flight distance with risk levels becomes crucial for enhancing patrol efficiency [38].
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Figure 11. The average grid risk across sub-regions. 






Figure 11. The average grid risk across sub-regions.



[image: Fire 07 00435 g011]







[image: Fire 07 00435 g012] 





Figure 12. Average distance risk across sub-regions. 
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There are significant differences in the AGR, ADR, and steps (i.e., the number of grid points visited in a single flight) for the four strategies within the same region. The AGR and ADR values of the random search strategy fluctuate greatly across sub-regions, showing the poorest performance, as the randomness of this strategy imposes no constraints on the risk and endurance within the coverage area. Since the AGR is used to measure the concentration of high-risk grids along the flight path, the HRF and NHRF strategies, by prioritizing high-risk grids, achieve better AGR performance, especially in regions A0, A2, and A3. However, the steps for HRF are significantly lower than that of NHRF, as NHRF places more emphasis on high-risk values within the neighborhood, thus avoiding long-distance flights in a single trip and covering more grid points. Although the GA-based strategy slightly underperforms NHRF in high-risk coverage, its AGR value remains stable between 12 and 14, demonstrating higher consistency, which is attributed to its balanced consideration of endurance and risk coverage. ADR reflects the coverage of high-risk areas per unit distance. The HRF strategy significantly reduces ADR compared to the random search strategy but still lags behind NHRF and GA-based strategies. The NHRF strategy has relatively low ADR values across regions, but the GA-based strategy, with its higher steps, achieves noticeably better grid coverage in regions A1, A2, and A3, showing superior overall performance. It is a more cost-effective strategy [22,39] as it covers a larger area per flight while maintaining a high-risk grid coverage rate close to that of NHRF.






4. Discussion


This study explores UAV cruising strategies and develops advanced algorithms for UAV cruising paths, aiming to develop appropriate approaches based on regional characteristics and provide efficient periodic monitoring solutions for areas with high ecological value and challenging accessibility. Through improving monitoring effectiveness in forest areas, this research seeks to enhance the success rate of initial attack from the perspective of controllable human factors, thereby reducing the detection time of forest fires. We conducted resampling and subdivision of the study area to generate corresponding high-risk raster images for initial attacks, facilitating better identification and analysis of high-risk zones. Additionally, this study developed and applied four algorithms, the random search strategy, HRF strategy, NHRF strategy, and GA-based optimization strategy, to optimize the flight routes of UAVs. Through three-dimensional simulation experiments, we simulated the cruising effects of UAVs and evaluated the performance of each algorithm from multiple perspectives. This method not only helps reveal the differences in performance among various strategies in forest environments but also provides significant strategic references for future forest fire monitoring and emergency response.



Comprehensively, the NHRF and GA-based strategies demonstrate superior performance in terms of coverage and grid coverage rates in high-risk areas. The visualization of the cruise paths from the four methods reveals that the random search strategy results in a more dispersed and chaotic path distribution. Consequently, it covers the fewest grid points during a single cruise. Although this strategy has the shortest computation time, it covers fewer high-risk areas, exhibiting limited grid coverage and high-risk coverage rates, ranging only from approximately 4% to 7%. In contrast, the HRF strategy shows a degree of regularity in its cruise paths, although there are instances where the paths are spaced quite far apart. By prioritizing high-risk grids, the HRF significantly increases the high-risk coverage rate, achieving between 23.1% and 37.5%. However, due to the inability of this strategy to effectively control the distances between adjacent grids in its path design, the number of grid points covered remains relatively low under the constraint of a single cruise distance (limited to less than 50km), resulting in an overall grid coverage rate of 10.2% to 19.1%. The NHRF strategy, on the other hand, incorporates the concept of neighborhoods by prioritizing adjacent high-risk grids, thereby avoiding flights between distant high-risk points. This significantly enhances the grid coverage rate (between 31% and 43.8%) while also obtaining the highest high-risk coverage rate among the four methods, reaching levels of 51.5% to 71.3%. The GA-based optimization strategy, after 20,000 iterations, significantly optimizes the cruise path, achieving optimal grid coverage rates of 30% to 59.8%. This strategy, like NHRF, exhibits characteristics of cruising within a limited area, with paths that are relatively concentrated and dense. However, due to its emphasis on global optimal endurance performance and high-risk coverage, the GA-based strategy sometimes selects relatively distant grid points when choosing the next visit point, leading to a more balanced performance across grid coverage and high-risk coverage [23]. Nevertheless, the training time for this method remains notably longer compared to other strategies.



The results of this study indicate that the NHRF and GA-based strategies outperform in terms of coverage in high-risk areas, grid coverage, AGR, and ADR. This provides an effective path planning approach for UAVs in the early-stage detection of forest fires. By selecting appropriate strategies to optimize flight paths, the monitoring efficiency of UAVs in high-risk areas can be significantly improved, which is crucial for reducing fire detection time and increasing the success rate of initial attacks. Notably, the GA-based strategy demonstrates excellent global optimization capability [24], maintaining relatively stable AGR and ADR across different regions. These findings highlight the importance of selecting suitable flight strategies based on regional characteristics and offer an efficient periodic monitoring solution for ecologically valuable and hard-to-reach areas. Traditional monitoring methods typically rely on manual inspections or conventional equipment [40], whereas the UAV path optimization method proposed in this study has the potential to replace these traditional approaches, significantly improving monitoring efficiency and reducing operational costs. Compared with the GA-based UAV path planning proposed by Sonmez et al. [23], although both approaches utilize GA for path optimization, this study introduces a multidimensional fitness function that comprehensively considers UAV endurance, regional risk, and grid coverage, achieving a more holistic path optimization. Experimental results demonstrate that the GA-based strategy in this study outperforms in terms of high-risk area coverage and overall grid coverage. Furthermore, compared with the three-dimensional UAV path planning based on the GA and ANN proposed by Gautam et al. [28], the proposed strategy integrates geographic and initial attack risk factors for optimization, thereby reducing the flight distance between risk points. At the same time, the required data volume and computational demands are significantly lower than the ANN-based method, offering superior practicality.



Certainly, this study has several limitations that require further improvement and refinement in future research. Firstly, our research was conducted under ideal conditions, assuming that UAVs operate in windless environments at a constant speed. However, in practical applications, meteorological factors such as wind speed and temperature significantly influence the flight path and stability of UAVs. Therefore, future studies should incorporate these environmental factors to more comprehensively and realistically assess the optimization strategies for UAV cruising paths. Secondly, in the NHRF strategy, the size of the neighborhood we used was arbitrarily fixed and lacked a dynamic adjustment mechanism. To enhance optimization efficiency and approach a global optimal solution, future research could introduce more advanced optimization algorithms that dynamically adjust the optimal neighborhood size with each iteration, thereby increasing the flexibility and precision of path planning. In the GA-based optimization strategy, although we considered key factors such as the UAV’s endurance and regional risks, many other potential factors affecting the optimization of cruising paths were not addressed. For instance, the smoothness of the path and the presence of obstacles could significantly impact the efficiency and safety of UAV flight. Thus, future research could further expand the consideration of factors, combining more real-world environmental variables to optimize the cruising paths of UAVs more effectively. Overall, future studies should conduct path planning under more complex and realistic environmental conditions, striving to provide a more reliable and precise theoretical basis for the widespread deployment of UAVs in practical applications, and offer more effective solutions for cruising tasks in challenging environments.




5. Conclusions


The prevention and control of and emergency response to forest fires have long been a focal point of scholarly research, as they pose not only a serious threat to natural ecosystems but also result in incalculable losses to human life and property. This study explores UAV cruising strategies, aiming to develop appropriate approaches based on regional characteristics and provide efficient periodic monitoring solutions for areas with high ecological value and challenging accessibility. The study employs the XGBoost model to simulate the risks of initial attacks, and through resampling the study area into a grid, a high-risk grid map of initial attacks is generated. Based on the regional characteristics, the study area is divided into four sub-regions for more precise risk assessment and strategy formulation. This paper also reviews the current state of research on UAV cruising strategies and proposes four UAV cruising strategies based on initial attacks: the random strategy, HRF strategy, NHRF strategy, and GA-based optimization strategy. To validate the effectiveness of these strategies, they are applied in a real 3D scenario for simulation. The performance of different strategies is compared and analyzed using two key indicators: AGR and ADR. The experimental results show that the NHRF strategy and the GA-based optimization strategy outperform the other strategies in overall performance, achieving high-risk coverage rates of 51.5–71.3% and 37.8–67.8%, and grid coverage rates of 31–43.8% and 30–59.8%, respectively. Future research will focus on considering more practical flight conditions and improving the selection of neighborhood size through optimization methods, as well as introducing additional constraints into the genetic algorithm to obtain better and more realistic algorithmic performance.
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Figure 1. Geographical location and DEM diagram of the study area. 
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Figure 2. Flowchart of UAV cruise path planning based on initial attack. 
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Figure 3. Drone projection range. 
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Figure 4. High-risk grid image for initial attack. 
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Figure 5. Sum of squared errors. 
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Figure 6. K-menas cluster maps. 
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Figure 7. NHRF strategy. 
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Figure 8. Cross-manipulation. 
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Figure 9. Mutation operation. 
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Figure 10. UAV cruise path planned with four optimization strategies. 
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Table 1. Features used for initial attack simulation with their description.
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Group

	
Feature

	
Description






	
Fire Detection Time

	
brightness

	
The brightness of the fire point.




	
frp

	
The Fire Radiative Power (FRP) of the fire point.




	
viewshad_results

	
The visible area around the fire point.




	
Resource Arrival Time

	
arrival_time

	
The time from the fire point to the nearest fire station.




	
Spread Potential

	
air_temperature

	
The average air temperature of the current month at the fire point.




	
wind_speed

	
The average wind speed of the current month at the fire point.




	
wind_direction

	
The wind direction of the fire point.




	
NDVI

	
Normalized Difference Vegetation Index (NDVI)




	
aspect

	
The aspect of the fire point.




	
slope

	
The slope of the fire point.




	
Available Fire Resources

	
fire_situation

	
Fire situation near the fire point.











 





Table 2. The optimal path planned by different strategies in a sub-region.
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	Strategy
	Sub-Regions
	Route
	High Risk

Number
	High-Risk

Coverage
	Flight

Distance (m)
	Number of

Covered Grids
	Grid

Coverage
	Running

Time (s)





	Random
	A0
	G79-G367...G553-G79
	202
	4.0%
	49,723.4
	24
	4.0%
	<1



	Random
	A1
	G16-G26...G4-G16
	111
	4.9%
	45,287.4
	21
	5.1%
	<1



	Random
	A2
	G185-G111...G93-G185
	194
	6.5%
	48,240.0
	24
	6.2%
	<1



	Random
	A3
	G481-G374...G304-G481
	336
	7.0%
	47,758.4
	33
	6.6%
	<1



	HRF
	A0
	G376-G17...G401-G376
	1295
	25.6%
	48,354.0
	82
	13.8%
	<1



	HRF
	A1
	G212-G29...G363-G212
	592
	25.9%
	49,938.3
	42
	10.2%
	<1



	HRF
	A2
	G310-G17...G34-G310
	1118
	37.5%
	49,813.5
	74
	19.1%
	<1



	HRF
	A3
	G317-G34...G147-G317
	1106
	23.1%
	49,420.6
	69
	13.8%
	<1



	NHRF
	A0
	G4-G41...G148-G4
	2604
	51.5%
	49,806.3
	184
	31.0%
	<1



	NHRF
	A1
	G18-G29...G317-G18
	1473
	64.4%
	49,906.0
	145
	35.3%
	<1



	NHRF
	A2
	G326-G291...G360-G326
	2127
	71.3%
	49,966.0
	170
	43.8%
	<1



	NHRF
	A3
	G340-G314...G64-G340
	2588
	54.1%
	49,849.7
	184
	36.7%
	<1



	GA
	A0
	G98-G81...G116-G98
	1909
	37.8%
	42,455.2
	178
	30.0%
	320



	GA
	A1
	G237-G252...G253-G237
	1347
	58.9%
	43,423.7
	205
	49.9%
	272



	GA
	A2
	G43-G144...G44-G43
	2022
	67.8%
	47,152.7
	232
	59.8%
	344



	GA
	A3
	G160-G161...G133-G160
	2654
	55.4%
	49,808.0
	250
	49.9%
	421
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