Research on the Inhibitory Effect of Hydrated Phase Change Materials on Spontaneous Combustion in Coal
Abstract
:1. Introduction
2. Experimental Principle
3. Experimental Preparation and Scheme
3.1. Treatment of Coal Samples
3.2. Experimental Scheme
4. Experimental Result
4.1. Characteristic Temperature Analysis
4.2. Combustion Characteristic Parameter Analysis
- (1)
- The combustion intensity and difficulty of flammable materials are frequently assessed using the flammability index, which reflects their combustion rate, combustion performance, and so on. The flammability index is a key indicator that determines the performance of a combustible material in terms of ignition and combustion, where better ignition stability and combustion performance of flammable materials are indicated by higher flammability index values. The flammability index values obtained from performance testing experiment in this article were calculated from the maximum combustion rate and ignition temperature. As shown in Equation (2), the flammability index is directly inversely proportional to the square of the sample ignition point temperature and proportional to the sample’s maximum combustion rate:
- (2)
- When assessing the ability of combustible materials to ignite, the comprehensive combustion characteristic index is frequently employed, which reflects the quality of their combustion performance [34]. According to Equation (3), the sample’s comprehensive combustion performance improves with a larger comprehensive combustion characteristic index value.
4.3. Reaction Activation Energy Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Q.; Nie, W.; Yang, S.; Xu, C.; Peng, H.; Liu, Z.; Guo, C.; Cai, X. Effect of spraying on coal dust diffusion in a coal mine based on a numerical simulation. Environ. Pollut. 2020, 264, 114717. [Google Scholar] [CrossRef]
- Gu, W.; Lu, Y.; Yan, Z.; Wu, F.; Shi, S.; Zhu, S.; Zhang, S.; Guo, X.; Wang, Z.; Wu, X. Spontaneous combustion of coal in regenerated roof and its prevention technology. Fuel 2023, 346, 128280. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Tang, G.; Yang, Y.; Shao, S.; Ding, Y. Research and prevention of upper remaining coal spontaneous combustion induced by air leakage in multi-inclination regenerated roof: A case study in the Luwa coal mine, China. Energy 2023, 275, 127484. [Google Scholar] [CrossRef]
- Dou, G.; Liu, J.; Jiang, Z.; Jian, H.; Zhong, X. Preparation and characterization of a lignin based hydrogel inhibitor on coal spontaneous combustion. Fuel 2022, 308, 122074. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, S.; Wang, H.; Tian, Z.; Ye, Q.; Niu, H. Thermal characteristics of cement microparticle-stabilized aqueous foam for sealing high-temperature mining fractures. Int. J. Heat Mass Tran. 2019, 131, 594–603. [Google Scholar] [CrossRef]
- Lu, Y.; Yan, Z.; Shi, S.; Wang, G.; Li, H.; Niu, H.; Guo, Z.; Wang, P. Delineation and prevention of the spontaneous combustion dangerous area of coal in a regenerated roof: A case study in the Zhoujing coal mine, China. Energy Fuels 2020, 34, 6401–6413. [Google Scholar] [CrossRef]
- Qin, B.; Dou, G.; Wang, Y.; Xin, H.; Ma, L.; Wang, D. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 2017, 190, 129–135. [Google Scholar] [CrossRef]
- Pan, D.; Hong, K.; Fu, H.; Zhou, J.; Zhang, N.; Lu, G. Influence characteristics and mechanism of fragmental size of broken coal mass on the injection regularity of silica sol grouting. Constr. Build. Mater. 2021, 269, 121251. [Google Scholar] [CrossRef]
- Ma, L.; Fan, X.; Wei, G.; Sheng, Y.; Liu, S.; Liu, X. Preparation and characterization of antioxidant gel foam for preventing coal spontaneous combustion. Fuel 2023, 338, 127270. [Google Scholar] [CrossRef]
- Fang, X.; Wang, H.; Tan, B.; Wang, F.; Shao, Z.Z.; Cheng, G.; Yao, H. Experimental comparison study of CO2 and N2 inerted loose coal based on atmospheric pressure gas replacement. Fuel 2022, 328, 125347. [Google Scholar] [CrossRef]
- Lei, B.; He, B.; Xiao, B.; Du, P.; Wu, B. Comparative study of single inert gas in confined space inhibiting open flame coal combustion. Fuel 2020, 265, 116976. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, S.; Jiang, S.; He, X.; Shao, H.; Wang, K.; Fan, D.; Li, W. Experimental study on prevention and control of coal spontaneous combustion with heat control inhibitor. J. Loss Prevent. Proc. 2018, 56, 272–277. [Google Scholar] [CrossRef]
- Xi, Z.; Jin, B.; Jin, L.; Li, M.; Li, S. Characteristic analysis of complex antioxidant enzyme inhibitors to inhibit spontaneous combustion of coal. Fuel 2020, 267, 117301. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Zhao, J.; Cao, H.; Tan, Q.; Zhang, H.; Wang, J. Synthesis of a novel composite component inhibitor and its flame retardant effect on coal. Case Stud. Therm. Eng. 2022, 38, 102368. [Google Scholar] [CrossRef]
- Huang, Z.; Li, J.; Liu, X.; Gao, Y.; Zhang, Y.; Wang, S.; Li, Z.; Yan, L. Development and Performance Study of a New Physicochemical Composite Inhibitor for Coal Spontaneous Combustion Control. Combust. Sci. Technol. 2022, 194, 2480–2503. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, G.; Ding, H.; Wang, H.; Li, J.; Yu, R.; Gao, Y.; Wang, P. Study on the inhibition performance of double network physicochemical nanocomposite gel inhibitor on coal spontaneous combustion. Fuel 2023, 350, 128697. [Google Scholar] [CrossRef]
- Dong, H.; Hu, X.; Yu, A.; Wang, W.; Zhao, Q.; Wei, H.; Yang, Z.; Wang, X.; Luo, C. Study on the mechanism of an enteromorpha-based compound inhibitor for inhibiting the spontaneous combustion of coal using in situ infrared spectroscopy and thermal analysis kinetics. J. Environ. Chem. Eng. 2023, 11, 109577. [Google Scholar] [CrossRef]
- Wang, K.; Hu, L.; Deng, J.; Zhang, Y.; Zhang, J. Inhibiting effect and mechanism of polyethylene glycol-Citric acid on coal spontaneous combustion. Energy 2023, 275, 127522. [Google Scholar] [CrossRef]
- Gao, F.; Jia, Z.; Bai, Q.; Dong, J. Characteristics and mechanism of Glutathione in inhibiting coal spontaneous combustion. Fuel 2023, 352, 129006. [Google Scholar] [CrossRef]
- Xue, D.; Hu, X.; Dong, H.; Cheng, W.; Wang, W.; Liang, Y. Examination of characteristics of anti-oxidation compound inhibitor for preventing the spontaneous combustion of coal. Fuel 2022, 310, 122160. [Google Scholar] [CrossRef]
- Pan, R.; Li, X.; Li, H.; Chao, J.; Jia, H.; Ma, Z. Study on the effect of composite hydrogel inhibitors on the heat release characteristics of coal oxidation. Fuel 2022, 309, 122019. [Google Scholar] [CrossRef]
- Gao, A.; Sun, Y.; Hu, X.; Song, S.; Lu, W.; Liang, Y.; He, Z.; Li, J.; Meng, S. Substituent positions and types for the inhibitory effects of phenolic inhibitors in coal spontaneous combustion. Fuel 2022, 309, 122104. [Google Scholar] [CrossRef]
- Tang, Z.; Xu, G.; Yang, S.; Deng, J.; Xu, Q.; Chang, P. Fire-retardant foam designed to control the spontaneous combustion and the fire of coal: Flame retardant and extinguishing properties. Powder Technol. 2021, 384, 258–266. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energ. Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Ferrer, G.; Solé, A.; Barreneche, C.; Martorell, I.; Cabeza, L.F. Review on the methodology used in thermal stability characterization of phase change materials. Renew. Sustain. Energ. Rev. 2015, 50, 665–685. [Google Scholar] [CrossRef]
- Da Cunha, J.P.; Eames, P. Thermal energy storage for low and medium temperature applications using phase change materials–a review. Appl. Energ. 2016, 177, 227–238. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, G.; Chen, J.; Shao, S.; Ding, Y.; Li, M.; Wu, F.; Wang, W. Development of composite phase change material for preventing spontaneous combustion of coal and its thermo-physical properties. Energy Fuels 2022, 36, 3857–3866. [Google Scholar] [CrossRef]
- Tang, Y. Experimental investigation of applying MgCl2 and phosphates to synergistically inhibit the spontaneous combustion of coal. J. Energy Inst. 2018, 91, 639–645. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, J.; Bai, Z.; Hou, Y.; Deng, J.; Xiao, Y. Experimental investigation on using antioxidants to control spontaneous combustion of lignite coal. Fuel 2023, 334 Pt 1, 126679. [Google Scholar] [CrossRef]
- Niu, H.; Yang, Y.; Bu, Y.; Li, S. Study on spontaneous combustion characteristics of coal samples with different pre-oxidized temperatures in secondary oxidation process. Combust. Sci. Technol. 2023, 195, 1873–1886. [Google Scholar] [CrossRef]
- Jia, H.; Yang, Y.; Ren, W.; Kang, Z.; Shi, J. Experimental study on the characteristics of the spontaneous combustion of coal at high ground temperatures. Combust. Sci. Technol. 2022, 194, 2880–2893. [Google Scholar] [CrossRef]
- Di, H.; Wang, Q.; Sun, B.; Sun, M. Reactivity and catalytic effect of coals during combustion: Thermogravimetric analysis. Energy 2024, 291, 130353. [Google Scholar] [CrossRef]
- Si, F.; Zhang, H.; Feng, X.; Dou, J.; Wu, L.; Li, L.; Wang, L.; Zhao, L. Thermal analysis kinetics study of pulverized coal combustion under oxygen-rich atmosphere. ACS Omega 2023, 8, 33975–33981. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wen, H.; Shu, C.-M.; Laiwang, B.; Li, B.; Xiao, Y.; Wei, G. Thermokinetic behavior and microcharacterization of low-rank bitumiteoxidization. J. Therm. Anal. Calorim. 2019, 137, 1693–1705. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Q.; Ji, K.; Li, X.; Yu, Y.; Zhang, H.; Song, Y.; Fu, Y.; Sun, L. Thermogravimetric analysis of pyrolysis kinetics of Shenmu bituminous coal. React. Kinet. Mech. Cat. 2014, 113, 269–279. [Google Scholar] [CrossRef]
Coal Sample | Mad/% | Aad/% | Vad/% | FCad/% |
---|---|---|---|---|
Meagre coal | 1.33 | 4.79 | 12.36 | 81.52 |
Lean coal | 1.23 | 19.16 | 18.32 | 61.29 |
Gas coal | 1.89 | 8.64 | 39.57 | 49.9 |
Long-flame coal | 4.25 | 38.94 | 42.32 | 14.49 |
Coal Sample | Characteristic Temperature | Mass Loss/% | ||||||
---|---|---|---|---|---|---|---|---|
T1/°C | T2/°C | T3/°C | T4/°C | T5/°C | T6/°C | |||
Raw coal sample | meagre coal | 87.6 | 267.2 | 314.3 | 461.7 | 537.2 | 834.8 | 75.1 |
lean coal | 64.3 | 122.5 | 245.1 | 471.2 | 538.4 | 785.2 | 74.4 | |
gas coal | 66.9 | 122.8 | 293.2 | 499.5 | 509.1 | 664.1 | 84.7 | |
long-flame coal | 82.1 | 108.8 | 294.4 | 389.1 | 455.2 | 683.1 | 46.5 | |
Inhibitory coal sample | meagre coal | 90.2 | 316.9 | 341.3 | 467.5 | 536.6 | 691.8 | 71.1 |
lean coal | 84.6 | 180.9 | 352.8 | 485.2 | 548.9 | 687.8 | 72.8 | |
gas coal | 90.3 | 180.3 | 305.3 | 452.5 | 535.7 | 678.7 | 75.4 | |
long-flame coal | 96.2 | 160.8 | 298.2 | 403.6 | 463.5 | 612.9 | 41.7 |
Coal Sample | /°C | /°C | /(%/min) | /(%/min) | C /(%·min−1·K−2) | S /(%·min−1·K−2) | |
---|---|---|---|---|---|---|---|
Raw coal sample | meagre coal | 461.7 | 834.8 | −0.47 | −0.081 | −8.704 × 10−7 | 6.36 × 10−11 |
lean coal | 471.2 | 785.2 | −0.56 | −0.075 | −1.01 × 10−6 | 7.16 × 10−11 | |
gas coal | 499.5 | 664.1 | −0.53 | −0.102 | −8.88 × 10−7 | 9.66 × 10−11 | |
Long-flame coal | 389.1 | 683.1 | −0.39 | −0.049 | −8.89 × 10−7 | 4.56 × 10−11 | |
Inhibitory coal sample | meagre coal | 467.5 | 691.8 | −0.59 | −0.085 | −1.08 × 10−6 | 9.65 × 10−11 |
lean coal | 485.2 | 687.8 | −0.61 | −0.090 | −1.06 × 10−6 | 9.93 × 10−11 | |
gas coal | 452.5 | 678.7 | −0.46 | −0.089 | −8.74 × 10−7 | 8.17 × 10−11 | |
Long-flame coal | 403.6 | 612.9 | −0.34 | −0.045 | −7.42 × 10−7 | 3.77 × 10−11 |
Coal Sample | Related Coefficient | Fitted Equation | Activating Energy (KJ·mol−1) | Pre-Exponential Factor (105) | |
---|---|---|---|---|---|
Raw coal sample | meagre coal | 0.94421 | y = −14,169.41942x + 3.26412 | 117.805 | 0.3706 |
lean coal | 0.93717 | y = −11,767.58362x + 0.03079 | 97.836 | 0.0121 | |
gas coal | 0.97138 | y = −11,807.14984x + 1.12187 | 98.165 | 0.0363 | |
long-flame coal | 0.94580 | y = −8117.89135x − 3.46265 | 67.492 | 0.0003 | |
Inhibitory coal sample | meagre coal | 0.95231 | y = −14,306.42138x + 3.46072 | 118.943 | 0.4555 |
lean coal | 0.99504 | y = −14,539.7563x + 3.82596 | 120.884 | 0.6670 | |
gas coal | 0.98785 | y = −12,436.20378x + 1.78492 | 103.395 | 0.0741 | |
long-flame coal | 0.96594 | y = −8800.20589x − 2.60558 | 73.165 | 0.0006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Shi, S.; Shao, S.; Lu, Y.; Gu, W.; Wang, Y.; Yuan, X. Research on the Inhibitory Effect of Hydrated Phase Change Materials on Spontaneous Combustion in Coal. Fire 2024, 7, 95. https://doi.org/10.3390/fire7030095
Wu F, Shi S, Shao S, Lu Y, Gu W, Wang Y, Yuan X. Research on the Inhibitory Effect of Hydrated Phase Change Materials on Spontaneous Combustion in Coal. Fire. 2024; 7(3):95. https://doi.org/10.3390/fire7030095
Chicago/Turabian StyleWu, Fanghua, Shiliang Shi, Shuzhen Shao, Yi Lu, Wangxin Gu, Youliang Wang, and Xindi Yuan. 2024. "Research on the Inhibitory Effect of Hydrated Phase Change Materials on Spontaneous Combustion in Coal" Fire 7, no. 3: 95. https://doi.org/10.3390/fire7030095
APA StyleWu, F., Shi, S., Shao, S., Lu, Y., Gu, W., Wang, Y., & Yuan, X. (2024). Research on the Inhibitory Effect of Hydrated Phase Change Materials on Spontaneous Combustion in Coal. Fire, 7(3), 95. https://doi.org/10.3390/fire7030095