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Abstract: Developing mmWave radar sensors for indoor crowd motion sensing and tracking faces a
critical challenge: the scarcity of large-scale, high-quality training data. Traditional human experi-
ments encounter logistical complexities, ethical considerations, and safety issues. Replicating precise
human movements across trials introduces noise and inconsistency into the data. To address this,
this study proposes a novel solution: a movable platform equipped with a life-size mannequin to
generate realistic and diverse data points for mmWave radar training and testing. Unlike human
subjects, the platform allows precise control over movements, optimising sensor placement relative
to the target object. Preliminary optimisation results reveal that sensor height impacts tracking
performance, with an optimal sensor placement above the test subject yields the best results. The
results also reveal that the 3D data format outperforms 2D data in accuracy despite having fewer
frames. Additionally, analysing height distribution using 3D data highlights the importance of the
sensor angle—15° downwards from the horizontal plane.

Keywords: mmWave radar sensor; mannequins; motion tracking; indoor environment

1. Introduction

The rapid expansion of urban areas has led to the construction of larger and more
intricate buildings and public facilities. These structures pose unique fire safety challenges
compared to their smaller counterparts due to features like extended escape distances,
intricate layouts, and diverse building materials [1,2]. This complexity, coupled with
higher occupant densities, elevates the potential for fire casualties [3]. Despite these
heightened risks, current evacuation plans typically rely on pre-defined escape routes
established during construction. While these plans consider factors like legal regulations,
travel time, and route capacity, their static nature limits their effectiveness in dynamic
situations [4]. Static signage cannot adapt to changing environments and may direct
occupants towards compromised exits blocked by fire, smoke, or congestion. This limitation
is further supported by the US Fire Administration’s report on civilian fire injuries, where
escape-related issues, fire patterns, and egress difficulties were identified as contributing
factors in over 79% of cases [5]. Advancements in sensor technology, computational power,
and communication infrastructure pave the way for the development of more sophisticated
evacuation systems. Research efforts are underway to develop alternative systems that
leverage real-time data from various sensors to dynamically guide occupants towards
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the safest exit pathways in real-time [4,6]. Real-time information on building occupants,
their distribution, and numbers can also be valuable to first responders, enabling them
to make informed decisions and potentially save lives during emergencies. Integrating
this information with the building’s fire alert system can further enhance emergency
management by informing occupants about the least congested evacuation routes for a
faster escape.

Effective indoor emergency evacuation requires comprehensive data about the build-
ing environment, evolving fire hazards, and human behaviour during evacuation events [7].
Detecting and tracking human movement is crucial in such situations, and various ap-
proaches exist for this purpose. Device-free approaches are generally preferred due to
their practicality, and various technologies like infrared imagers [8], cameras [9], and WiFi
signals [10] have been explored for this purpose. However, infrared radiation sensors are
limited by their narrow beam range and inability to detect relatively stationary objects [11].
Vision-based techniques (e.g., cameras) are widely used and perform well when given a
clean environment, but they are intrusive and have lower user acceptance in domestic
and commercial settings. Radio frequency-based methods such as WiFi signals are less
intrusive. Unfortunately, these methods require a separate transmitter and receiver, and are
limited to situations where users walk between them [12]. Among these technologies,
millimetre wave (mmWave) radar technology shows promise in human movement sensing
applications [13]. It is a transceiver, so only requires a single device for tracking and identi-
fication. Operating at a high-frequency range, this technology transmits short-wavelength
electromagnetic signals that reflect off objects in their path. By analysing the reflected signal,
the system can infer the distance and trajectory of the object. Texas Instruments (TI) [14]
conducted people counting and tracking experiments using a mmWave radar sensor and
it reported an accuracy of 45% for five people and 96% for one person. Huang et al. [13]
proposed a new indoor people detection and tracking system using a mmWave radar
sensor, and the proposed system improved the experimental accuracy ranges from 98%
for one person to 65% for five people. However, this system still has limited accuracy
when dealing with larger groups. Zhao et al. [15] also proposed a human tracking and
identification system (mID) based on the mmWave radar. Extensive experimental results
demonstrate that mID achieves an overall recognition accuracy of 89% among 12 people,
with the accuracy increasing when fewer people are in the dataset. In addition, unlike
vision-based methods, it can function effectively even in poorly lit or visually obscured
environments [15,16], and it does not raise the same privacy concerns associated with
image-based techniques.

While research demonstrates the potential of mmWave sensors for various appli-
cations [17–20], including fire safety [21,22], widespread deployment faces significant
challenges [23]. Sensor performance can be significantly influenced by variations in both
hardware and deployment environments. Zhao et al. [15] report that the length of time peo-
ple are observed by the sensor has a significant impact on identification performance. Their
results show that the percentage of the correct prediction reaches from 89% to 99% when the
observation time increases from 2 s to 6 s. In addition, Huang et al. [24] demonstrate that as
the number of people increases, the positional relationship and mutual occlusion between
pedestrians will lead to an increase in errors. This necessitates extensive on-site testing and
calibration for each project, leading to project-specific investments and hindering large-scale
adoption. Additionally, generalisability limitations exist even within the field of sensor
technology. While large-scale datasets can be used to develop threat recognition algorithms,
any incompleteness in the data can introduce biases, leading to classification errors [25].
In the specific context of mmWave sensors and crowd dynamics detection, data collection
presents unique challenges due to the inherent variability of human characteristics and
behaviours, as well as the impracticality of replicating real-world environmental conditions
in controlled settings. Addressing these challenges is crucial for ensuring the effectiveness
development of mmWave-based crowd dynamics detection systems.
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Building upon the above background, this paper reports on the development, imple-
mentation, and testing of a novel platform for generating high-quality datasets applicable
to sensor performance improvement in crowd dynamics detection. This platform addresses
the challenge of generalisability associated with human-subject data collection in con-
trolled environments. The core of the platform is a human-sized mannequin mounted on a
movable platform. This configuration enables the generation of repeatable and scalable
scenarios with controlled variability in terms of the mannequin’s size and shape, move-
ment speed, and trajectory. This level of control allows for the creation of diverse scenarios
that mimic real-world crowd dynamics, ultimately leading to the generation of compre-
hensive datasets. Importantly, this approach eliminates ethical concerns surrounding
human-subject involvement in experiments.

This paper presents two key contributions in the realm of mmWave radar-based crowd
monitoring systems. Firstly, this work proposes a novel approach to address the knowledge
gap in the existing literature by demonstrating, for the first time, the platform’s ability to
generate detectable data for mmWave radars. By successfully generating data detectable
by the sensor, this research lays the foundation for the further exploration of the platform’s
capabilities. Secondly, this paper presents a preliminary analysis examining the impact of
various physical sensor configurations on detection performance. This analysis focuses on
the influence of sensor height and angle variations on the sensor’s output. By scrutinising
these factors, this research provides valuable insights into optimising sensor placement
and configuration for improved crowd monitoring effectiveness. The findings from this
initial analysis serve as a stepping stone towards the development of more sophisticated
and reliable crowd monitoring systems.

The paper is structured as follows: Section 2: Experimental Setup and Data Collec-
tion. This section outlines the experimental setup and details the data collection process
employed in this study. Section 3: Validation and optimisation of the platform. This section
delves into the analysis of the platform’s ability to generate trajectory and object height data
in conjunction with the detection system. It also explores the potential for setup optimisa-
tion. Section 4: Significance, Applications, and Future Directions. This section discusses
the platform’s significance, potential solutions it offers, and its applications. Section 5:
Conclusion. This concluding section summarises the key findings and outlines potential
areas for future research.

2. Methodology
2.1. Room Setup

For this study, the experiments were conducted in a room measuring 6 m by 5 m on
the campus of UNSW Sydney. A grid measuring 5 m × 4 m, marked on the room’s concrete
floor in 1 m increments, served as a visual reference, as shown in Figure 1.

Figure 1. (a) A photograph of the site and (b) a schematic of the room layout with the radar sensor
range overlaid.
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2.1.1. Stepper Motor Control System

An in-house built pulley system, detailed in Figure 2, was coupled to a moving
platform to manipulate the mounted mannequin. This control system utilises a pulley
to move the mannequin and is composed of a stepper motor setup, which includes an
Arduino controller, a TB6600 stepper motor driver (ELEGOO, Shenzhen, China), and a
Nema 23 stepper motor (OMC Corporation Limited, Nanjing, China).

Figure 2. The pulley control system comprising: (a) a motorised pulley, and (b) a movable platform
on which the mannequin was mounted.

To select a motor and connection wire that can work with the planned load, the ten-
sile force acting on the system was estimated. Based on the parameters of the pulley
control system listed in Table 1, the experimental pulling force, denoted as Fp, can be
calculated using

Fp = Crr × W × g = 0.01 × 10.3 kg × 9.81 m/s2 = 1.01 N (1)

Crr indicates the rolling resistance coefficient for the wheels of the moving platform. W
represents the weight of the system. The safety factor for the connecting wire was ensured
by limiting the pulling force to Fp < Fb (75.46 N). The holding torque, Tp = 0.05 N·m, was
calculated considering the chosen pulley radius (50 mm) and the selected pulling force
(1.01 N). Both the chosen connecting wire and stepper motor (holding torque: 2.4 N·m) sat-
isfy the calculated force and torque requirements. For the purpose of this study, the system
was operated with a platform moving speed of 0.5 m/s, comparable to the typical normal
adult walking pace of 0.8 m/s to 1.2 m/s. Although the current platform’s movement
speed is limited by the capacity of the testing stepper motor control system, the current
setup is still valuable for testing purposes. This limitation does not preclude the use of a
more powerful system in future iterations.

Table 1. Specificaitons of the pulley control system.

Items Parameter

Weight of system (platform and mannequin), W 10.3 kg
Rolling resistance coefficient, Crr 0.01

Outer radius of pulley, r 50 mm
Holding torque of the stepper motor, T 2.4 N·m

Breaking force of the connecting wire, Fb 75.46 N



Fire 2024, 7, 181 5 of 17

2.1.2. mmWave and Video Recording System

The measurement system comprises an IWR6843ISK radar sensor (Texas Instruments,
Dallas, TX, USA), a ToLuLu Webcam HD 1080p camera (ToLuLu, Shenzhen, China) serving
as ground truth reference, and a laptop control terminal for data collection, processing,
and analysis. Figure 3a depicts the hardware setup. A synchronised Python script was
developed to ensure the coordinated operation of the three subsystems: the mmWave
radar sensor measurement system, the stepper motor control system, and the camera
recording system.

MMWAVEICBOOST
carrier card platform

Camera

Tripod

(a) (b) (c)
RX1 RX2 RX3 RX4 TX1

TX2

TX3

mmWave radar sensor
(IWR6843ISK)

Transmitters (TX) 
& Receivers (RX)

Figure 3. The mmWave and video recording system used. (a) The overall hardware setup. (b) The
mmWave radar sensor, and (c) The location of transmitters (TX) and receivers (RX) on the sensor.

The measurement system utilises an IWR6843ISK radar sensor [26], mounted on the
MMWAVEICBOOST carrier card platform [27] as shown in Figure 3b. This single-chip
frequency modulated continuous wave (FMCW) radar, developed by Texas Instruments
(TI), facilitates data tracing and software development capabilities [14,28]. It captures
information like range, angle, and Doppler shift from moving objects. In brief, the mmWave
sensor operates by transmitting a chirp signal from transmitters (TX) within the 60 to
64 GHz range. Upon encountering a target, this signal is reflected and received by the
receivers (RX). The received signal retains the characteristics of the original signal, but with
a time delay. This time delay is dependent on the distance between the sensor and the
target. Combining these signals generates an intermediate frequency (IF) signal containing
raw data. As shown in Figure 3c, the system utilises three transmitters and four receivers.
The carrier card platform processes the raw data and outputs a point cloud, providing
information about the detected objects.

2.1.3. Experimental Scenarios and Procedures

This study aimed to achieve two key objectives. Firstly, it sought to demonstrate
the feasibility of a platform in conjunction with an mmWave sensor for data generation.
Secondly, the study aimed to leverage the platform’s functionality to enable systematic
adjustments of system parameters and optimise sensor performance. This optimisation
process is often challenging when using human subjects due to the difficulty of maintaining
consistent speeds and trajectories. This novel platform, if proven effective, potentially
addresses this challenge.

For this investigation, the height and angle of the sensor (as depicted in Figure 4)
were varied. Heights ranged from 1.7 m to 2.1 m, while angles varied from 0° to 30°.
The selection of the mannequin’s height (1.9 m) and sensor placement parameters (heights
and angles) was guided by established practices in crowd detection sensor deployment.
Since the test subject was a fixed-height mannequin (1.78 m mounted on a 0.12 m platform),
the chosen sensor heights (1.7 m, 1.9 m, and 2.1 m) correspond to positions below, level
with, and slightly above the mannequin’s top, respectively. This allows researchers to
study how the relative position of the sensor and the subject affects the accuracy of the



Fire 2024, 7, 181 6 of 17

results. Similarly, the selection of tilt angles (0°, 15°, and 30°) facilitates the exploration of
varying tilt angles on sensor performance. Common practice suggests positioning crowd
detection sensors high enough to clear the top of tracked objects with a slight downward
tilt to cover the desired area. However, a steeper down tilt can increase ground clutter
noise, reducing the effective sensing area, while minimal or no tilt can decrease counting
accuracy, particularly when individuals stand directly behind each other. By comparing
the findings from this study on optimal sensor placement and configuration for improved
crowd monitoring effectiveness with established practices, this research provides a form of
validation for the platform’s ability to generate relevant data for algorithm development.
As previously noted, the platform, to which the mannequin was mounted, moved at a
speed of 0.5 m/s.

The mmWave sensor operated in two modes during the mannequin’s movement
assessment. The first method utilised two-dimensional (2D) data output from a polar
coordinate system. In contrast, the second method employed three-dimensional (3D)
data presented in a Cartesian coordinate format. The 2D data, processed with lower
computational load, is expected to yield less process noise. Meanwhile, the 3D data has the
potential to derive height information of the human subject. The 2D data mode is executed
in the MATLAB environment and the 3D data mode is run in the Python environment.
To ensure robustness and reliability, each scenario was conducted under identical conditions
and repeated three times. This resulted in a total of 54 observations: 3 heights × 3 angles ×
2 dimensions × 3 repetitions. The study provides valuable insights into the sensor system’s
performance and adaptability across various scenarios.

Figure 4. Experimental scenarios with varied sensor (a) height and (b) angle.

The experimental procedure involved the controlled movement of a mannequin
mounted on a movable platform driven by a stepper motor system towards the mmWave
sensor. The sensor and a camera simultaneously detected and recorded the mannequin’s
motion. The camera data served as the ground truth reference for the experiment (Figure 5).
The experiment began with essential preparations, including camera initialisation, configu-
ration of the 2D/3D application, and establishing connection between the Arduino board
and the laptop via the COM port. To ensure precise synchronisation among the mmWave
sensing program, camera recording session, and motor control operation, a custom Python
script facilitated a synchronised system. This system allowed the initiation and conclusion
of the experiment with simple keyboard commands (“S” and “Q” keys, respectively).

Following this controlled sequence, two separate file types were generated for sub-
sequent analysis. The first file type contained human point cloud data stored in MAT-
LAB (version: R2021b) format, specifically tailored for 2D applications. For 3D scenarios,
the data was saved in a Comma-Separated Values (CSV) format. The second file type
consisted of an MP4 video recording captured by the camera, providing visual recordings
of the experiment.
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Initialize

Start

End

Camera recording saves 

in MP4 format

2D application generates 

data in MATLAB format

Synchronization system

q Camera recording session

q 2D/3D application 

q Connection between Arduino board and a laptop

Press‘Q’on keyboard to quit simultaneously 

Press‘S’on keyboard to start simultaneously

• mmWave sensing program

• Camera recording session

• Motor control operation

Output
3D application produces 

data in CSV format

Figure 5. The experimental procedures.

2.2. Data Collection

Millimeter-wave (mmWave) sensors for people detection involve a sequential pro-
cessing pipeline consisting of Front-End (FE), Low-Level, and High-Level stages. The FE
processing stage encompasses both analog and digital components. The analog front-end
transmits and receives signals, while the digital front-end employs a Frequency-Modulated
Continuous Wave (FMCW) radar to generate complex Analog-to-Digital Converter (ADC)
data, referred to as the beat signal. This beat signal serves as the raw input for the Low-Level
processing stage.

In the Low-Level processing stage, the ADC samples containing chirp signals from
each receiver–transmitter pair are processed. Range processing extracts target distances
using the chirp time, while Doppler processing estimates target velocities by analysing the
frequency shift of the return signal for each detected (range, azimuth) pair. This step often
involves a Fast Fourier Transform (FFT) applied to the range domain data. To refine the
data, static reflections (zero Doppler) are removed, and noise is reduced through filtering,
improving the signal-to-noise ratio (SNR). By doing so, the specific range information
for each chirp from each antenna is obtained, representing the location of certain points
captured within the sensor’s field of view. The data collected from the number of chirps per
antenna, the total number of antennas, and the detected range information are combined
to create a radar data cube in a frame. This data cube forms the basis of the point cloud,
where each point represents a target’s location (X, Y, and Z coordinates in 3D or X and Y in
2D) along with its radial velocity and SNR.

The High-Level processing stage leverages the point cloud data from Low-Level pro-
cessing to identify, classify, and track people. By analysing the continuous stream of points
frame-by-frame, statistical information can be extracted to differentiate between humans
and stationary objects (ground clutter). The frame-by-frame analysis allows for tracking
targets over multiple frames, enabling the computation of longer-term statistical measures.

For this study, only the outputs from the Low-Level processing stage is presented as
the corresponding stage performs the initial signal processing tasks to extract crucial target
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information from the raw mmWave signal. This information, encapsulated in the point
cloud, serves as the foundation for subsequent higher-level processing algorithms that can
be used to identify, classify, and track people within the environment.

2.2.1. Camera Image Processing

This research was conducted within a controlled indoor environment featuring consis-
tent lighting to ensure stable experimental conditions. Figure 6 illustrates the process of
detecting movement locations in the acquired images. Firstly, a background subtraction
technique was employed. This involved subtracting a background image, acquired at
the experiment’s start (without the mannequin and platforms), from subsequent images.
This effectively filtered out the static background, isolating the foreground containing the
moving objects.

To derive a stable trajectory from the moving mannequin, the platform’s location
was used as a reference point. An HSV (Hue, Saturation, Value) mask was applied to
accurately extract the platform’s location in the image. Utilising an HSV mask provides
certain advantages in handling lighting variations and minimising the impact of shadows.
However, it is crucial to acknowledge that non-uniform lighting and colour similarity
between the platform and its surroundings can still affect the accuracy of this approach.
As shown in Figure 6, this method effectively separates the moving platform from the man-
nequin. The platform’s location was then determined by identifying the bounding box of
the masked area and calculating its centre point. Finally, a perspective transformation [29]
was applied to convert the image coordinates of the platform’s centre into actual location
information for the point cloud figure. Once the platform’s trajectory was known, the man-
nequin’s trajectory was derived by aggregating the detected target locations throughout
the experiment.

The trajectories obtained by a camera served as the ground reference in this research,
conducted within a controlled indoor environment featuring a consistent light source,
ensuring a static lighting condition. The study focused on a single moving target (the
mannequin and platform), rendering the setup conducive to employing the background
subtraction (BG subtraction) method in image processing.

Region of 
Interest (ROI)

Background 
Subtraction

Center of 
ROI

Detected LocationPerspective Transformation

Target 
Sighting

Figure 6. The processing steps for detecting mannequin’s location in the image.

3. Results
3.1. Validation

The experimental setup involved a mobile platform equipped with a life-size man-
nequin (Figure 7). The system utilised a stepper motor control mechanism (described in
Section 2.1.1) to drive the dynamic movements of the mannequin. Specifically, the motor
pulled the mannequin toward the mmWave sensor position. Simultaneously, a camera and
mmWave sensor captured ground truth data and detected motion, respectively. Figure 7
illustrates various data outputs: (a) the selected image frames, (b) the corresponding 2D
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data, (c) the trajectory data derived from the camera image, and (d) the trajectory data from
the mmWave sensor. These data collectively demonstrated for the first time the capability of
the system to enable real-time monitoring and trajectory analysis of the proposed platform.
Notably, during this feasibility study, the mannequin load was not perfectly centred on the
platform. The pulley control system, driven by a motorised pulley, caused the platform
to sway and exhibit lateral motion. Consequently, the mannequin shifted from side to
side, as evident in the selected image frames. Importantly, this instability is also reflected
in the presented 2D data. This validates the feasibility of using a movable platform with
a life-size mannequin to simulate various scenarios. Furthermore, it demonstrates the
system’s sensitivity in capturing motion variations.

(a)

(c)

Tracking points detected by sensor in the history frames

Point cloud detected by sensor in the history frames

Point cloud detected by sensor at the current frame

Tracking points detected by sensor in the history frames
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Target detected by camera In the history frames

Target detected by camera at the current frame
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Figure 7. (a) Sample image frames, (b) corresponding 2D data, (c) trajectory data derived from the
camera image, and (d) trajectory data from the mmWave sensor. All data are captured by the data
acquisition system as a life-size mannequin on a mobile platform was pulled towards it. The data
acquisition system consisted of a camera and an mmWave sensor positioned at 1.9 m height and 0°
angle relative to the mannequin. Floor markings were used to provide visual reference.

3.2. Optimisation

This section builds upon the established viability of the platform and explores its
application for acquiring 2D and 3D data. Specifically, it aims to demonstrate its potential
use to identify the optimal physical configuration for the sensor, specifically in terms of
height and angle adjustments. Table 2 summarises the investigated scenarios, their settings,
and corresponding notations for ease of references. For instance, a two-dimensional (2D)
data scenario with a sensor height of 1.7 m and sensor angle of 0° is denoted as “2D/1.7/0”.

Figure 8 illustrates the trajectories of a moving mannequin captured under 2D/1.9/0
(panels (a)–(c)) and 3D/1.9/0 (panels (d)–(f)) detection scenarios, each repeated three
times. The “number of frames” represents how many frames of point cloud data the sensor
collected in the entire experiment. In the figures, the unprocessed point cloud visualises the
raw sensor output of all frames, while the “point cloud without noise” refers to the point
clouds after removing the extraneous data points that are located far from the region of
interest. The “tracking points” are identified as the centroids of multiple noise-free points
within each frame. The “number of tracking points” represents the total number of tracking
points of all frames. The “camera reference” is derived by the video image, as detailed in
Section 2.2.1.
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Table 2. Summary of settings and corresponding notations for investigated scenarios.

Scenario Dimension Height (m) Angle (°)

2D/1.7/0 2D 1.7 0
2D/1.7/15 2D 1.7 15
2D/1.7/30 2D 1.7 30
2D/1.9/0 2D 1.9 0

2D/1.9/15 2D 1.9 15
2D/1.9/30 2D 1.9 30
2D/2.1/0 2D 2.1 0

2D/2.1/15 2D 2.1 15
2D/2.1/30 2D 2.1 30
3D/1.7/0 3D 1.7 0

3D/1.7/15 3D 1.7 15
3D/1.7/30 3D 1.7 30
3D/1.9/0 3D 1.9 0

3D/1.9/15 3D 1.9 15
3D/1.9/30 3D 1.9 30
3D/2.1/0 3D 2.1 0

3D/2.1/15 3D 2.1 15
3D/2.1/30 3D 2.1 30

Point cloud Point cloud without noise Tracking points Camera reference

Figure 8. Point cloud for tracking mannequin’s trajectories in the scenarios 2D/1.9/0:
(a–c), and 3D/1.9/0: (d–f). Each experiment was repeated three times.
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Figure 9 shows the number of frames and the tracking points across repetitions in
all the scenarios. The values depicted in Figure 9a indicate that the 2D data acquisition
method captures a larger number of frames over the same time period compared to the 3D
method, although the values are closed in the cases 1.9/0 and 2.1/15. This suggests that
the 2D method provides more detailed information with a lower computational burden.
In terms of the number of tracking points, the 2D application typically produces fewer
tracking points compared to the 3D application, with the exceptions being the cases 1.7/30
and 1.9/30. However, the subsequent section will focus on analysing the tracking accuracy,
a crucial aspect in evaluating the effectiveness of the system.
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Figure 9. The number of (a) frames and (b) tracking points across three repetitions in various scenarios.

3.3. Performance on Location Error

This section analyses the location error, quantifying the discrepancy between sensor-
generated tracking points and camera-referenced points (Figure 10). The location error rep-
resents the distance between a tracking point and the linear fit of the camera reference line.

Linear fitting of 

camera reference

Location error

Tracking points Camera reference

Figure 10. The demonstration of how to obtain the location error.

A three-way analysis of variance (ANOVA) [30] was conducted to assess the influence
of three factors on the location error across all test scenarios: sensor height, sensor angle,
and data dimensionality (2D vs. 3D). ANOVA is a statistical test that examines the impact
of independent variables (factors) on a continuous dependent variable, with significant
effects indicated by p-values of less than a predetermined level. The p-value suggests
the statistical significance of the observed differences between different groups (such as
different sensor height). The significance level is defined as p-value < 0.01. The results in
Table 3 reveal a statistically significant impact of all three factors and their interactions on
the location error. Remarkably, the notable F-value suggests that data dimensionality is the
most crucial factor, with sensor height closely following suit.
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Table 3. Three-way analysis of variance on the influence of factors at the location error (significance
at p-value < 0.01). Bolded text indicates the most influential factor.

Index df Mean_sq F p-Value Significance

Angle 2 0.16 9.19 <0.00001 Yes
Height 2 5.86 327.57 <0.00001 Yes

Dimension 1 18.02 1008.50 <0.00001 Yes
Angle×Height 4 1.67 93.20 <0.00001 Yes

Angle×Dimension 2 0.07 3.99 <0.00001 Yes
Height×Dimension 2 4.78 267.62 <0.00001 Yes

Angle×Height×Dimension 4 1.856 103.83 <0.00001 Yes

Figure 11 utilises violin plots to visually depict how sensor height, angle, and data
dimensionality influence the distribution of location errors. Briefly, violin plots combine
features of box plots and density plots, showcasing both the centre (interquartile range)
and spread of the data while also revealing its overall distribution. Wider areas within
the violin shape represent higher frequencies of data points at those values. As is evident
from the figure, the optimal sensor configuration for minimising location error is achieved
at a height of 2.1 m and an angle of 0°. Additionally, Table 4 also shows that the average
location error for the 3D scenario is remarkable lower than that observed in 2D scenarios.
The noteworthy performance at a height of 2.1 m suggests that positioning the sensor above
the target and employing 3D data offer advantages for capturing the actual movement
trajectory with greater accuracy.

(a) 2D

(b) 3D

Minimum

Density plot
(Width = frequency)

Maximum

Third quartile
Median

First quartile

The optimal sensor height 
performance on location error

The optimal sensor angle 
performance on location error

Figure 11. The location error for the scenario with data collection of 2D: (a) and 3D: (b). The black
dashed area indicates the optimal sensor height performance, specifically at 2.1 m, while the red
dashed area highlights the best sensor angle performance, specifically at 0°.
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Table 4. Averaged location error (unit: m) without considering the influence of the sensor angle.

Height (m) Dimension Average (m)2D 3D

1.7 0.18 0.12 0.15
1.9 0.25 0.09 0.17
2.1 0.10 0.09 0.09

Averaged (m) 0.18 0.10

3.4. Performance on Height Error

mmWave radar sensor not only offers the ability to sense and track moving objects
through reflections of electromagnetic waves, but also possess the capability to extract
information about their height. This capability has garnered significant research interest
in recent years due to its potential applications in various indoor environments. One area
of particular interest is fall detection for elderly individuals living independently [31,32].
By monitoring changes in an individual’s height signature over time, mmWave sensors
can potentially detect falls and trigger emergency alerts. This offers a non-invasive and
privacy-preserving solution for monitoring elderly individuals in their homes, promoting
independent living and timely assistance in case of emergencies. In the context of crowd
evacuation scenarios, the ability to detect height variations using mmWave sensors can
also be beneficial. During emergencies, rapid crowd movement can lead to congestion
and bottlenecks, potentially increasing the risk of injuries and impeding efficient evacu-
ation [33]. By measuring the height distribution within a crowd, mmWave sensors can
provide valuable information to crowd management systems. For instance, identifying
areas with a high concentration of individuals crouching or lying down could indicate
potential hazards or blockages, enabling authorities to prioritise evacuation efforts in those
areas [34].

To evaluate the effectiveness of mmWave sensors in detecting height variations, the ex-
periment was performed using a mannequin with a known height (Hactual = 1.9 m).
The height error was determined by comparing the difference between the maximum
and minimum z-coordinate locations detected by the sensor with the actual height of the
mannequin (Hdetected). The relative error, |Hdetected−Hactual |

Hactual
, is used to reflect the sensor’s

accuracy in capturing height variations.
A two-way ANOVA was then performed to analyse the influence of sensor placement

on the height error. The results, presented in Table 5, revealed that the angle of the sensor
placement significantly affects the height error (p-value < 0.01), while the height of the
sensor itself does not have a significant individual effect. However, the interaction between
these two factors does play a notable role in determining the overall height error. Figure 12
visually depicts these findings, suggesting that an optimal sensor configuration for accurate
height detection is achieved at an angle of 15°, which is approximately midpoint of the
viable field-of-view of the mmWave radar.

Table 5. Two-way analysis of variance on the influence of factors at the error of detecting height
(Significance at p-value < 0.01). Bolded text indicates the most influential factor.

Index Mean_sq F p-Value Significance

Angle 9.32 120.88 <0.00001 Yes
Height 0.33 4.30 0.0136 No

Angle×Height 2.26 29.36 <0.00001 Yes
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Minimum

Density plot
(Width = frequency)

Maximum

Third quartile

Median

First quartile

The optimal sensor angle performance on height error

Figure 12. The height error in different scenarios. The red dashed area indicates the optimal sensor
angle performance, specifically at 15°.

4. Discussions

The development of mmWave radar sensors for indoor crowd motion sensing and
tracking faces a significant bottleneck: the scarcity of large-scale, high-quality data for
training and evaluation. Traditional approaches relying on human experiments present
inherent difficulties [35,36]. Logistical complexities, ethical concerns, and safety issues are
just some of the hurdles researchers encounter. Additionally, replicating precise movements
with human subjects across repeated trials is highly challenging, introducing noise and
variability into the data. This underscores the need for alternative methods capable of
generating realistic and diverse data for mmWave radar development.

This paper proposes a potential approach to address the data gap: a movable platform
equipped with a mannequin to generate data points for training and testing mmWave radar
sensors. The platform offers the potential to simulate various crowd motions with diverse
speed ranges and trajectories. This includes, for example, simulating walking, running,
or crowds with varying densities. Additionally, the mannequin’s positioning can be
customised to represent different human postures and orientations, such as standing, sitting,
or crouching. Furthermore, the mmWave sensor setup can be configured in conjunction
with the platform to simulate distinct sensor positioning scenarios. This includes varying
the number of objects (people) being tracked, the distances between them, the angles of the
sensor relative to the crowd, and the sensor’s resolution. These combined capabilities have
the potential to generate a vast volume of data encompassing numerous parameters and
scenarios, creating a rich and informative dataset.

Such a database would be invaluable for training and refining algorithms, ultimately
leading to the development of more robust and accurate individual distinction capabilities.
A major challenge in this domain is the difficulty in differentiating individuals within the
collected mmWave sensor data due to the inherent ambiguity and limited resolution of
the sensor readings. Clustering algorithms, commonly used to group similar data points
(e.g., those representing individual people), often struggle with this task [37]. This limi-
tation can lead to inaccurate crowd density estimations and hinder applications such as
individual tracking and behaviour analysis. Beyond individual distinctions, the platform
can be leveraged to investigate and address other algorithmic challenges associated with
mmWave sensor usage in indoor environments. For example, the controlled setting it
provides facilitates the study of sensor performance under various environmental condi-
tions, such as the presence of obstacles. The obstacle factors are particularly relevant in
indoor environments, where mmWave signals can reflect off walls and objects, leading
to a phenomenon known as multipath propagation. This can create signal ghosting and
distort the received data. By studying the platform’s performance in controlled multipath
environments, researchers can develop algorithms that compensate for these effects. This
information, in turn, can inform the development of algorithms with greater resilience
to environmental factors, ultimately improving the overall robustness of the system in
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more diverse settings. The platform’s potential capacity to generate diverse and controlled
data scenarios serves as a crucial tool for accelerating the development and refinement
of mmWave sensor algorithms for numerous indoor crowd detection applications. It is
important to acknowledge, however, that while this platform offers significant advantages
for algorithm development and refinement, the algorithms developed and tested using this
platform will ultimately require validation in real-world scenarios involving actual crowds
to ensure their generalisability and robustness for practical crowd detection applications.

5. Conclusions

This study addressed a critical bottleneck in mmWave radar sensor development
for indoor crowd motion sensing and tracking: the scarcity of high-quality, large-scale
data for training and evaluation. Traditional approaches relying on human experiments
face logistical complexities, ethical concerns, and safety issues. Additionally, replicating
precise movements with human subjects across trials is challenging, introducing noise
and variability into the data. This highlights the need for alternative methods to generate
realistic and diverse data for mmWave radar development. This paper presents the first
demonstration of a novel approach to address this data gap: a movable platform equipped
with a life-size mannequin to generate data points for training and testing mmWave radars.
The platform offers the potential to simulate various crowd motions, positions, and ori-
entations. The study showcased the platform’s potential to optimise sensor placement
relative to the target object—a task inherently challenging with human subjects due to
the complexity of replicating precise movements. The preliminary optimisation results
indicated that sensor angle, height, and data format all influence tracking performance.
Notably, sensor height emerged as the most impactful factor, with an optimal height of
2.1 m (above the test subject) yielding the best results. The study also demonstrated that the
3D data format provides more accurate location information despite having fewer frames
compared to the 2D format. Furthermore, exploration of using sensor 3D data to derive
height distribution revealed that sensor angle significantly influences height error, with the
optimal angle identified as 15° downwards from the horizontal plane.

This work represents the first step towards a platform capable of generating a vast
volume of data encompassing numerous parameters and scenarios. This rich and informa-
tive dataset holds promise for enhancing the detection and categorisation capabilities of
mmWave sensors for crowd evacuation monitoring applications.
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