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Abstract: Obtaining thermal infrared images with prominent details, high contrast, and minimal
background noise has always been a focal point of infrared technology research. To address issues
such as the blurriness of details and low contrast in thermal infrared images, an enhancement
algorithm for thermal infrared images based on multi-scale guided filtering is proposed. This
algorithm fully leverages the excellent edge-preserving characteristics of guided filtering and the
multi-scale nature of the edge details in thermal infrared images. It uses multi-scale guided filtering
to decompose each thermal infrared image into multiple scales of detail layers and a base layer. Then,
CLAHE is employed to compress the grayscale and enhance the contrast of the base layer image.
Then, detail-enhancement processing of the multi-scale detail layers is performed. Finally, the base
layer and the multi-scale detail layers are linearly fused to obtain an enhanced thermal infrared
image. Our experimental results indicate that, compared to other methods, the proposed method
can effectively enhance image contrast and enrich image details, and has higher image quality and
stronger scene adaptability.

Keywords: image enhancement; multi-scale filtering; thermal infrared image; CLAHE

1. Introduction

Infrared thermal imaging technology plays a crucial role in medical examinations [1],
firefighting and rescue [2], and target detection [3], among others. Infrared thermal imaging
technology is characterized by its independence from illumination and its ability to operate
around the clock [4]. It can compensate for the shortcomings of visible-light cameras, which
struggle to function normally in special environments such as smoke, night-time, and strong
light [5]. Limited by the performance constraints of infrared systems and disturbances
from external environments, thermal infrared images often suffer from low overall contrast,
poor visual effects, and blurred details compared to visible-light images [6]. These issues
significantly impact the subsequent observation and target detection of thermal infrared
images. Therefore, it becomes particularly necessary to enhance the detail features of
thermal infrared images, increase image contrast, and reduce noise through algorithms.

In the field of image enhancement, histogram equalization (HE) is one of the most
classical algorithms. HE tries to balance the distribution probability of the pixels within
each grey level by redistributing the grey values of the image, so as to enhance the average
grey difference between the pixels and enhance the contrast of the image [7]. However,
conventional HE may lose important target details while enhancing image contrast, cause
image brightness shift, and amplify noise in the image background [8]. In order to solve the
problem with HE algorithm enhancement, many scholars have researched and innovated
it. Kim [9] proposed Brightness-Preserving Bi-Histogram Equalization (BBHE), which
divides the image into two subgraphs to perform the HE algorithm separately, avoiding
fine target under-enhancement, but the enhancement process generates noise. Stark [10]
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proposed Adaptive Histogram Equalization (AHE) by calculating the local histogram of
the image for equalization, which better preserves the image details, but it does not solve
the problem of amplifying the image noise. In order to further reduce the noise gener-
ated by the histogram equalization algorithm, Zuiderveld [11] proposed Contrast-Limited
Adaptive Histogram Equalization (CLAHE). By implementing contrast limitation, CLAHE
prevents the excessive enhancement of local contrast during the histogram equalization
process, effectively avoiding loss of detail and noise issues in certain regions of the image.
Additionally, to eliminate the boundary effects caused by local processing, CLAHE em-
ploys bilinear interpolation techniques for smooth transitions between adjacent processing
windows, thus ensuring the visual continuity of the image. Zhang [12] proposed a platform
histogram equalization algorithm based on brightness segmentation. According to the
characteristics of the human visual system’s perception of brightness, the image is divided
into different brightness areas. Each brightness area is enhanced, effectively balancing
the display of details in the dark and bright areas of the image. These improvements to
the histogram equalization algorithm have significantly mitigated the drawbacks of the
traditional HE algorithm.

Although the histogram equalization-related algorithm can enhance the overall con-
trast of the infrared image, the histogram equalization related algorithm does not consider
the edge characteristics of the image, resulting in poor edge effects in the processed im-
age [13]. Therefore, the Unsharp Mask (UM) method based on the idea of image layering
has been widely used for the purpose of thermal infrared-image enhancement. This method
effectively highlights the details in the image and improves its visual effect by performing
multi-level decomposition and reconstruction of the image. However, despite the signif-
icant advantages of this method in detail enhancement, the use of linear filtering may
cause blurring in the edge areas of the image. This blurring can lead to halos around the
edges, making parts of the image appear unnatural and affecting the overall effect. To solve
this problem, many researchers have proposed nonlinear filters that can maintain edges
and combine additional information to adjust the gain of different regions to obtain better
image enhancement effects. Branchitta [14] proposed the method of using a bilateral filter
(BF) with edge preservation properties to replace the traditional linear filtering method for
the hierarchical processing of image data. The image-enhancement effect is achieved by
performing Gamma transformation on the separated detail layer and background layer
with different parameters and then fusing them. Although bilateral filtering has achieved
certain results, bilateral filtering has a gradient reversal problem.

Zuo et al. [15] introduced adaptive Gaussian filtering into bilateral filtering and
proposed a method based on bilateral filtering and adaptive detail enhancement (BF&DDE).
This method effectively suppresses the gradient reversal effect that occurs at strong edges
of the image after bilateral filtering. However, it still does not completely eliminate this
phenomenon and has a high computational cost. He et al. [16] proposed the Guided Filter
(GF) technique, which enhances the role of the guide image, ensuring that the output image
better aligns with the gradient information of the guide image. This effectively preserves
edge details and avoids the occurrence of artifacts that may arise from bilateral filtering.
Subsequently, Ren [17] used a weighted-variance-guided filter for image decomposition and
Non-Local Means (NLM) for detail enhancement. Although this method eliminates noise,
it does not effectively improve contrast. Jiang et al. [18] proposed a method for enhancing
maritime infrared target images based on guided filtering. This method addresses the
issue of edge blurring by using Gaussian filtering and utilizes the target feature-extraction
image as the guided image, thereby effectively enhancing the detectability of maritime
targets and improving image clarity. However, the process of extracting the target feature
image requires a significant amount of computational time. Ouyang et al. [19] proposed
an infrared-image detail-enhancement algorithm based on parameter-adaptive guided
filtering. This algorithm suppresses noise through a noise mask function and improves the
adaptability of guided filtering to different scenes using adaptive parameters. Although
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this method effectively enhances images, the guided filtering with a single parameter size is
insufficient to fully represent the complex spatial structure information of infrared images.

Aiming to overcome the shortcomings of the above algorithms, in order to avoid
under-enhancement and over-enhancement while enhancing the contrast and brightness
of the image, and to further highlight the detailed information of the image, multi-scale
guided filtering for thermal infrared-image enhancement (MSGF-TIR) is proposed. This
method uses multi-scale guided filtering to decompose thermal infrared images into detail
layers of small, medium, and large scales, as well as a base layer. For the base layer image,
CLAHE is used to effectively improve the image contrast level; for the detail layer images,
dynamic linear transformation is utilized to enhance the edges and details of the images.
Finally, the multi-scale detail layer and the background layer images are weight-fused to
generate a detail-enhanced image, and the algorithm flow chart is shown in Figure 1.
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2. Materials and Methods
2.1. Multi-Scale Guided Filtering

Guided filtering is a filtering method based on the local linear model [20]. It assumes
that any pixel has a certain linear relationship with the pixels in its local neighborhood.
During the construction of the convolution kernel, a guidance image is introduced to
determine the weights in the weighted average operation. The effectiveness of guided
filtering largely depends on the choice of the guidance image, which can be an image
related to the original image or the original image itself to be filtered. When the guidance
image is chosen as the image to be processed itself, guided filtering can effectively preserve
the edge information of the image. Compared to bilateral filtering, guided filtering can
more effectively avoid the gradient reversal phenomenon while preserving image edges,
offering superior edge preservation.

Through the guided-filtering technique, the original image p can be decomposed into
a base layer q containing the image contours and a detail layer e including details and noise,
expressed as

p = q + e (1)

In this formula, the base layer q is the result of guided filtering.
It is assumed that there is a local linear model between the base layer q and the

guidance image, which can be expressed as

qi = ak Ii + bk, ∀i ∈ ωk (2)
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In this formula, k represents a certain pixel in the guidance image I, and ωk refers to
the neighborhood centered at k with a radius of r; ak and bk are the parameters of the model.

By deriving this linear relationship, we can obtain the gradient relationship:

∇q = ak∇I (3)

The result indicates that the gradient of the filtered base layer q is highly consistent
with the gradient of the guidance image I, where the parameter ak plays a decisive role
in the similarity of the gradients. When ak is greater than 1, the filtering can maintain
the gradient details of the image; when ak is less than 1, it mainly achieves smoothing of
the image.

The core of the guided filter algorithm lies in the accurate calculation of the linear-
model coefficients ak and bk, ensuring that the output image q after filtering is as close as
possible to the original input image p. This process is accomplished by constructing a cost
function within the window ωk that minimizes the cost, which is expressed as

E(ak, bk) = ∑
i∈ωk

(
(ak Ii + bk − pi)

2 + εa2
k

)
(4)

In this formula, ε is a regularization factor used to prevent ak from becoming too large
and causing overfitting. The coefficients ak and bk are solved using the method of least
squares, resulting in

ak =

1
|ω| ∑i∈ωk

Ii pi − µk pk

σ2
k + ε

(5)

bk = pk − akµk (6)

In this formula, |ω| represents the total number of pixels within the local window. σ2
k

and µk, respectively, represent the variance and the mean gray level of the pixels of the
guidance image I within the window ωk, and pk represents the average gray level of the
input image p within the same window ωk.

Since a given pixel will appear in multiple local windows, its pixel value is actually
determined by the values from these windows collectively. To accurately compute the final
pixel value for this specific point, it is necessary to first calculate the linear function values
corresponding to all windows that include this pixel. Then, by averaging these function
values, the formula is expressed as

qi =
1
|ω| ∑

k,i∈ωk

(ak Ii + bk) = ak Ii + bk (7)

When the guidance image used is the original image itself, the coefficients ak and bk of
the filtering function simplify to

ak =
σ2

k
σ2

k + ϵ
(8)

bk = (1 − ak)µk (9)

In guided filtering, ϵ is a key parameter. When ϵ is 0, the output image qi is consistent
with the original image pi, indicating that no filtering has been applied. As the value
of ϵ increases, the output image qi tends towards the average gray level µk of its region,
achieving an effect similar to mean filtering. Choosing an appropriate ϵ value is crucial as
it ensures that in the smooth areas of the image, the output image qi is mainly influenced
by the regional average gray level µk, while in areas of high contrast, the coefficient ak
approaches 1, ensuring consistency of the output image qi with the original image pi and
effectively preserving the edge information in the image [21].

The edge details in thermal infrared images have multiple scales, and if the edge
details of all scales are mixed and processed for uniform enhancement, it lacks robustness
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and will inevitably destroy some of the image information. Therefore, this paper adopts a
layer-by-layer decomposition method, as shown in Figure 2. Thermal infrared images are
processed using multi-scale guided filtering to obtain the base layers B1, B2, and B3, from
which the edge details at a small scale (D1), medium scale (D2), and large scale (D3) are
extracted for subsequent enhancement processing.
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Using the multi-scale layer-by-layer decomposition method shown in Figure 2, the
thermal infrared image I is decomposed into detail layers of small, medium, and large
scales, as well as a base layer, with the decomposition effect shown in Figure 3.
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scale detail layer. (c) Medium-scale detail layer. (d) Large-scale detail layer. (e) Base layer, where
(b–d) are normalized for ease of observation.

2.2. Enhancement of the Base Layer Based on CLAHE

The CLAHE algorithm is an extension of the AHE algorithm, primarily aimed at
addressing the noise and over-enhancement issues that may arise when the AHE algorithm
processes images [22]. The core of the CLAHE algorithm involves limiting the contrast to
redistribute the histogram of the image and performing histogram equalization on each
small block separately. Finally, these blocks are reconnected through bilinear interpolation,
thereby eliminating the blocky effect. The steps are as follows:

1. Segment the original image into (n × n) non-overlapping, equal-sized blocks.
2. Calculate the histogram for each block separately.
3. Compute the clipping limit T
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T = c ×
nxny

K
(10)

In this formula, the number of pixels in the x direction within a block is denoted by
nx; the number of pixels in the y direction within a block is denoted by ny; the number of
gray levels is represented by K; and the clipping coefficient is denoted by c.

4. Clip the histogram and distribute the pixels. In each of the segmented blocks, clip
the histogram h(n) according to the clipping limit, and then distribute the number of
pixels clipped from each gray level evenly, as shown in Figure 4.
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S =
K−1

∑
x=0

(max(h(x)− T), 0) (11)

A =
S
K

(12)

In this formula, the total number of pixels exceeding the clipping limit T is denoted by
S; the number of pixels allocated on average to each gray level is represented by A; and the
histogram after redistribution is represented by h′(x). Then, we have:

h′(x) =

{
T + A h(x) ≥ T
h(x) + A h(x) < T

(13)

5. Performed histogram equalization on each sub-block after the pixels have been redis-
tributed.

6. To avoid block artifacts in the processed image, carry out interpolation calculations to
determine the values of pixels in each sub-block, as shown in Figure 5.
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The pixels in the four corner areas marked in black are calculated using the mapping
function of their respective sub-blocks. For the pixels in the four edge areas marked in
white, the mapping functions of the two adjacent sub-blocks are used for transformation,
followed by a linear interpolation operation between the two obtained mapping values.
The formula is as follows:

f (x, y) =
x2 − x
x2 − x1

f1 +
x − x1

x2 − x1
f2 (14)

In this formula, the pixel value of the point being calculated is denoted by f (x, y); the
mapping values obtained from the transformation using the mapping functions of the two
adjacent sub-blocks are denoted by f1 and f2; and the center pixel coordinates of the two
adjacent sub-blocks are denoted by (x1, y1) and (x2, y2).

The pixel values in the center area marked in gray are transformed using the mapping
functions of the four surrounding adjacent sub-blocks. Then, the four obtained mapping
values are processed using bilinear interpolation, and the processing formula is as follows:

f (x, y) = f ′1
(x′2 − x)(y′2 − y)(
x′2 − x′1

)(
y′2 − y′1

) + f ′2
(x′2 − x)

(
y − y′1

)(
x2 − x′1

)(
y′2 − y′1

) (15)

In this formula, f ′1, f ′2, f ′3, and f ′4 represent the mapping values obtained for the point
through the transformation using the mapping functions of the four surrounding sub-blocks.(

x′1, y′1
)
, (x′2, y′2), (x′3, y′3), and

(
x′4, y′4

)
, respectively, represent the center pixel coordinates

of the four surrounding sub-blocks.

2.3. Detail Layer Enhancement Based on Dynamic Linear Enhancement

Since the detail layer only retains texture and edge information, without containing
the wide-range brightness distribution of the image, continuing to enhance the detail layer
with CLAHE may lead to inconsistent brightness and contrast changes in different areas
of the image, failing to meet the requirements. Therefore, to overcome these issues, a
new dynamic enhancement method is proposed. This method dynamically adjusts the
contrast based on the image’s average brightness, thereby better maintaining the image’s
naturalness and global consistency. The steps of the algorithm are as follows:

(1) Average brightness calculation. Calculate the average intensity µ of the input image I.
The calculation formula is as follows:

µ =
1
N ∑N

i=1 Ii (16)

In this formula, N is the total number of pixels in the image, and Ii is the brightness
value of the i-th pixel.

(2) Contrast Adjustment. Adjust the contrast of the image using the contrast factor α If
the contrast factor is greater than 1, the contrast is enhanced. If the contrast factor is
less than 1, the contrast is reduced. The adjusted image Iadj is calculated as follows:

Iadj(x, y) = (α × (I(x, y)− µ)) + µ (17)

In this formula, I(x, y) is the original brightness value of the pixel at coordinates (x, y)
in the image, and Iadj(x, y) is the adjusted brightness value of the corresponding pixel.
This process adjusts the brightness of pixels relative to the average intensity of the image,
thereby changing the contrast of the image.

(3) Return the adjusted image. After the above steps, an image with adjusted contrast is
obtained, where the intensity of each pixel has been dynamically linearly transformed
based on the contrast factor provided by the user, offering a certain degree of flexibility.
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2.4. Image Fusion

The primary objective of the image-detail-enhancement algorithm is to address issues
such as low contrast and poor detail in traditional thermal infrared images. In this process,
the CLAHE algorithm effectively compresses the image’s grayscale range by limiting con-
trast enhancement during histogram equalization, thereby improving the overall visibility
of the image. Dynamic linear enhancement is applied to multi-scale detail layers to inten-
sify the edge detail information of the image and enhance the presentation of the detail
layer. Through weighted fusion of the base layer processed with CLAHE and the enhanced
multi-scale detail layers, an enhanced image is obtained. The weighted fusion formula is
as follows:

I = pIB + qID (18)

In this formula, I is the final fused output image, IB is the enhanced base layer, ID is
the enhanced multi-scale detail layer, and p and q are the fusion coefficients, which can be
selected according to different scenarios and requirements.

3. Results

To verify and evaluate the effectiveness of the proposed algorithm in enhancing ther-
mal infrared images, we selected three groups of thermal infrared images for experimental
analysis. The first group of scenes was captured with an iRay T3-Pro camera, while the
second and third groups of scenes were derived from the FLIR dataset [24]. The experiment
was conducted on a Windows 10 operating system, using hardware configured with an
AMD Ryzen 7 5800H processor equipped with Radeon Graphics, clocked at 3.20 GHz. We
compared these three groups of thermal infrared images from both subjective and objective
perspectives. The subjective evaluation was based on direct visual observation of the
processed images by the human eye. The objective assessment was conducted using image
quality assessment metrics, including the Peak Signal-to-Noise Ratio (PSNR), Information
Entropy (IE), Average Gradient (AG), and the Perception-based Image Quality Evaluator
(PIQE) [25]. The experiment compared the algorithm proposed in this paper with HE,
Detail Enhancement based on Guided Filtering (GF&DDE) [26], and Detail Enhancement
based on Bilateral Filtering (BF&DDE) [14].

• Peak Signal-to-Noise Ratio

PSNR is a metric commonly used to evaluate the quality of images and videos. It
measures the quality loss of an image by comparing the original image to a compressed
or processed image. Specifically, PSNR is the logarithmic value of the ratio between the
peak signal energy and the average noise energy. The higher the PSNR value, the better the
image quality [27]. The calculation formula is as follows:

PSNR = 10 · lg

 n2 × M × N

∑M−1
i=0 ∑N−1

j=0 (I(i, j)− Im(i, j))2

 (19)

In this formula, I(i, j) represents the pixel value of the original image, Im(i, j) repre-
sents the processed pixel value, and n is the number of gray levels in the image.

• Information Entropy

IE is a metric used to measure the amount of information and the complexity of
details contained in an image [28]. Based on information theory, it determines the average
information content of an image by calculating the probability distribution of its grayscale
levels or color values. The higher the value of information entropy, the more information
the image contains. The formula for calculating information entropy is as follows:

H(x) = −∑n
i=1 p(xi) log2(p(xi)) (20)
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In this formula, n is the number of gray levels in the image, and p(xi) is the probability
of the occurrence of gray level i in the image.

• Average Gradient

The average gradient can be used to assess the edge information and clarity of an
image [29]. It represents the average rate of change in grayscale or color between adjacent
pixels in the image, reflecting the variation in small details in multiple dimensions [30].
The higher the value, the greater the clarity of the image details. The specific calculation
steps are as follows:

Assume the rows and columns of an image are m and n respectively; the average
gradient can be represented as

Gavg =
1

M × N

M−1

∑
i=1

N−1

∑
j=1

√
(H(i + 1, j)− H(i, j))2 + (H(i, j + 1)− H(i, j))2

2
(21)

In this formula, H(i, j) represents the grayscale value of the image in the i-th row and
j-th column.

3.1. Subjective Evaluation

The enhancement effects of various algorithms on Scene 1 are shown in Figure 6.
Scene 1 features buildings, with the original image being dark and lacking in contrast.
After processing with HE, the overall image becomes overexposed and whitened. The
images processed with GF&DDE and BF&DDE have improved brightness, but the contrast
in dark areas remains low. The contrast enhancement of the algorithm proposed in this
paper is significant without overexposure; the details in the dark areas are clear and visible,
achieving a better result.
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Figure 6. (a) Original image; (b) HE; (c) GF&DDE; (d) BF&DDE; (e) our algorithm.

The enhancement effects of the various algorithms on Scene 2 are shown in Figure 7.
Scene 2 includes information about vehicles and trees. The image processed with HE
shows overexposure, especially in the main body of the vehicle. GF&DDE, BF&DDE, and
the algorithm proposed in this paper have similar effects on Scene 2, but the algorithm
proposed in this paper performs better on the vehicle headlights and emblems, with clearer
object contours.
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The enhancement effects of the various algorithms on Scene 3 are shown in Figure 8,
which includes pedestrians, trees, and buildings. After processing with HE, it is difficult to
distinguish pedestrians from the background in the image. Both GF&DDE and BF&DDE
increase the brightness of the image but do not effectively enhance the contrast, making it
hard to distinguish pedestrians from background objects, and the overall image is too bright.
The algorithm proposed in this article improves the details in dark areas (trees, grass) and
avoids increasing the overall brightness of the image, making it easier to distinguish people
from the background and providing a better visual effect.

Fire 2024, 7, x FOR PEER REVIEW 10 of 13 
 

 

The enhancement effects of the various algorithms on Scene 3 are shown in Figure 8, 

which includes pedestrians, trees, and buildings. After processing with HE, it is difficult 

to distinguish pedestrians from the background in the image. Both GF&DDE and 

BF&DDE increase the brightness of the image but do not effectively enhance the contrast, 

making it hard to distinguish pedestrians from background objects, and the overall image 

is too bright. The algorithm proposed in this article improves the details in dark areas 

(trees, grass) and avoids increasing the overall brightness of the image, making it easier 

to distinguish people from the background and providing a better visual effect. 

     
(a) (b) (c) (d) (e) 

Figure 8. (a) Original image; (b) HE; (c) GF&DDE; (d) BF&DDE; (e) our algorithm. 

Overall, Figures 5a, 6a, and 7a respectively depict scenes of high-rise buildings, cars, 

and a person walking. After processing with the proposed algorithm, the boundaries be-

tween windows and buildings in the first scene become clearer; the contours and details 

of the headlights and body in the second scene are more distinct, and the texture details 

of the background trees are preserved; the contour of the person in the third scene is clear, 

and the surrounding buildings and trees also exhibit certain texture features. Each image 

demonstrates different textures and details, indicating that the proposed algorithm per-

forms well in various scenarios. 

3.2. Objective Assessment 

The quality of algorithms cannot be solely judged by subjective human evaluation 

[31]; objective evaluation parameters are also necessary, such as PSNR, AG, and IE. PSNR 

is used to measure image quality, IE measures the amount of information contained in the 

image, and AG measures the clarity of the image. Although these metrics have their ad-

vantages in evaluating image-enhancement effects, they do not fully reflect the perceptual 

quality of the image. Therefore, this paper introduces PIQE as a complementary indicator. 

While AG and IE focus on specific aspects of the image, such as clarity and information 

content, PIQE provides a holistic quality assessment approach. It is based on human vis-

ual perception to evaluate image quality and can better reflect the subjective quality of the 

image [25]. PIQE considers the degree of distortion in the image, such as noise, blur, and 

block effects, making the evaluation results more aligned with the actual perception of the 

human eye. The evaluation results are presented in Table 1. 

Table 1. Objective evaluation indicators. 

Number Algorithms PSNR IE AG PIQE 

Scene One 

HE 13.75 6.95 86.20 38.79 

GF&DDE 23.42 6.93 48.72 38.91 

BF&DDE 27.07 7.05 49.22 66.21 

Our algorithm 27.07 7.34 54.15 34.45 

Scene Two 

HE 12.33 5.91 61.83 48.54 

GF&DDE 22.83 6.09 18.43 11.32 

BF&DDE 19.56 6.11 19.48 42.97 

Our algorithm 21.20 6.47 19.84 9.35 

Scene Three HE 11.80 5.66 86.92 46.18 

Figure 8. (a) Original image; (b) HE; (c) GF&DDE; (d) BF&DDE; (e) our algorithm.

Overall, Figure 5a, Figure 6a, and Figure 7a respectively depict scenes of high-rise
buildings, cars, and a person walking. After processing with the proposed algorithm, the
boundaries between windows and buildings in the first scene become clearer; the contours
and details of the headlights and body in the second scene are more distinct, and the texture
details of the background trees are preserved; the contour of the person in the third scene is
clear, and the surrounding buildings and trees also exhibit certain texture features. Each
image demonstrates different textures and details, indicating that the proposed algorithm
performs well in various scenarios.

3.2. Objective Assessment

The quality of algorithms cannot be solely judged by subjective human evaluation [31];
objective evaluation parameters are also necessary, such as PSNR, AG, and IE. PSNR is used
to measure image quality, IE measures the amount of information contained in the image,
and AG measures the clarity of the image. Although these metrics have their advantages in
evaluating image-enhancement effects, they do not fully reflect the perceptual quality of
the image. Therefore, this paper introduces PIQE as a complementary indicator. While AG
and IE focus on specific aspects of the image, such as clarity and information content, PIQE
provides a holistic quality assessment approach. It is based on human visual perception
to evaluate image quality and can better reflect the subjective quality of the image [25].
PIQE considers the degree of distortion in the image, such as noise, blur, and block effects,
making the evaluation results more aligned with the actual perception of the human eye.
The evaluation results are presented in Table 1.

From the PSNR metric, in all scenarios, our algorithm and the BF&DDE algorithm
show higher PSNR values, indicating that they are better at preserving image quality and
information. The HE algorithm has the lowest PSNR values, suggesting its reconstructed
image quality is relatively low. Looking at the IE metric, our algorithm exhibits higher
values, indicating that it can retain more information and details in the image. From the
AG metric, due to the HE algorithm’s over-enhancement, it results in a too-high average
gradient, whereas our algorithm generally performs well in terms of average gradient.
Regarding the PIQE metric, our algorithm achieves the best results in most cases.
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Table 1. Objective evaluation indicators.

Number Algorithms PSNR IE AG PIQE

Scene One

HE 13.75 6.95 86.20 38.79
GF&DDE 23.42 6.93 48.72 38.91
BF&DDE 27.07 7.05 49.22 66.21

Our algorithm 27.07 7.34 54.15 34.45

Scene Two

HE 12.33 5.91 61.83 48.54
GF&DDE 22.83 6.09 18.43 11.32
BF&DDE 19.56 6.11 19.48 42.97

Our algorithm 21.20 6.47 19.84 9.35

Scene
Three

HE 11.80 5.66 86.92 46.18
GF&DDE 18.57 5.70 15.88 9.38
BF&DDE 21.46 5.79 15.79 47.56

Our algorithm 30.74 6.16 19.05 8.02

Overall, our algorithm performs well in most cases, with higher PSNR, IE, and AG
values, and lower PIQE values. This indicates that for different types of thermal infrared
images, our method demonstrates excellent enhancement effects with high robustness.
Subjective and objective experimental data prove that our method not only improves the
overall image quality but also optimizes the texture feature differences in various regions
of different images, showcasing superior image-enhancement performance.

4. Discussion

In order to further enhance the brightness and contrast of thermal infrared images
while avoiding detail loss, this paper proposes multi-Scale guided filtering for thermal
infrared-image enhancement, building upon the foundation of guided filtering. According
to the multi-scale characteristics of edge details, the image is decomposed into small-,
medium-, and large-scale detail layers and a base layer using guided filtering. The base
layer undergoes CLAHE to improve image contrast and enhance the brightness of dark
areas, while the multi-scale detail layers undergo dynamic linear enhancement to highlight
the texture edges of the detail layers. After experimental verification, the visual effect of
the thermal infrared image enhanced by the method proposed in this paper is better, and
it performs well for all evaluation indicators, with higher PSNR, IE, and AG values, and
lower PIQE values. Compared with the other algorithms, the method proposed in this
paper has better thermal infrared-image-enhancement performance.
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