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Abstract: The fire heat release rate (HRR) is a crucial parameter for describing the combustion
process and its thermal effects. In recent years, some studies have employed fire scene images
and deep learning algorithms to predict real-time fire HRR, which has led to the advancement
of HRR prediction in terms of both lightweightness and real-time monitoring. Nevertheless, the
development of an early-stage monitoring system for fires and the ability to predict future HRR
based on current moment data represents a crucial foundation for evaluating the scale of indoor
fires and enhancing the capacity to prevent and control such incidents. This paper proposes a deep
learning model based on continuous fire scene images (containing both flame and smoke features)
and their time-series information to predict the future transient fire HRR. The model (Att-BiLSTM)
comprises three bi-directional long- and short-term memory (Bi-LSTM) layers and one attention layer.
The model employs a bidirectional feature extraction approach, followed by the introduction of an
attention mechanism to highlight the image features that have a critical impact on the prediction
results. In this paper, a large-scale dataset is constructed by collecting 27,231 fire scene images with
instantaneous HRR annotations from 40 different fire trials from the NIST database. The experimental
results demonstrate that Att-BiLSTM is capable of effectively utilizing fire scene image features and
temporal information to accurately predict future transient HRR, including those in high-brightness
fire environments and complex fire source situations. The research presented in this paper offers
novel insights and methodologies for fire monitoring and emergency response.
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1. Introduction

The heat release rate (HRR) is defined as the amount of heat released by a combustion
system per unit of time. It reflects the characteristics and risks of a fire and is an important
indicator for assessing the danger level of fires. HRR is widely used in the safety design
of building fires and firefighting operations [1]. In the laboratory, two common methods
for measuring the HRR of a fire scene are the combustion rate method based on fuel mass
loss [2] and the calorimetry method based on oxygen consumption [3]. However, these
methods require expensive and complex equipment and are unable to predict the HRR
at future moments. Consequently, the monitoring of the early stages of an actual fire and
the prediction of future HRR based on current data, with the objective of judging the
development scale of indoor fires and providing early warnings, has become one of the
most pressing scientific problems in the field of fire research.

In numerous fire tests and actual fire scenes, closed-circuit television cameras and
mobile device cameras are frequently utilized to obtain fire videos, record alterations in
flames and smoke, and assess related fire parameters [4–6]. The extracted fire frame images
from these videos contain data about the behavior and characteristics of the fire, including
the size, color, brightness, and oscillation frequency of the flames and smoke, as well as
their changes over time. A comprehensive analysis of fire scene images can yield crucial
insights into the progression of a fire.
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The field of artificial intelligence (AI) has witnessed a remarkable advancement in
recent years, significantly enhancing the capabilities of image analysis. AI methods have
been extensively utilized in diverse domains, including image recognition [7] and object
detection [8]. Additionally, AI techniques have been employed to identify implicit infor-
mation in fire images and predict the evolution of fires and smoke. For instance, Hodges
et al. [9] employed a transposed convolutional neural network (TCNN) to predict the spatial
resolution of temperature and velocity in compartment fires. Wu et al. [10–12] utilized
deep learning methods to predict the development and smoke propagation of tunnel fires,
thereby demonstrating the potential of intelligent firefighting systems in laboratory-scale
tunnel models. Su et al. [13] employed AI to train smoke images derived from numerical
fire simulations to assist performance-based fire engineering design, which is applicable to
atrium design. Ghosh et al. [14] proposed a hybrid deep learning model of Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for forest fire detection,
which provides new insights into computer vision forest fire detection. Choi et al. [15]
employed convolutional neural networks (CNNs) for semantic image segmentation in
wildfire scenes. Ban et al. [16] developed a deep learning-based framework to monitor
the development of wildfires in real time, including complex conditions such as smoke,
clouds, and nighttime. Wang et al. [17] generated a large compartment fire database using
CFD models, obtaining numerical simulation smoke images (front and side dual views)
produced outside buildings, and used VGG16 to extract smoke features under different
building fire scenarios. They established a relationship between smoke features (based on
external fire information) and HRR, thereby predicting the HRR of fires inside buildings.
Wang et al. [18] also used the NIST database [19,20] to construct a large fire scene image
database, extracting continuous fire scene images from experimental videos, and proposed
an AI image fire calorimetry method using the VGG16 deep learning model, achieving
real-time prediction of fire HRR.

Previous research has concentrated on target detection tasks such as flames or smoke,
real-time analysis, or prediction of basic parameters affecting fire development (such as
HRR). However, studies on predictive methods for future fire parameters are extremely rare.
Moreover, traditional video-based fire detection methods mostly analyze single flames or
smoke, ignoring the coexistence features of flames and smoke in fire scenes. Flames are the
direct result of combustion, manifesting as glowing and heating gasification phenomena.
Smoke is a byproduct of combustion, appearing as a collection of floating particles after
oxidation [21], as illustrated in Figure 1. Figure 1 is derived from the NIST database.
Therefore, considering the common characteristics of flames and smoke is of significant
importance for improving the accuracy and practicality of fire HRR predictions.
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In summary, this paper aims to predict the future transient heat release rate (HRR)
of fire scenes at the next moment/frame based on continuous fire scene images of flames
and smoke and their temporal information. It integrates deep learning methods such as
Bi-LSTM and Attention [22–24] (Att-BiLSTM), comprehensively modeling the temporal



Fire 2024, 7, 200 3 of 16

relationships between fire scene image features. To construct a large-scale fire scene image
dataset, this paper utilized fire scene videos from the NIST public database. Continuous
fire scene images were extracted from these experimental videos in chronological order
and annotated for HRR. These images were then preprocessed for the training of the deep
learning model. Finally, the proposed HRR prediction method was applied to other fire
scene experiments to verify its generalization ability and reliability in predicting future
transient fire HRR.

2. Materials
2.1. Fire Scene Image Database

The training of deep learning models requires a substantial number of continuous
fire scene images annotated with combustion HRR. This paper adopted the NIST fire
calorimetry database for model training, which measures the HRR changes throughout
the entire fire process from ignition to burnout using the oxygen consumption calorimetry
method [25]. The database encompasses a diverse array of fire scenarios, including single
burning items, fully furnished rooms, controlled burners, well-characterized fuels, and
fuels of unknown composition. It encompasses HRR measurements of various transient
combustibles in industrial environments, with heat release rates ranging from 50 kW to
20,000 kW. During the experiments, a digital camera at a fixed angle was used to film the
entire fire test process.

A total of 40 fire experiments were selected from the NIST fire calorimetry database’s
Transient Combustion Calorimetry (TCC) project [26,27], which included tests with peak
heat release rates (PHRRs) ranging from 10.5 to 4174 kW and total heat released ranging
from 0 to 5120 MJ. These experiments covered a range of potential scenarios, from small
to large fires. Figure 2 depicts a selection of combustion tests conducted with different
ignition sources. The burning items represent common items found in our daily lives,
including solid fuels. These experiments were conducted at the National Fire Research
Laboratory of the National Institute of Standards and Technology (NIST) in Gaithersburg.
The selected experimental data were all conducted under a ventilation hood measuring
6.1 m (20 feet) by 6.1 m (20 feet) (the indoor environment of buildings), with a rated capacity
of 3 megawatts (MW) [28]. The duration of the fire scene experiments ranged from 4 min to
115 min, providing a variety of fire scene images and their corresponding HRRs for training
deep learning models.
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2.2. Dataset Preprocessing

This paper utilizes a series of full-process video frame images from the NIST fire
calorimetry database (with a dense sampling strategy [29] at 30 FPS) to construct an
image sequence training database annotated with HRR. This database contains a total of
27,231 pairs of fire scene images and HRR data. Prior to inputting the data into the model
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for training, it was necessary to perform the requisite preprocessing to ensure the quality
and consistency of the data, as illustrated in Figure 3.
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• Image Cropping: Given the high quality of the fire video images in the NIST database
(1920 × 1080), using the original images directly for training would increase the
computational complexity and cost. Therefore, all fire scene images were first resized
to 50 × 108. A resolution of 50 pixels in width was selected to accommodate the
spatial characteristics of all the fire images in this dataset. This resolution was chosen
to maximize the retention of flame features in the field of view and minimize the
interference of background noise. Additionally, a height of 108 pixels was selected
to ensure that the flame height and upper smoke features were adequately captured,
taking into account the height of the original image, which was 1080 pixels. The height
of 108 pixels was selected to account for the original image’s height of 1080 pixels,
ensuring that the flame height and upper smoke features were adequately captured.

• Random Horizontal Image Flipping: To increase data diversity, reduce redundancy,
and improve the model’s generalization ability and robustness, this paper employed a
data augmentation technique of random horizontal image flipping. This technique
flips the images horizontally with a probability of 0.5, altering the content of the
images without changing the pixel values. This renders the model indifferent to the
orientation of fire scene images, enabling more accurate recognition of images from
different angles.

• Image Pixel Value Normalization: To ensure that the input parameters (pixels) of fire
scene images exhibit a similar data distribution, reduce data bias, and accelerate model
convergence, the pixel values of fire scene images were normalized. This process
converts the pixel values from the original range of [0, 255] to [0, 1]. This precludes the
occurrence of excessive discrepancies in pixel values, which could potentially result in
model instability or overfitting.

Finally, the 27,231 fire scene images were divided into two subsets: a training set (80%)
and a validation set (20%). This division was undertaken in order to ensure the broad ap-
plicability of the research and to eliminate potential biases. Both subsets included a variety
of fire experiments conducted with different fuels and heat release rate (HRR) ranges.

3. Methods

Due to the temporal correlation and non-linear characteristics between fire HRR
and the flames and smoke, predicting future transient HRR of fires with high accuracy
is challenging. Deep learning technology can better capture the features of fire image
sequences through the automatic training of deep neural networks, thus addressing these
issues. The selection of an appropriate architecture is of paramount importance when
addressing image time series tasks. Conventional convolutional neural networks (CNNs),
such as the Visual Geometry Group (VGG) [30] and Residual Networks (ResNets) [31],
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are networks that exhibit certain limitations in processing image time-series data. While
CNNs are effective in processing static images, they are more challenging to utilize in
processing time-series data. CNNs are primarily concerned with spatial feature extraction
and thus lack the capacity to model temporal dynamics. Furthermore, CNNs typically
necessitate a substantial quantity of data for training, as otherwise, they are susceptible
to overfitting [32]. In the context of image sequence tasks, CNNs are unable to effectively
capture the temporal dependencies between image frames, which represents a significant
limitation for tasks that require temporal contextual information.

The proposed Att-BiLSTM model is capable of processing data in sequences and
weighting them simultaneously, effectively resolving issues related to the model’s sequence
correlation and non-linear relationships. The Bi-LSTM model comprises two indepen-
dent Long Short-Term Memory networks (LSTMs), enabling the network to consider both
forward and backward information and thus facilitating the handling of long-term depen-
dencies in image sequences [33]. Attention enhances the temporal information of the target,
allowing the model to learn and determine the areas of focus, thereby enabling the model
to concentrate on the most effective information with limited resources, and thus achieving
better prediction accuracy [34].

3.1. Bi-LSTM Layer

Long Short-Term Memory (LSTM) [35] is a special type of Recurrent Neural Network
(RNN) that introduces a structure known as ‘memory cells’ to address the vanishing and
exploding gradient problems that arise during the training of long sequences. Each LSTM
unit comprises an input gate it, a forget gate ft, an output gate ot, a candidate cell state

~
c, a

cell state ct, and a hidden state ht, as illustrated in Figure 4. The input gate it determines
whether the current input information is written into the cell state ct. The forget gate ft
decides if the information in the cell state is to be forgotten. The output gate ot determines
whether the information in the memory cell is outputted. The computation is as follows:

it= σ
(

W(i) · (ht−1 ⊕ xt) + b(i)
)

,

ft= σ
(

W(f) · (ht−1 ⊕ xt) + b(f)
)

,

ot= σ
(

W(o) · (ht−1 ⊕ xt) + b(o)
)

,
(1)~

ct= tan h
(

W(i) · (ht−1 ⊕ xt) + b(c)
)

,

ct= ft × ct−1 + it ×
~
ct,

ht= ot × tan h (ct )
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In this context, σ represents the sigmoid function, ⊕ denotes the concatenation opera-
tor, and + and × symbolize element-wise addition and multiplication operations, respec-
tively. W(x) and b(x) are the weight matrix and bias vector for gate x, respectively.

The Bi-LSTM network structure comprises a forward and backward LSTM. It considers
both past and future information, enabling the model to better capture the contextual
relationships and long-distance dependencies within sequence data. There is evidence that
Bi-LSTM performs better than standard LSTM in many domains, including time series
prediction [36], phoneme classification [37], and others.

3.2. Attention Layer

In recent years, the attention mechanism [38] has been widely applied in the field of
deep learning, inspired by the simulation of human visual attention mechanisms. The
core idea of the attention mechanism is to gradually shift focus from all information to key
points, that is, to allocate higher weights to important information, reasonably changing the
external focus on information, ignoring irrelevant information, and amplifying the required
information. In particular, the attention mechanism computes the similarity between the
query and key information to obtain a weight. This weight is then normalized to obtain
a usable weight. Finally, the weighted summation of this weight with the corresponding
value is performed.

A(Query, Source) ∑Lx
i = 1 Similarity(Query, keyi) ∗ Valuei (2)

Lx represents the length of the data source. The core idea and basic structure of the
attention mechanism are illustrated in Figure 5a. In the model and structure depicted in
Figure 5b, x represents the input sequence, and h denotes the hidden state, which contains
information from the input sequence. This state can be considered a vector representing
the input sequence x, while α represents the weight coefficient, and y is the output.
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3.3. Model Input

This paper employs a sliding window mechanism with a stride of 1, taking each se-
quence of t frames of fire scene images (x1, x2, . . .xt) as a group of inputs, while considering
the information of the frames before and after each image, to predict the HRR of the fire
scene at xt+1 (i.e., the future 1/30 s). In order to fully capture the temporal relationship
between image sequences and achieve more accurate prediction performance, this paper
employs multiple sets of t-values. However, selecting t-values that are too small (e.g., 1–8)
may result in the model being unable to capture sufficient information. This is exemplified
by the dynamically changing characteristics of the fire scene, which may result in under-
fitting. Conversely, selecting too large t-values (e.g., 12 or more) may introduce excessive
noise, increase the computational complexity and time cost, and lead to overfitting [39].
Accordingly, in this paper, we select t = 9, 10, 11 for comparison experiments and analyze
the main indicators, including goodness of fit (R2), mean square error (MSE), and root
mean square error (RMSE), as well as other parameters, as shown in Table 1. R2 ranges
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from [0, 1], with a closer value to 1 indicating a better fit. The regression line provides a
better fit to the observed values, while the remaining four criteria have a range of [0, +∞).
When the predicted value is perfectly matched with the true value, this range is equal to 0.
Conversely, when the true value is equal to 0, the model is considered to be a perfect fit. As
the error increases, the values become larger, indicating a poorer model.

Table 1. Comparison of model predictive performance indicators under different numbers of image
sequence inputs.

t R2 MSE RMSE MAE MAPE

9 0.96960 0.062650 0.006998 0.006693 0.005965
10 0.99700 0.061348 0.007832 0.005588 0.005463
11 0.97036 0.071012 0.006698 0.004325 0.063250

As illustrated in Table 1, when the number of input image sequences is 10 (i.e., t = 10),
the coefficient of determination R2 value of the model reaches a maximum of 0.99700, which
is higher than 0.96960 (i.e., t = 9) and 0.97036 (i.e., t = 11). As illustrated in Figure 6, the
comparative analysis of performance indicators, including MSE, RMSE, and MAE, and
the comparative analysis of performance metrics, including MSE, RMSE, and MAE, are
presented. The colors orange, yellow, and green represent the values taken as 9, 10, and 11,
respectively. The vertical axis represents the magnitude of the values represented by each
type of metric. It can be observed that all the prediction performance metrics are superior to
those of the other two groups, with the exception of the RMSE value of the model at t = 10,
which is marginally elevated in comparison to the other two groups. The experimental
data indicate that while the results are favorable when t values are selected as 9, 10, and
11, the combined performance of each prediction metric reveals that the performance of
inputs from frames 9 to 11 initially increases and then declines, reaching a peak at t = 10,
which represents the optimal combined result. The requisite information is captured while
avoiding overfitting or underfitting.
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3.4. Prediction Process

Initially, the fire scene images undergo transformations and other preprocessing
operations (transforms layer) to enhance data quality. Subsequently, the preprocessed
image sequences are input into the Bi-LSTM layer to extract spatiotemporal features of the
image sequences. Finally, Attention is added at the output of the Bi-LSTM to strengthen
the temporal information of the target, thereby identifying key features of fire scene images
at different time points. This improves the prediction accuracy of future transient HRR.

Figure 7 presents the network architecture of the Att-BiLSTM. The network comprises
two pathways: The upper pathway accepts HRR labels as input, providing the necessary
supervisory signal for the model, which is used to correctly identify or predict data dur-
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ing training. The network comprises three hidden layers, with 128, 256, and 256 units,
respectively. The input dimension is 1 × 10, and after linear transformation and a Dropout
layer, the output dimension is 1 × 240. The lower pathway is mainly composed of three
Bi-LSTM and one Attention layer. The input to the model is a preprocessed sequence of fire
scene images with dimensions of 1 × 10 × 108 × 50. This is reduced in dimensionality to
1 × 16 through linear activation and a Dropout layer. The two pathways are concatenated
in the Connect layer, forming a 256-dimensional vector. This vector is then reduced from
256 dimensions to 1 dimension, i.e., the predicted value of future transient HRR, through a
Fully Connected layer (FC) and a Dropout layer.
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The network has approximately 15 million parameters (14,912,385 parameters), effec-
tively modeling the temporal relationships between image sequences and the relationship
between image data and heat release rate. The upper pathway employs a ReLU activation
function three times, while the lower pathway utilizes Tanh, Softmax, and ReLU as activa-
tion functions between the Attention layer and the Connect layer. The paper employs the
Mean Squared Error (MSE) and the coefficient of determination (R²) as loss functions to
evaluate the fit between predicted and actual values through residual and control charts.
To prevent overfitting, both Dropout layers are set to 0.05. The training was conducted over
20 epochs on a server equipped with an RTX 4090 GPU (24 GB), taking approximately 3 h.
The training results indicate that the network is capable of modeling the time dependency
of fire scene image sequences and learning the importance of input. It is able to capture the
long-term dependencies of image sequences, effectively processing the dynamic changes of
flames and smoke in the fire scene. This enables the network to reliably predict the future
transient HRR of the fire scene.

4. Results
4.1. Model Training

During the training process, as the number of iterations increased, the performance
of the deep learning model continuously improved (Figure 8). After reaching 20 training
epochs, the model achieved convergence, with the Mean Squared Error (MSE) reduced to
0.061348 and the coefficient of determination R2 reaching a maximum of 0.99. Although the
original image has been resized in pixels, resulting in the loss of some detail information, the
resolution has been able to capture the key features of the model, which has demonstrated
a satisfactory training result; this indicates that the model has obtained a satisfactory fit,
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demonstrating the capacity to accurately predict the future transient heat release rate (HRR)
of fire scenes within the training data.
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4.2. Validation Set

Given the training and validation set split ratio of 8:2, the validation set consists
of approximately 5000 images of fire scenes. This paper employs scatter plots (left) and
line charts (right) to display and evaluate the relationship between the model’s predicted
values (Predict) and the actual values (Ground Truth). In the chart presented in Figure 9b,
the horizontal axis (Index) represents the image sample number, and the vertical axis
(Value) represents the corresponding HRR values, as illustrated in Figure 9. The horizontal
coordinates of the line graph are arranged in ascending order according to the size of the
HRR values. This arrangement facilitates the identification of clear trends and patterns
in the data, as well as the characterization and delineation of the distinctive attributes
and patterns associated with different HRR value intervals. Additionally, it reduces the
noise and fluctuations inherent in time-series data, thereby enhancing the efficacy of the
training process and the precision of the model’s predictions. These results demonstrate
that the Att-BiLSTM model proposed in this paper has excellent predictive capability on
the validation set. This provides compelling evidence that applying this model to predict
future transient HRR of fire scenes beyond the test set is a viable approach.
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5. Discussion

In order to assess the model’s recognition performance on data outside the training
set, this paper selected a series of fire test cases with varying ranges of combustion HRRs
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from the NIST fire calorimetry database for prediction. These test cases were not included
in the 20% validation set partitioned during the model training process. In other words,
these cases represent new, unknown samples for the trained deep learning model. The
model must utilize the knowledge acquired during the training phase to predict the future
transient HRR values of these unfamiliar fire scenes and unknown combustibles. This
approach more accurately reflects the model’s ability to generalize to real-world scenarios.

5.1. High-Brightness Fire Scenes

Changes in the brightness of the fire scene environment can result in variations in
the brightness and contrast of fire scene images, potentially affecting the model’s ability
to extract and analyze image features. Figure 10a,b illustrate the impact of images under
daylight or strong light exposure and lower brightness conditions, respectively. Therefore,
the brightness conditions of the fire scene environment represent a crucial factor influencing
the model’s capacity for generalization in HRR prediction. To assess the model’s predictive
performance in high-brightness fire scenes, this paper selected three experiments from the
NIST database with higher brightness conditions. These included burning items such as
cardboard boxes (Figure 11a), rubber trash bins (Figure 11b), and plastic chairs (Figure 11c).
The burning items in question have the same thermal parameters as those in the training
dataset, but the experimental conditions differ in brightness. This allows for an examination
of the robustness of the model’s HRR predictions. Figure 11 illustrates this, with the left
column showing a scatter plot of the demonstration results and the right column showing
a line chart of the results.
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The results demonstrate that even in high-brightness fire scenes, the deep learning
model can accurately predict the HRR of different combustibles (Figure 11), with all R2

values exceeding 0.97. The residual plots and result comparison charts indicate a good
fit, indicating high prediction accuracy. The residual plot and result comparison chart
for the cardboard box experiment (Figure 11a) exhibit a slight degree of inferiority in
comparison to the other two experiments. This may be attributed to the relatively limited
number of frames in the cardboard fire scene video, which has prevented the full utilization
of temporal relationships between images. Overall, the model demonstrates a certain
degree of adaptability to changes in the brightness of fire scenes, maintaining a high
degree of consistency between predicted results and actual measurements under conditions
of increased brightness. This supports the application of the model in various complex
brightness environments.

5.2. Complex Combustibles

The presence of complex combustibles increases the difficulty of predicting the actual
HRR of fire scenes. Such combustibles may include different states, such as solids, liquids,
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and gases, leading to diversity in the characteristics of flames and smoke, such as differences
in color and shape. To assess the reliability of the model’s HRR predictions in fire scenes
with complex combustibles, this paper selected three typical complex combustible fire
scene scenarios from the NIST database for validation. These are a “box-type gas burner”
(Figure 12a), a “utility cart with a laptop and printer” (Figure 12b), and “propanol liquid”
(Figure 12c) [33]. The three sets of experiments simulate the complexity of combustibles in
actual fire scenes and are used to test the model’s generalization ability. Figure 12 illustrates
the results of the demonstration in the left column, while the right column presents the
results in the form of a line chart.
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As illustrated in Figure 12, we compared the actual HRR with the predicted results of
the deep learning model for the three groups of fire scenarios with complex combustible
characteristics. Despite the complexity of the fuel load and the fire spread process in
these experiments, the results demonstrate that the deep learning model can reasonably
predict the HRR of fire scenes, with all R2 values exceeding 0.94, reflecting the changing
trend of HRR during combustion. This indicates that the deep learning model has strong
adaptability and predictive capability for HRR in complex fire scenarios.

However, when the fire enters the high heat release peak phase, both sets of experi-
ments show a certain overestimation bias in the model’s predictions. This may be attributed
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to the distribution characteristics of the samples near the high heat release peak in the
training dataset. In other words, the fire scene videos in the NIST database are time-lapse,
with a greater number of scenes (frames) of small to medium HRR than those at the peak
HRR stage. This results in a tendency for the model to overestimate at the peak HRR
stage of large fires. In addition, the deep learning model exhibits some inaccuracy in
predicting the absolute value of HRR, with a tendency to underestimate. This may be
related to the scale and quality of the model’s training dataset. The experimental results
above demonstrate that the proposed deep learning-based method for predicting future
transient HRR of fires can effectively utilize the features and temporal relationships of fire
scene images, providing good predictive capability for future fuel combustion in fire scenes
without the need for additional equipment or sensors. Although the prediction accuracy
and applicability of the model are subject to improvement due to the scale of the training
data, there is sufficient evidence to suggest that the model can effectively predict the future
transient HRR of fires.

5.3. Comparative Analysis with Similar Studies

The advent of sophisticated deep learning models has facilitated remarkable advance-
ments in the application of image recognition and computer vision techniques in the
domains of fire detection and predictive analysis of fire parameters. While existing fire
target detection methods [14–16] can identify fire in real time and issue timely warnings,
their assessment of the current state and future trend of the fire still relies on empirical
judgments and lacks the quantitative analysis of professional fire parameters. Consequently,
these methods have limitations. In contrast, the analysis of real-time parameters of flames
(e.g., heat release rate) based on video images allows for a more intuitive and reliable
assessment of the degree of fire danger. For example, Wang Zilong et al. [18] constructed
a large-scale fire image database using the NIST database and successfully predicted the
heat release rate of real-time fires by extracting continuous fire images from experimental
videos and combining them with the VGG16 deep learning model. Nevertheless, the
objective of predicting future fires is to gain a deeper understanding of the fire situation.
This approach is still limited. In this study, we propose a future transient heat release rate
(HRR) prediction method based on fire video images. This method aims to complement
and extend the traditional fire target detection task and real-time fire parameter analysis
task. This paper explores the feasibility of futuristic analysis and prediction in the field of
fire prevention and control. It presents new ideas and methods for fire monitoring and
emergency response. The approach enhances the understanding of fire trends and provides
more accurate data support for monitoring and preventing fires.

5.4. Applications in Intelligent Firefighting

The experiments described above have demonstrated the effectiveness of the proposed
Att-BiLSTM model in predicting the future transient heat release rate (HRR) of fires. This
suggests that deep learning-based technologies are poised to become a key component of
intelligent firefighting systems, which could be applied in actual firefighting operations.
The development of fires occurring inside buildings is significantly affected by the limited
space available. As a result of the incomplete exposure of the burning area, which leads to a
lack of oxygen and a slow air flow, these factors work in concert to make the fire more stable
in its initial stage and to slow the expansion of the burning area compared to outdoor fires.
The particular characteristics of this combustion environment necessitate the development
of more sophisticated fire response strategies and safety assessment methodologies [40]. As
illustrated in Figure 13, when an indoor fire occurs, the following sequence of events occurs:
first, video images of the indoor fire are collected in real-time using cameras such as CCTV
and smartphones; next, the fire images are uploaded to a cloud database via the network;
finally, the streaming fire images are input into the deep learning model, which outputs the
predicted value of the future fire HRR. This method offers the potential to simulate and
predict the development of fire situations, thereby providing an earlier warning period and
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enabling more effective response and command decisions. It also assists in the optimization
of the allocation of firefighting resources, thereby enhancing the protection of personnel
and reducing property loss. This method represents a significant advance in the field of
intelligent firefighting.
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Although this method has achieved satisfactory results in laboratory environments,
there are still some issues and deficiencies that need further refinement and optimization.
Firstly, to enhance the predictive performance and adaptability of this method in various
fire scenarios, it is necessary to expand and enrich the database of fire scene images to cover
a wider range of real fire situations and scales. Secondly, since flames are three-dimensional
and camera images can only capture two-dimensional projections, it is difficult to obtain
depth information about flames. Therefore, future depth models should consider using
multi-angle camera images to reconstruct the three-dimensional form of the fire scene,
combine temporal information, and extract more features. Thirdly, the current method
uses AI image calorimetry [41] to obtain the HRR of fire video images in real time. The
advantage of this method is that it does not rely on additional instruments and is low-cost,
but it may also lead to a certain degree of error.

6. Conclusions

This paper proposes a deep learning model that integrates Bi-LSTM and Attention
mechanisms, capable of simultaneously processing and weighting data in sequences. This
model effectively addresses the temporal correlation and non-linear relationships between
fire HRR and images of flames and smoke. The contributions of this paper include the
following aspects:

1. A new end-to-end method for predicting future fire HRR is proposed. By inputting
fire scene images and corresponding HRR label data into the Att-BiLSTM model and
employing a sliding window mechanism, it is possible to achieve continuous output
of future transient fire HRR predictions.

2. In the preprocessing of fire scene images, the quality of images is enhanced while
reasonably preserving the information of flames and smoke. This is achieved by fully
considering their coexistence characteristics and their impact on fire HRR.

3. The model’s generalization ability and reliability were tested in high-brightness envi-
ronments and fire scenes with complex combustibles. The experimental results demon-
strate that the model can accurately predict future transient HRR of fire scenes and can
also simulate and predict the development trend of fire situations to a certain extent.

This paper presents a novel method of using deep learning technology to predict
the future transient HRR of fires, which has broad application prospects and high poten-
tial value for the development of future intelligent firefighting systems. In future work,
we intend to further explore and improve the deep learning model. This will involve
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introducing more image features and inter-frame information, as well as considering the
combined effects of more influencing factors. This will enhance the accuracy and duration
of predictions for future fire HRR.
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