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Abstract: Wildfire spread models are an essential tool for mitigating catastrophic effects associated
with wildfires. However, current operational models suffer from significant limitations regarding
accuracy and transferability. Recent advances in the availability and capability of Earth observation
data and artificial intelligence offer new perspectives for data-driven modeling approaches with
the potential to overcome the existing limitations. Therefore, this study developed a data-driven
Deep Learning wildfire spread modeling approach based on a comprehensive dataset of European
wildfires and a Spatiotemporal Graph Neural Network, which was applied to this modeling problem
for the first time. A country-scale model was developed on an individual wildfire time series
in Portugal while a second continental-scale model was developed with wildfires from the entire
Mediterranean region. While neither model was able to predict the daily spread of European wildfires
with sufficient accuracy (weighted macro-mean IoU: Portugal model 0.37; Mediterranean model
0.36), the continental model was able to learn the generalized patterns of wildfire spread, achieving
similar performances in various fire-prone Mediterranean countries, indicating an increased capacity
in terms of transferability. Furthermore, we found that the spatial and temporal dimensions of
wildfires significantly influence model performance. Inadequate reference data quality most likely
contributed to the low overall performances, highlighting the current limitations of data-driven
wildfire spread models.

Keywords: wildfire spread; deep learning; remote sensing; time series; graph-based modeling;
mediterranean

1. Introduction

Wildfires are natural disasters that shape our ecosystems [1], and they are frequently
associated with negative effects on the environment [1,2], economy [3], infrastructure [4],
and human lives [5]. Globally, climatic changes are leading to an intensification of fire
activity and fire weather conditions [6], which are especially present in the fire-prone
Mediterranean region, where research projects an increase in the frequency, size, and in-
tensity of wildfires over the next decade [7,8]. This growing threat necessitates innovative
strategies for wildfire management in the Mediterranean region [9]. In this context, wildfire
spread models are an essential tool for predicting and understanding wildfire behavior [10],
providing critical insights that enable fire management authorities and emergency respon-
ders to make informed decisions regarding evacuation plans, resource allocation, and fire
suppression strategies [11].

A wildfire spread model predicts the behavior and propagation of a wildfire by consid-
ering the complex interactions of various environmental factors, e.g., weather conditions,
terrain, fuel, and land cover [10,12,13]. Traditionally, conventional wildfire spread models
have been based on physical [14], semi-empirical [15], empirical, or simulation models [16].
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Physical models simulate the physical and chemical processes of wildfires but are not in-
tended for operational use [14]. Semi-empirical models, such as the widely used Rothermel
model [17], combine physical principles with statistical methods and are more practical for
operational applications [11,15]. However, they face challenges in heterogeneous environ-
ments [10], require specialized input data, and are difficult to transfer to regions outside
their development context [15,18]. Purely empirical or simulation models, despite their
use in operational systems [11], have limitations, such as high computational costs and
dependency on input data [16], leading to inaccuracies and transferability issues [19]. Until
today, no operationally used conventional wildfire spread model achieved satisfactory
results under all situations in a timely and accurate manner while offering a complete
solution for fire management activities [12,15,18].

Recent advances in the availability and capability of Earth observation data, artificial
intelligence, and computational resources have resulted in an unprecedented quantity and
quality of wildfire spread-related data products [11,19]. This provides a novel opportunity
for the development of data-driven wildfire spread models that have the potential to
overcome the prevailing accuracy and transferability issues of conventional wildfire spread
models [19,20]. However, data-driven approaches are only being slowly adopted in the
research field of wildfire spread modeling [19].

Deep Learning (DL) architectures can learn highly complex and non-linear depen-
dencies from large amounts of data [21] and should therefore apply to the wildfire spread
modeling problem; however, DL is still considered experimental in this research field [19].
Qiao et al. [22] used a transformer-based neural network to simulate the wildfire spread
backwards in order to identify the location of the initial ignition point. Only a few studies
have used DL techniques to model the forward propagation of wildfires. Hodges and
Lattimer [23] formulated the wildfire spread prediction as an image segmentation problem,
while similar studies by Radke et al. [24] and Huot et al. [25] developed a Convolutional
Neural Network (CNN) based on various environmental variables to predict the wildfire
spread in small test regions in the USA. However, these studies did not achieve sufficient
results and were solely focused on making spatial predictions, neglecting the temporal
component of the wildfire spread process. On the other hand, some studies tried to model
the spread of wildfires using time-series-adapted DL learning techniques, e.g., Recurrent
Neural Networks (RNNs) [26–29], but did not incorporate spatial information into the mod-
eling process. Only the study of Burge et al. [30] accounted for the spatiotemporal nature
of wildfires by applying a Convolutional Recurrent Neural Network (ConvRNN). Their
spatiotemporal wildfire spread model achieved high accuracies but was only developed on
artificial wildfire data.

A great challenge in the spatiotemporal modeling of wildfire spread lies in the creation
of a dataset that displays individual wildfires in both the spatial and temporal dimensions.
An efficient way to represent such data is through spatiotemporal graphs. A spatio-
temporal graph consists of a collection of nodes which can hold dynamically changing data
features. The graph’s nodes are connected through edges, which define the relationship
between the nodes [21]. The theory of graphs has already been used in wildfire applications.
Jiang et al. [31] used an irregular graph to predict the propagation time of a wildfire,
while Yemshanov et al. [32] tried to identify the critical nodes of a graph for effective fuel
reduction treatments. Ge et al. [33] built a spatiotemporal knowledge graph to predict
wildfire occurrence in a test region in China, while Chen et al. [34] used a similar approach
to forecast the total burned area in a Portuguese national park.

To apply DL techniques to spatiotemporal graph data, Spatiotemporal Graph Neural
Networks (STGNNs) have been developed over the last decade. STGNNs implement a
spatial (e.g., a Graph Convolutional Network (GCN)) and a temporal modeling component
(e.g., an RNN) to simultaneously learn spatial and temporal data dependencies within
a graph [21]. This allows for modeling spatiotemporal systems with high accuracy and
efficiency [21] and results in improved results in various domains, e.g., traffic forecasting,
recommendation systems, or social network analysis [35,36]. The application of STGNNs
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for modeling natural hazards is, however, still limited, with only a few studies focusing on
the prediction of urban floodings [37], typhoon intensity [38], or the location and magnitude
of earthquakes [39]. However, no study has yet applied STGNNs to model the daily wildfire
spread on a regional or continental scale in Europe.

Inspired by the new opportunities arising from the increasing data availability and
advances in the development of spatiotemporal DL techniques, this study built a data-
driven DL-based wildfire spread model to predict the daily spread of European wildfires.
In a research field where data-driven methods are only slowly being adopted, this study
uses a STGNN to model the wildfire spread for the first time. For this, a comprehensive
dataset containing the daily burned areas of wildfires in Europe from 2016 to 2022, coupled
with relevant wildfire driver variables, was built and used to train two different models.

First, a country-scale STGNN model was developed for Portugal by training and
testing on a Portuguese wildfire time series from 2016 to 2022. With this, we tested
the general ability of a STGNN architecture and assessed how the spatial and temporal
dimensions of wildfires influence the model performance.

Secondly, a STGNN model was developed for the entire Mediterranean region by
training and testing it on wildfire time series from 2016 to 2022 from various Mediterranean
countries. This addresses the existing transferability issues of conventional models by
leveraging the generalizing power of DL techniques. The Mediterranean model was
therefore used to assess how the performance of a generalized wildfire spread model varies
in different countries with varying environmental conditions and fire regimes.

2. Data and Materials

A comprehensive dataset including the daily time series of European wildfires from
2016 to 2022 was constructed for this study. Daily burned area perimeters of individual
wildfires mapped by the burned area detection algorithm of the German Aerospace Center
(DLR) [40] were combined with a set of dynamic and static predictor variables. The discrete
H3 Hexagonal Hierarchical Geospatial Indexing System (hereafter referred to as “H3 grid
system”) [41] was used to combine the input variables in a uniform grid covering Europe.
The H3 grid system represents the Earth’s surface using discrete hexagonal cells in different
hierarchical spatial resolutions. Each H3 cell has a unique identifier that encodes the
positional information, facilitating spatial queries and neighbor identifications. In addition,
the hexagonal cell geometry is particularly valuable for spatial modeling because of the six
equally distanced neighbors [42], which is why other studies have used discrete hexagonal
grid systems to model the behavior of wildfires [32,43].

2.1. Input Variables
2.1.1. Burned Area Perimeters

The wildfire time series dataset (2016–2022) is built upon the individual burned area
perimeters derived from a satellite-based burned area monitoring system developed by
the DLR [40]. The system uses the Sentinel-3 constellation (S3) Ocean and Land Color
Instrument (OLCI) to map the daily burned area perimeters in Europe at 300 m spatial
resolution. The monitoring system processes each available S3 satellite scene, which are
acquired during the daily overflights over Europe. The mapping procedure utilizes active
fire data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible
Infrared Imaging Radiometer Suite (VIIRS) sensors in combination with an S3-based pre-
and post-fire Normalized Difference Vegetation Index (NDVI) derived from the red and
near-infrared (NIR) bands. Using this contextual information, a growing Morphological
Active Contour region derives the daily burned area perimeters, which are progressively
refined with each newly acquired S3 scene (for a detailed description of the methodology,
see Nolde et al. [40]). All detected daily burned area perimeters mapped by the S3 burned
area monitoring system from 2016 to 2022 in Europe were selected for this study. By
labeling each wildfire with a unique identifier, contiguous daily burned area perimeters
representing a wildfire’s spatial expansion over time were created.
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2.1.2. ERA5-Land—Historic Weather Data

The behavior of wildfires is closely related to the prevailing weather conditions [44].
While wind direction and speed are the main factors driving a fire across a landscape [13,45],
other meteorological variables, such as temperature, precipitation, or relative humidity,
correlate with fuel moisture content, which affects the total burned area and the rate of
fire spread [29,46]. Therefore, historical weather information, matching the date of the
burn, was included in the wildfire time series dataset. This information was retrieved from
the ERA5-Land dataset [47] of the European Center for Medium-Range Weather Forecasts
(ECMWF). The ERA5-Land dataset offers a continuous record of weather variables from
1950 to the present day at an hourly temporal resolution and a 0.1◦ horizontal resolution.
The main meteorological driver variables for wildfires were selected for the entire region of
Europe from 2016 to 2022, including the total precipitation [m], 2 m temperature [K], 2 m
dewpoint temperature [K], 10 m u-component of wind [ms−1], and 10 m v-component of
wind [ms−1].

2.1.3. Fire Weather Index

Fuel moisture is an important driver of wildfires, as it determines the combustibility of
the available fuel. It is highly variable over time and closely linked to the preceding weather
conditions [13]. To incorporate this dynamic wildfire driver variable into the wildfire time
series dataset, the global Fire Weather Index (FWI) product [48] of the ECMWF is used. The
FWI assesses the wildfire danger under the preceding and current weather conditions by
calculating and combining fuel moisture and fire behavior codes [49]. For this, it considers
the temperature, humidity, wind speed, and precipitation. The used FWI product is
calculated from the historical ERA5 meteorological variables and produces daily numerical
estimations of the wildfire danger at a spatial resolution of 0.25◦ [48]. For this study, the
daily FWI from 2016 to 2022 was acquired for the extent of Europe.

2.1.4. Active Fire Data

Information on active fires or hotspots sensed by the VIIRS sensor on the Suomi
National Polar-Orbiting Partnership (Suomi-NPP) satellite was included in the wildfire
time series dataset. The VIIRS active fire product [50] delineates the thermal anomalies
up to twice a day (depending on the latitude) on a sub-pixel level at 375 m spatial reso-
lution in nadir. Five high-resolution bands, covering the visible to infrared wavelengths
(0.64 µm–11.45 µm), are used to detect the hotspots and calculate their respective Fire
Radiative Power (FRP) [MW], measuring the radiative energy emission rate per unit of
time [50]. This provides important information for the wildfire spread modeling process,
as it helps to visualize the active flaming front and thermal characteristics of a fire over
time [27].

2.1.5. Fuel Type

A critical variable for wildfire spread models is the fuel type, which serves as a proxy
for the combustibility of a landscape [51]. Therefore, the global fuel type classification
product of Pettinari and Cuvieco [51] was integrated into the dataset. This product maps
six main fuelbeds—trees, shrubs, grasses, woody surface fuels, litter, and ground fuels—in
different biomes resulting in a total of 274 fuelbed classes. The classification was generated
from various remote sensing land cover products and regional Land Use and Land Cover
(LULC) databases (for a detailed description of the methodology, see [51]). The fuel type
classification was downloaded for the extent of Europe and encoded into the wildfire time
series dataset as a static variable.

2.1.6. CORINE Land Cover

The distribution of LULC types in a landscape indicates differences in the availability
of fuel and reveals landscape heterogeneity, which highly influences the propagation of a
fire (e.g., urban areas, roads, or water bodies can act as a natural barrier [32,52]).
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To include such information in the wildfire time series dataset, the 2018 CORINE
Land Cover (CLC) classification [53] provided by the Copernicus Land Monitoring Service
(CLMS) was downloaded for the extent of Europe. The CLC has a spatial resolution of
100 m and consists of 44 LULC classes, including artificial surfaces (e.g., urban areas,
industrial sites), agricultural areas (e.g., arable land, pastures), forests, semi-natural areas
(e.g., broadleaved forests, heathland), wetlands (e.g., marshes, peat bogs), and water bodies
(e.g., rivers, lakes).

2.1.7. Digital Elevation Model

A landscape’s topography strongly influences the behavior of a wildfire. Slopes
or local topographic winds can drastically increase the fire’s rate of spread [10,13]. The
altitudinal level and aspect of a slope are strongly connected to the fuel type and fuel
moisture content [13]. For this reason, a Digital Elevation Model (DEM) was used to
incorporate topographic information into the wildfire time series dataset. The globally
available Copernicus GLO-90 DEM of the European Space Agency (ESA) [54] was therefore
downloaded at 90 m spatial resolution for the extent of Europe.

2.2. Feature Engineering and Construction of Wildfire Time Series

An individual Area of Interest (AOI) was created for each European wildfire that
occurred from 2016 to 2022. This was established based on the size of each fire’s burned
area perimeter on the last day of fire activity. All H3 hexagonal cells of the resolution 9
(approx. 350 m cell diameter) in this area represented a wildfire’s AOI within the discrete
H3 grid system. To spatially expand a wildfire’s AOI beyond the burned area perimeter, a
buffer ring of one H3 cell was added to the AOI’s edge H3 cells.

The burn status of an AOI over time was then defined by intersecting the centroids
of all H3 cells with the respective burned area perimeter derived by the S3 burned area
monitoring system. If a cell was burned at a time step tn, it was labeled accordingly and
maintained its status over the following days of the time series. The variable “burned” there-
fore displayed the accumulated daily burned area over time (see Figure 1a). Additionally, a
second burned area variable (“burned_new”) was introduced that indicated if a previously
unburned cell on day tn was burned on the following day tn+1. The “burned_new” variable
therefore represented wildfire propagation over time (see Figure 1b). Occasionally, some
burned area time series contained days without any detected burned areas due to cloud
or smoke contaminations in the S3 scenes. To ensure the continuity of a daily sequence
in every wildfire time series, days without any detected burned area were filled with the
burned area of the previous day. To encode this case in the wildfire time series dataset, a
variable “no_observation” was set for all cells of the AOI.

Feature engineering was conducted for some of the ERA5-Land weather variables. The
hourly 2 m temperature and 2 m dewpoint temperature were used to calculate the hourly
relative humidity [%]. The hourly wind speed [ms−1] and direction [◦] were calculated from
the hourly u- and v- wind components. The wind direction was further reclassified into
eight classes of 45◦ intervals. To match the daily resolution of the burned area time series
while still preserving the diurnal variation of some weather variables, daily descriptive
statistics were computed based on the hourly weather variables, as detailed in Table 1. The
daily aggregated weather statistics and the FWI raster layers were then converted to the
H3 grid system and joined to the cells of each wildfire AOI.

Hotspot points were intersected with each daily H3 cell of each wildfire AOI. The daily
count of intersecting hotspots per cell was included in the dataset (see Table 1). In addition
to the number of active fires, thermal information was incorporated into the dataset by
including the daily FRP values for each H3 cell. If a cell contained more than one hotspot,
the FRP values were aggregated to daily descriptive statistics (see Table 1).
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Table 1. Input features of the reference dataset for wildfire spread modeling.

Feature Class Feature Name Feature Description Unit

Burned area
burned_new New burned H3 cells of day tn+1 (target) Binary

burned Total burned H3 cells of the morning of day tn Binary

no_observation All H3 cells of a day tn if no wildfire activity was detected in
fire AOI Binary

Meteorological

t2m_min Daily minimum air temperature at 2 m above the land surface K
t2m_max Daily maximum air temperature at 2 m above the land surface K

t2m_mean Daily mean air temperature at 2 m above the land surface K

t2m_std Daily standard deviation air temperature at 2 m above the
land surface K

tp_min Daily minimum precipitation m
tp_max Daily maximum precipitation m

tp_mean Daily mean precipitation m
tp_std Daily standard deviation precipitation m

tp_sum Daily sum of precipitation m
rh_min Daily minimum relative humidity %
rh_max Daily maximum relative humidity %

rh_mean Daily mean relative humidity %
rh_std Daily standard deviation relative humidity %

ws10_min Daily minimum wind speed at 10 m above the land surface ms−1

ws10_max Daily maximum wind speed at 10 m above the land surface ms−1

ws10_mean Daily mean wind speed at 10 m above the land surface ms−1

ws10_std Daily standard deviation wind speed at 10 m above the land
surface ms−1

wd10_mode Daily mode wind direction at 10 m above the land surface ◦

Fire Danger Index FWI Daily FWI Unitless

Hotspots

n_hotspots Total number of hotspots Count
frp_min Daily minimum FRP MW
frp_max Daily maximum FRP MW

frp_mean Daily mean FRP MW
frp_std Daily standard deviation FRP MW

frp_sum Daily sum of FRP MW

Fuel fuel_type Mode of fuel type class Integer

Land Use/Land
Cover clc Mode of CLC class Integer

Topography
elevation Mean elevation m

slope Mean slope ◦

aspect Mean aspect ◦

Feature engineering was also applied to the temporally static variables. The DEM
was used to calculate the slope and aspect. All static variables (fuel type, CLC, elevation,
slope, and aspect) were then converted into H3 cells and joined to the cells of each fire AOI.
The new H3 cell values were determined by using a majority aggregation function for the
discrete classification variables (fuel type, CLC) and a mean aggregation function for the
continuous topographic layers (elevation, slope, aspect) (see Table 1).

After feature engineering and data aggregation, consecutive daily time series of all
H3 cells in a fire’s AOI were constructed. The time series are also displayable as a three-
dimensional datacube, with the 1st dimension being the H3 cells within the fire’s AOI, the
2nd dimension being the dynamic (burned area variables, ERA5-Land weather statistics,
FWI, hotspot statistics), and static (fuel type, CLC, elevation, slope, aspect) variables and
the 3rd dimension being the daily timesteps (see Figure 2). Finally, such a datacube was
built for each wildfire event in Europe from 2016 to 2022.
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Figure 2. Datacube representation of a wildfire time series containing all H3 cells (c) (1st dimension),
with all static and dynamic features (X) (2nd dimension) over the time steps (t) (3rd dimension). The
datacube can also be represented as an ordered sequence of two-dimensional H3 grids over time.

3. Methodology
3.1. Experimental Setup

Based on the comprehensive wildfire time series dataset, we developed a data-driven
DL model to predict the next day’s burned area of European wildfires. For this task, a
graph-based DL architecture was chosen. STGNNs can solve complex spatiotemporal mod-
eling problems by combining a spatial modeling component (e.g., GCN) with a temporal
modeling component (e.g., RNN) to simultaneously learn multidimensional patterns from
data [21]. This has resulted in superior results compared to traditional DL architectures in
a variety of research fields [36]. In theory, this architecture can be applied to the complex
and non-linear wildfire spread process, where multiple fire driver variables interact along
different temporal and spatial scales [10,13,55].

Given the prevailing accuracy and transferability limitations of established semi-
empirical and empirical wildfire spread models, a data-driven approach using such an
STGNN architecture can be expected to yield improved results. To test this assumption, the
following experimental setup was chosen.

The first model was developed on a country-scale to test the general applicability
of a STGNN architecture for wildfire spread modeling. We selected Portugal as a test
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region, as it is one of the most fire-prone countries in Europe and experienced substantial
wildfire events during the period 2016−2022 [56]. The respective STGNN was trained
and tested with the historic wildfire time series from this period. The development of the
Portugal model also allowed us to retrieve insights about the model’s predictive capabilities
concerning a wildfire’s spatial and temporal dimensions.

Following this, a second STGNN wildfire spread model was developed for the entire
Mediterranean region. This model was trained on the historic wildfire time series of various
Mediterranean countries with differing environmental conditions and fire regimes. With
this, the generalization and transferability of the developed data-driven approach could
be assessed.

3.2. Pre-Processing and Reference Data Sampling

We created two separate reference datasets for both a Portugal and Mediterranean
study region. The Portugal AOI was defined by the country’s boundary (see Figure S1).
The Mediterranean AOI was defined by using the Köppen–Geiger climate zone classes
BSk (arid, steppe, cold arid), Csa (temperate, dry summer, hot summer), Csb (temperate,
dry summer, warm summer), and Cfa (temperate, no dry season, hot summer) [57], which
predominantly cover the fire activity in the Mediterranean [56] (see Figure S2).

To exclude too small and short fire time series, all wildfires that occurred in each AOI
between 2016 and 2022 were filtered by size and length. A fire was included in the Portugal
or Mediterranean reference dataset if the burned area perimeter at the final stage of burning
covered a minimum of ten H3 cells and the fire was active for a minimum of five days.
Furthermore, all fires with no or only sporadic growth were excluded from the reference
datasets by applying a moving average filter over the time of a wildfire time series. After
filtering, the Portugal and Mediterranean reference datasets included 332 and 3020 wildfire
time series, respectively.

The STGNN model is trained with equal-length input sequences. To maintain this,
all wildfire time series with more than the minimum five days of activity were trimmed
to equal-length sequences of five days. To prevent a loss of data while also augmenting
the total number of samples in the reference datasets, a rolling window approach using a
step size of one day was applied to each time series. Thus, wildfire time series with more
than five days of activity were split into multiple artificial time series with an equal length
of five days. After this temporal trimming process, the total number of samples in the
Portugal and Mediterranean reference datasets increased to 1181 and 11,082, respectively
(see Table 2).

Table 2. Sample distribution in Portugal and Mediterranean reference datasets.

Portugal Mediterranean

Training (70 %) 821 7686
Validation (15 %) 183 1736

Testing (15 %) 177 1660

∑ 1181 11,082

All variables included in the reference datasets are transformed to a range between
0 and 1 using minimum−maximum scaling. Consecutively, all wildfire time series are
converted to spatiotemporal graph structures. A spatiotemporal graph Gt is defined as:

Gt = (V, E, A, Xt) (1)

where V represents a set of nodes (vertices), E represents a set of edges between the graph’s
nodes, A represents the adjacency matrix, which mathematically describes the connections
between nodes, and Xt describes a feature matrix containing a feature vector for each node
at a timestep t. Within the H3 grid system, the conversion of the wildfire time series is
straightforward. For each time step t in a time series, a graph object is retrieved by using
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all H3 cells of wildfire AOIs as nodes V. Edges E and the respective adjacency matrix A
are delineated by identifying each cell’s six first-order neighboring cells within the H3 grid
system (see Figure 3). The graphs are implemented with self-loops for all nodes, ensuring
that each node’s features are included in the graph convolution, and undirected edges
without weighting, allowing for a bidirectional information flow between nodes. Lastly, the
daily graph’s nodes were populated with the feature matrices of the respective days. The
variable “burned_new”, representing the daily wildfire spread, is defined as the node’s target
variable. This results in a time series of fixed graph structures with dynamically changing
node features for each wildfire event in the Portugal and Mediterranean reference datasets.
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Figure 3. Different data representations of the burned area of a wildfire in Portugal. Background:
Sentinel-2 RGB image from the 07.08.2020. (a) Burned area perimeter derived by the Sentinel-3
mapping algorithm. (b) Burned area perimeter displayed in H3 cells (resolution 9). (c) Burned area
perimeter displayed as a graph.

Training, validation, and testing datasets were created from the Portugal and Mediter-
ranean reference datasets using a 70:15:15 split (see Table 2). Sampling for the training,
validation, and testing datasets was conducted using stratified random sampling consider-
ing the seasonality (summer, winter), year, and location of the wildfire time series.

3.3. Model Architecture and Training

Given the limited research on STGNN architectures for modeling natural hazards, we
chose a STGNN from the traffic forecasting domain, where STGNNs proved to be a capable
methodology [35]. The process of wildfire propagation and traffic systems indeed have
some parallels regarding their spatiotemporal behavior, as they experience similar spatial-
growing patterns and non-linear temporal changes [10,35]. For this reason, the well-known
Temporal Graph Convolutional Network (TGCN) architecture developed by Zhao et al. [58]
was selected to be applied to the wildfire spread modeling problem. The TGCN can model
spatiotemporal dependencies using multivariate features and showed strong performances
in predicting traffic flows [36]. Figure 4a describes the TGCN architecture schematically.
A detailed mathematical description of the architecture can be found in [58]. The TGCN
consists of a spatial component that obtains and transforms the node features in a defined
neighborhood within the graph using a spectral graph convolution. This is followed by
a temporal component, where an RNN receives the outputs of the spatial component to
learn the temporal dependencies between the graph’s nodes.
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Figure 4. Schematic display of the STGNN wildfire spread model and its subcomponents.
(a) Workflow of the STGNN model. (b) Spatial subcomponent of the TGCN model with a schematic
representation of the graph convolution process of the GCN (b.1,b.2) and the GCN layer stacking
(b.3). (c) Temporal subcomponent of the TGCN with a schematic representation of the GRU cell.

At first, the TGCN receives a graph structure at the time step Xt as input and passes it
to the spatial modeling component (see Figure 4b). This consists of an implementation of
the GCN by Kipf and Welling [59] which uses a spectral filter in the Fourier domain on the
graph’s nodes to capture spatial features between all nodes in the first-order neighborhood
(Figure 4(b.1,b.2)). In the TGCN, a stack of three subsequent GCN layers is used to increase
the spatial component’s receptive field up to the third-order neighborhood nodes [58] (see
Figure 4(b.3)). This results in a new feature-embedding matrix containing transformed
feature vectors for each node.

The temporal component implements a Gated Recurrent Unit (GRU) first introduced
by Cho et al. [60] (see Figure 4c). The GRU addresses the vanishing gradient problem of
traditional RNNs through gated mechanisms for memorizing past input information. It
receives the output feature-embedding matrix of the GCN for a time step Xt, as well a
hidden state ht−1 from the previous time step t − 1. An update gate ut controls how much
of the previous hidden state ht−1 should be retained and how much of the new information
from the input should be added to the current hidden state ht. The reset gate rt works in
tandem with the update gate to control how much of the past information the model should



Fire 2024, 7, 207 11 of 26

forget when calculating the updated hidden state ht. The input Xt and the scaled previous
hidden state ht−1 are then used to calculate a candidate hidden state ct. The final hidden
state ht is then computed from the previous hidden state ht−1 and the candidate hidden
state ct. The output of the temporal component is transformed by a Rectified Linear Unit
(ReLU) activation function and passed to a Fully Connected (FC) layer with 16 neurons
which produces the final one-dimensional output for each of the graph’s nodes (Figure 4a).
Finally, binary classification results are achieved by scaling each node’s output between 0
and 1 using a Sigmoid function and quantization with a threshold of 0.5.

The model was developed and trained using the Pytorch Geometric Temporal library
(v0.54.0) [61]. Hyperparameter tuning was performed for the Portugal and Mediterranean
models using a grid search of potential values for learning rate, batch size, and output
channels (number of neurons in the FC layer). This resulted in the optimal learning
rate (0.00001), batch size (1) and output channel number (16) for both the Portugal and
Mediterranean models. Both models were trained for 2500 epochs with an early stopping
with a patience of 10 epochs using stochastic gradient descent. Since both the Portugal and
Mediterranean datasets were highly imbalanced, a customized binary cross-entropy loss
function (weig. BCE) was used to account for this:

weig.BCE = −(w1 × y × log(p) + w0 × (1 − y)× log (1 − p)) (2)

where w1 and w0 are the weights for the positive and negative class, y is the reference label,
and p is the predicted sigmoid probability of the positive class that is the output for each
node. The weights for the positive and negative class were calculated based on the inverse
class frequency, resulting in the weights w0 = 0.53 (unburned) and w1 = 8.54 (burned).

Figure 5 displays the model training workflow schematically. The models perform
a binary node classification to predict the newly burned cells for each future day. The
dependent targets are the newly burned cells (“burned_new”) of the day tn+1, which are
predicted using the independent features X of the current day tn. For every epoch, the
model iterates over the temporal dimension of a training wildfire time series, receiving the
input of the first day Xt1 and an empty hidden state h0. Based on the input features of the
first day Xt1 , the STGNN cell then produces a prediction ŷt2

for the next day, labeling all
cells that will be affected by the wildfire’s propagation. Furthermore, an updated hidden
state h1 is passed onto the next STGNN cell, preserving the temporal information from
previous time steps. The daily weighted loss is calculated using the prediction ŷt2

and the
reference yt2

of the respective day t2.The mean batch loss Lmeanb is computed after all n
iterations and used to update the model’s weights.

3.4. Model Testing and Evaluation

The respective testing datasets were used to evaluate the performance of the Portugal
and Mediterranean models. The developed model framework allowed predictions of the
wildfire spread up to n − 1 days, with n being the input length of a wildfire time series
(5 days). In testing mode, the model received the first day of a testing wildfire time series
and produced subsequent predictions for the next four days (see Figure 5). For each daily
prediction, the following accuracy metrics were calculated:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 − score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

IoU =
|A ∩ B|
|A ∪ B| =

Area o f overlap(intersection)
Area o f union

(6)
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All metrics were set between 0 and 1 and were chosen by their suitability in imbalanced
binary classification problems and computed for both the positive and negative predictions
using the respective true positive (TP), false positive (FP), and false negative (FN) samples.
Because of the spatiotemporal nature of the wildfire spread predictions, a more complex
validation framework was needed to assess the true predictive capabilities of the Portugal
and Mediterranean models.
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On numerous prediction days, edge cases arose without any positive samples, either
being caused by excessively overpredicting the wildfire spread (e.g., all cells are predicted
positive but the testing cells are all negative) or by perfectly predicting only true negatives
(e.g., the model correctly predicted that, on a particular day, no wildfire spread occurs).
Both scenarios lead to no data values when computing the accuracy metric precision, recall,
and F1-score for the positive class. To obtain a more meaningful accuracy assessment and
account for both these edge case scenarios, the macro-average was calculated for each of the
accuracy metrics. The macro-average computed the unweighted mean of the positive and
negative class accuracy metrics. In the imbalanced reference datasets, the macro-average
therefore weighted the underrepresented (positive) class more heavily, which allowed for a
more valid evaluation of the daily wildfire spread predictions.

To produce comparable accuracy metrics between the models, the accuracy assessment
was conducted on three different levels. At Level-1, the daily prediction accuracy for
an individual test wildfire was calculated by the macro-average of all accuracy metrics
(precision, recall, F1-score, IoU) (see Table 3). At Level-2, the model performance in
predicting the entire time series of an individual wildfire was computed by calculating the
fire’s weighted macro-mean accuracy metrics (see Table 3). This referred to the weighted
average of the daily macro-mean accuracies from Level-1 over the entire wildfire time series.
Since days with substantial wildfire spread were viewed as more important, the daily union
of the positive class was used as a weight during the calculation of the Level-2 accuracy
metrics (see Table 3). To assess the model performances on the entire testing dataset, the
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Level-3 overall weighted macro-mean was calculated. This was achieved by computing the
average of all Level-2 fire-weighted macro-mean accuracy metrics (see Table 3).

Table 3. Used evaluation techniques to assess the model performance at different scales.

Name Level Scale Formula Description

Daily macro mean Level-1 Day macro − meanaccti
=

accclass 0
ti

+accclass 1
ti

2

Accuracy on each
prediction day of a fire

Fire-weighted
macro mean Level-2 Fire

weighted macro − meanacc f ire
=

∑n
i=1 wti macro−meanaccti

∑n
i=1 wti

Accuracy of a predicted
fire time series

Overall weighted
macro mean Level-3 Test dataset

weighted macro − meanacctestset
=

∑
n f ires
j=1 weighted macro−meanacc f ire

n f ires

Accuracy of the test
dataset

4. Results
4.1. Overall Model Performance

The Portugal model achieved overall weighted macro mean accuracy metrics (Level-3)
of 0.59 (precision), 0.69 (recall), 0.57 (F1-score), and 0.37 (IoU) (see Table 4). Because of its
robustness and balanced evaluation between false positive and false negative predictions,
the IoU was chosen as the main accuracy metric for evaluating the model performance.
The Portugal model trained for the maximum 2500 epochs with a continuous loss decrease
(see Figure S3).

Table 4. Overall model performance of the Portugal and Mediterranean model.

Portugal Model Mediterranean Model

Overall weig. macro mean precision 0.59 0.59
Overall weig. macro mean recall 0.69 0.67

Overall weig. macro mean F1-score 0.57 0.55
Overall weig. macro mean IoU 0.37 0.36

Figure 6 exemplifies the prediction results of the Portugal model for an individual
wildfire time series. For this wildfire, the Portugal model achieved an above-average
weighted macro-mean IoU (Level-2) of 0.57. Although significant overpredictions in the
first two days are visible, the model was able to capture the general behavior of the fire and
predicted the rapid increase in the burned area at the start of the time series.

Comparing different fire seasons in Portugal, the model achieved similar median
fire-weighted macro-mean accuracies (Level-2) over all fire seasons, ranging from 0.39 to
0.51 (see Figure 7). The fire seasons 2016, 2019, and 2022 showed the lowest accuracies with
median fire-weighted macro-mean IoU values below 0.45. The best and most robust results
were achieved with wildfires from the 2018 and 2021 fire seasons with median IoU values
of 0.49 and 0.51, respectively.

The training process of the Mediterranean model was interrupted after 1834 epochs
due to a stagnation of the loss (see Figure S4). Overall accuracy metrics showed similar but
slightly worse accuracies compared to the Portugal model’s results with 0.59 (precision),
0.67 (recall), 0.55 (F1-score), and 0.36 (IoU) (see Table 4). Despite some regional performance
differences, the Mediterranean model predicted the spread of wildfires in most fire-active
countries with robust accuracies (see Figure 8). The best results were achieved on wildfires
in Spain with an overall weighted macro-mean IoU (Level-3) of 0.44, closely followed by
the fire-prone countries of Greece (0.43), France (0.39), and Portugal (0.39). Wildfire spread
in Italy and Eastern European countries (e.g., Bosnia Herzegovina, Montenegro, Albania,
Serbia, Romania, and Moldova) could only be predicted with lower accuracies with IoU
values below 0.34. Compared to the overall weighted macro-mean IoU of the Portugal
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model (0.37), the Mediterranean model could predict Portuguese wildfires with slightly
higher accuracies of 0.39.
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refers to the respective number of wildfires in the Mediterranean reference dataset.

Like the Portugal model, the Mediterranean model achieved similar performances
for all fire seasons for each country (see Figure 9). No particular fire season showed a
significant increase or decrease in the model’s performance. Most wildfires in the fire-prone
countries of Spain, France, Greece, Italy, and Portugal could be predicted with an overall
weighted macro-mean IoU (Level-3) between 0.4 and 0.6 independent of the fire season.
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4.2. Model Performances Based on Spatial and Temporal Wildfire Dimensions

The Portugal model showed increasing accuracies up to a daily spread size of approx.
50 H3 cells (approx. 5 km2) (see Figure 10a). After this optimum fire spread size, a signifi-
cant decrease in IoU values was observed. However, the small total number of extremely
large wildfire spread days (>100 H3 cells) prevents any clear statement about the model
performance on such wildfire spread events. The same increase, until an optimum daily
wildfire spread size of approx. 50 H3 cells, was also visible in the results of the Mediter-
ranean model (see Figure 10b). However, after this optimum size, the Mediterranean model
predictions did not show a decrease in the prediction accuracies and stagnated around 0.6.
For both the Portugal and Mediterranean results, both models achieved the lowest IoU
values on days without any wildfire spread, confirming a significant overprediction bias
until an optimum of approx. 50 H3 cells. The same trend was also visible when evaluating
the daily Mediterranean model performance on a country level (see Figure S5).
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Additionally, the Portugal and Mediterranean model predictions of an entire individ-
ual wildfire time series (fire-weighted macro-mean IoU, Level-2) were compared to the
total burned areas of a wildfire. For both models, no significant trends in performance
changes regarding the burned area could be identified (see Figure S6). This suggests that
the final burned area of a wildfire does not influence the model’s predictive ability.

The effect of a wildfire’s temporal behavior was assessed by comparing the daily
macro mean IoU (Level-1) of the Portugal and Mediterranean models with the subsequent
prediction days of a wildfire time series. In Figure 11a, the distribution of the daily macro-
mean IoU values for all tested Portuguese wildfires is displayed over the four prediction
days. The Portugal model achieved the lowest median IoU values (approx. 0.4) on the
first prediction day. After this, the prediction accuracies increasingly improved to approx.
0.45 on the second day, approx. 0.47 on the third day, and approx. 0.48 on the fourth
day. The same trend is visible for the Mediterranean model, achieving a similar range of
median macro-mean IoU values over the four prediction days (see Figure 11b). Overall, the
results indicate that, with an ongoing prediction time series, both models tend to predict
the wildfire spread more accurately. This trend is also confirmed when comparing the
results of the Mediterranean model in individual European countries (see Figure S7).
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5. Discussion
5.1. Performance of the Spatiotemporal Graph Neural Network

Overall, the Portugal and Mediterranean STGNN models did not achieve satisfactory
accuracies measured by the precision, recall, F1-score, and IoU (see Table 4). Despite captur-
ing the general spread trend for most test wildfires (e.g., see Figure 6), major inaccuracies
in the exact predictions of the wildfire expansion occurred. However, both models could
achieve relatively high overall weighted macro-mean recall values (Portugal model: 0.69,
Mediterranean model: 0.67) (see Table 4), showing that the models’ abilities to avoid false
negative predictions are good. This is crucial, as missed wildfire spread detections can have
serious consequences, while false positive predictions can be adjusted without any serious
consequences [18]. Both models’ lower overall weighted macro-mean precision values
(0.59) (see Table 4) indicate a significant overprediction bias. In comparison to other opera-
tionally used wildfire spread models, which often suffer from a serious underprediction
bias [62], the overprediction errors of the STGNN are potentially less severe.

The reasons for the low overall accuracies are also partially related to the evaluation
method. The implemented weighting technique emphasizes the model’s ability to detect
large wildfire spread events, as precise information about such days is crucial for wildfire
suppression strategies [11]. However, this weighting procedure also decreases the overall
accuracy metrics, as frequently occurring overpredictions are strongly penalized. The
temporal accuracy of the predictions is also difficult to assess. For many wildfires, the
Portugal and Mediterranean models correctly predicted the newly burned cells with a
time lag of one day (e.g., see Figure 6). Although this scenario produces low statistical
performance metrics, the predictions can still be useful for wildfire suppression assessments,
as the model was able to predict that the correct cells will burn eventually. This behavior
is, however, not accounted for in the accuracy assessment. Similar problems were also
experienced in the study of Radke et al. [24], underlining that the statistical evaluation of
spatiotemporal wildfire spread models is not entirely representative of their usability.

A fair quantitative comparison of the STGNN model results to other wildfire spread
models is difficult. Most DL-based studies produce no comparable outputs (e.g., numerical
rate of spread predictions [28,29]) or were developed in small study areas and are difficult to
transfer to the Mediterranean environment [23–26,29]. A comparison to other conventional
wildfire spread models (e.g., semi-empirical, empirical, or simulation models) is also
difficult as these models need highly specialized input data [15,18] which are not available
for larger study regions like Portugal or the Mediterranean.
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The performance assessment of the Portugal and Mediterranean wildfire spread
models should be considered in the broader context of the research field. In general, state-
of-the-art wildfire spread models contain significant uncertainties and overall results do not
compare to other modeling problems in terms of accuracy. A benchmark of operationally
used semi-empirical and empirical wildfire spread models highlighted that, out of all the
tested models, only 3% produce exact results with a mean absolute percentage error (MAPE)
< 2.5%, with some models reaching a MAPE of up to 310% [62]. A more recent benchmark
compared newer conventional modeling approaches to established wildfire spread models,
reporting an overall increase in the newer models’ accuracy. However, all models still
resulted in a MAPE of >33% in various fuel environments [20]. These benchmarks put
this study’s results into context. Although the overall accuracy metrics of the Portugal
and Mediterranean models seem low, they are within the expected ranges of this research
domain. Comparable studies using DL methods [24,25,31] or semi-empirical and empirical
modeling approaches [20,62] achieved similar accuracy measures. This highlights the
need for more research on this modeling problem, although Alexander and Cruz [18]
remark that the complexity of the wildfire spread process might prevent future models
from reaching accuracies as high as in other modeling domains. Despite their accuracy
limitations, wildfire spread models are still useful in the operational context providing
more of a guideline instead of being used as an absolute decision-making tool [18].

Given this stated complexity and non-linearity of the wildfire spread process [10,13,55],
future modeling approaches based on DL techniques might be advantageous. Studies using
spatially adapted DL models (e.g., CNNs) [24,25] or time series DL models (e.g., LSTM,
GRU) [26–28] could outperform standard Machine Learning or simulation models but still
did not achieve high overall accuracies. The low overall performances might result from the
focus of their models on either the spatial or temporal dimension of a wildfire. Although
the developed STGNN model did not outperform all of these studies, the equal influence
of the spatial and temporal dimension of a wildfire has a non-negligible effect on the model
performance which has been demonstrated in this study and was also mentioned in the
study of Burge et al. [30]. Alternatively, compared to spatiotemporal adapted GNNs, Burge
et al. [30] showed that using a spatiotemporal ConvRNN can produce promising results
with high IoU values > 0.84. However, this performance was only achieved on artificially
simulated wildfire data.

Using other STGNN architectures might have resulted in enhanced results in this
study. Within the traffic forecasting domain, spatial convolutions achieved superior results
over spectral convolutions [35], whereas the latter was implemented in the used TGCN [58].
Also, attention-based GNNs showed improved performances compared to GCN-based
methods, but mostly for long-term forecasting problems [35,36]. As this work features
the first usage of STGNNs for the application of wildfire spread modeling, no significant
statements about performance-enhancing STGNN architectures for this specific modeling
problem can be given. Future work should therefore focus on systematic tests to find
optimal STGNN components, which could lead to an enhancement of wildfire spread
model performances.

5.2. Influence of Dimensions of a Wildfire

The spatial dimensions of the wildfire spread showed an effect on the Portugal and
Mediterranean model performances, where the daily macro-mean IoU increased with larger
daily wildfire spread sizes up to an optimum of approx. 50 H3 cells (approx. 5 km2) (see
Figure 10). Similar results were also reported by Radke et al. [24]. Regarding the expected
intensification of the Mediterranean fire regime [6,11], this ability proves suitable for future
applications. The reported overprediction bias was especially visible on days without
any or with only a small wildfire spread. These results align with other empirical [63]
or DL-based [24] wildfire spread models. Analyzing the density distribution of the daily
spread sizes reveals that for both the Portugal and Mediterranean reference datasets, days
with a spread size of less than five H3 cells are the predominantly occurring situation,
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while days without any wildfire spread are the most common scenario (see Figure S8).
This is explainable by the natural behavior of wildfires, which tend to spread significantly
on a small number of days while on the majority of days only small or no spread is
observable [63]. Furthermore, the high total number of days with very small or no wildfire
spread can also result from missed burned area detections by the S3 burned area monitoring
system due to clouds or smoke. The large uncertainties of the Portugal and Mediterranean
model on days with small wildfire spread size combined with the high frequency of such
days potential explains the overall low accuracy metrics.

The Portugal and Mediterranean models showed a clear performance increase with
continued prediction days (see Figure 11) highlighting the temporal influence on the models’
performances. As anticipated, this behavior aligns with the hypothesis that the STGNN
model improves its predictive ability throughout a wildfire time series as it receives more
input data with each new prediction day. Since technical restrictions in this study only
allowed predicting the future four days of a wildfire time series, further work should test if
this behavior continues on longer wildfire time series. However, the trend that the model
continuously improves its predictive ability over time is counterproductive to the usability
of such a model in an operational context, where emergency responders need accurate
information about the wildfire’s propagation just after the ignition when containment
measures are still the most effective [32].

5.3. Transferability

A significant challenge in operationally used wildfire spread models is the transferabil-
ity to other environments, as semi-empirical and empirical models are highly dependent
on the environment in which they were calibrated [15,18]. The Mediterranean model tried
to address this issue by generalizing the wildfire spread over all Mediterranean fire regions.
Although the model could only achieve mediocre overall accuracies, model performance
between different countries with differing environmental conditions and fire regimes was
similar (see Figure 8). The best performances of the Mediterranean model were achieved
in Spain, France, and Portugal (see Figures 8 and 9). These countries also experienced the
largest average wildfire sizes [56] and the highest fire spread rates [64] over the last decade.
These observations align with the model’s ability to predict larger wildfire spread rates
more precisely.

The lowest performances were observed in Italy and the Balkan region. One expla-
nation for this is the high number of agricultural fires, which are the most frequent type
of wildfire in, e.g., Italy [56]. These prescribed burnings are mostly controlled, small in
size, and do not experience large spread rates [65]. For the Mediterranean reference dataset,
Italy showed the highest number of wildfires while also having one of the smallest median
burned areas over all fire seasons (see Figures S9 and S10). As the Mediterranean model
suffers from an overprediction bias on days with small wildfire spread, this might explain
the lower overall accuracies in the countries that experienced many but very small fires.

Surprisingly, the Mediterranean model could outperform the Portugal model in pre-
dicting the spread of Portuguese wildfires, achieving an overall weighted macro-mean IoU
of 0.39 compared to 0.37, respectively. This might be an effect of the larger training dataset
available for the Mediterranean model which helped the model to see a larger variety in
the data.

Results of the Mediterranean model also showed no significant performance differ-
ences comparing different wildfire seasons of Mediterranean countries (see Figure 9) despite
large differences in their fire activity and fire sizes (see Figures S9 and S10). A qualitative
comparison of different environmental conditions between Mediterranean countries also
showed no clear model performance trends. The Mediterranean model performed best in
Spain, Greece, and Portugal with overall weighted macro-mean IoU values of 0.44, 0.43
and 0.39, respectively. The similar performance in Spain and Portugal might result from the
resemblance in the forest structure and dominant species in central and northern Portugal
and the northwestern and northern parts of Spain, where large, homogenous stands of
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Eucalyptus globulus and other pine species are found [66,67]. However, Greece shows large
differences to the environmental characteristics of Portugal or Spain, experiencing much
hotter and drier summers while being covered predominantly by sparsely populated forest
stands with mixed-in shrubland vegetation [9]. The fact that the model performed similarly
well in Greece highlights the promising potential of data-driven methods to overcome the
current transferability issues of wildfire spread models by exploiting the generalization
abilities of spatiotemporal DL architectures.

It needs to be noted that the exact effects of vegetational or climatic characteristics
in different Mediterranean regions on the model performance can not be assessed at
country-level. However, this study adapted the national classification of the Coperni-
cus EMS—European Forest Fire Information System (EFFIS) [56] to compare the model
performances between Mediterranean countries. Quantitative estimations of the effects
of environmental conditions on the performance of a generalized wildfire spread model
would require analysis on a much smaller geographic scale, which was beyond the scope
of this study.

5.4. Dataset Limitations

Although recent advances in the availability and capability of Earth observation data
translated into improvements in newer wildfire spread models [19,20], the quality and
availability of reference data are still the main limitations for currently used operational
models [18]. High-quality reference data are still notoriously scarce while ground truth
on the behavior of wildfires at an adequate spatial and temporal resolution does not
exist [16,19]. Therefore, satellite-derived burned area mapping products are the most com-
mon source for large-scale wildfire spread reference data [64]. However, these sources do
not represent true ground truth data and come with other limitations regarding the spatial
and temporal resolution. Due to the lack of reference data, many studies try to evaluate
their models using the outputs of operationally used semi-empirical or empirical models
as a reference [23,24,31]. While this approach is reasonable given the limited availability
of ground truth data, it remains highly questionable, especially when considering the
significant uncertainties in all operational products (MAPE > 33%) [20]. For this reason,
the results and evaluation of wildfire spread models should always be read carefully and
within context.

In this study, we created a historic wildfire time series dataset of European wild-
fires from satellite-derived burned area perimeters and multiple relevant wildfire driver
variables. Comparable datasets exist but do not incorporate all relevant wildfire driver
variables or provide burned areas in a lower spatial resolution [25,64]. In contrast to
other studies that focused on small study areas with varying environmental conditions
(e.g., [24,28]) or relied on experimental or simulated wildfire datasets (e.g., [29,30]), the
used reference dataset stands out because it includes the satellite-derived daily burned area
of real-world historical wildfires spanning the entire Mediterranean region from 2016 to
2022. Nevertheless, the reference dataset has some limitations that may have affected the
performance of the model.

The developed STGNN models are biased towards the S3 mapped burned area perime-
ters which served as the target variable. Although Nolde et al. [40] showed good agreement
of the S3 burned area perimeters with other burned area products, the transferability of the
model onto another burned area dataset from a different imaging source is not given and
should be tested. Furthermore, the dataset did not contain any information on the type of
wildfire. Therefore, it was not possible to differentiate between surface fires, crown fires, or
prescribed agricultural burnings, which could have been beneficial to the learning process
of the STGNN.

Moreover, noise contained in the burned area time series is probably one of the main
reasons for the low statistical accuracies. Time series without a consecutive spread over
multiple days are frequent in the burned area dataset. This introduced data gaps which
had to be filled artificially to assure equal-length input sequences for the STGNN model.



Fire 2024, 7, 207 21 of 26

Such data gaps can result from missed burned area detections due to cloud and smoke
cover. If consecutive days of cloud or smoke contamination are present in the S3 imagery,
then the burned area perimeter of the next cloud-free observation is usually bolstered by
the accumulated undetected burned area expansion of the previous cloudy days. This
can lead to confusion for a model because the data indicates that a large wildfire spread
occurred within one day although it was the product of multiple previous days. Such a
problem was also reported by Radke et al. [24], which was solved by only using wildfires
with consecutive daily burned areas. To retain a high number of data samples, we use a
copying procedure which is encoded in the dataset by the “no_observation” variable (see
Table 1). A more sophisticated solution for this problem would be the incorporation of
daily cloud coverage information into the dataset. However, days without wildfire spread
do not automatically result from missed detections due to cloud contamination of the
satellite scene. Wildfires tend to grow in a non-linear manner, which can result in only
a few large spread events during the wildfire activity [63]. However, such non-linear
wildfire spread events are highly correlated to the prevailing weather conditions and fuel
availability [13,63], which are encoded in the reference dataset. Moreover, the relatively
high recall values (Portugal model 0.69, Mediterranean model 0.67) and the increasing
predictive accuracy with larger daily wildfire spread sizes (see Figure 10) suggest that the
model adequately accounts for this behavior.

Some wildfires within the reference dataset contain noise in the form of multiple
independent burning cells, resulting in the heterogeneous growth of the burned area over
time. Figure S11 displays an example fire where, on the second day of the time series, an
independent burned area occurs that is not connected to the burned area perimeter of the
previous day. This can result from spotting, where burned residuals can be transported
by wind or flames and ignite a new fire ahead of the current flaming front [13]. Spotting
fires are very difficult to model [16] and frequently lead to underprediction errors within
wildfire spread models [18]. Another reason for the heterogenous burned area could
result from near-simultaneous ignitions at different locations due to anthropogenic activity
(e.g., arson). It is also possible that the two individual burned area perimeters are part of
a larger, homogenous burned area perimeter which is partially covered by clouds and
smoke and therefore cannot be correctly derived by the S3 mapping processer. Such
cases, although occurring infrequently within the dataset, are not accounted for during the
modeling process and potentially lead to confusion in the predictions.

The spatial resolution of the STGNN model is defined by the H3 cell resolution 9 (ap-
prox. 350 m cell diameter), which was selected since it matched the spatial resolution of the
burned area perimeters derived by S3. This can suppress small-scale variations in the land-
scape variables. For instance, the cell aggregation of the CLC classes is performed using the
most frequent class within each H3 cell. This leads to the suppression of underrepresented
LULC classes that may influence the wildfire spread, e.g., streets or rivers that can act as
fire barriers [32,52]. To include these features while maintaining the selected cell resolution,
proxy variables, like street density per cell, can be included. The street density also shows
a suppressing influence on the total burned area of wildfires [46], which highlights the
importance of such small-scale features for wildfire behavior. The weather variables (e.g.,
temperature, relative humidity, precipitation) and FWI should not be affected by the H3 cell
resolution, since weather phenomena usually occur on larger geographic scales. However,
local wind systems or orographic channeling can influence wildfire behavior [13], an aspect
which is not accounted for in the wildfire time series dataset.

Additional variables containing information about fuel characteristics can enhance the
modeling performance. In this study, only a cell’s predominant fuel class from an existing
fuel classification product [51] is included in the reference dataset. Fuel characteristic
variables like canopy bulk density, canopy cover, or crown height have been successfully
used for modeling wildfire spread [30]. Furthermore, many studies also include spectral
indices derived from Earth observation data, e.g., NDVI or Normalized Burn Ratio (NBR),
in wildfire spread models [24,25].
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6. Conclusions

This study developed a data-driven, Deep Learning (DL)-based wildfire spread mod-
eling approach by using a Spatiotemporal Graph Neural Network (STGNN) trained on a
comprehensive wildfire time series dataset of European wildfires from 2016 to 2022. In a
research field where current operational models contain large uncertainties and the usage
of data-driven methods is only slowly being adopted, the proposed methodology provides
a novel approach to account for the spatiotemporal nature of the wildfire spread process.

Overall, the models for Portugal and the Mediterranean region were only able to
model the next day’s wildfire spread with mediocre accuracy. While being able to predict
the general trend of wildfire expansions, the models suffered from significant overpre-
diction bias, especially on days with smaller or no wildfire spread. A fair quantitative
comparison to other studies could not be made due to differences in modeling outputs
and the adaptation of other models to a specific region or dataset. However, based on a
qualitative comparison, the achieved accuracies were in line with other DL-based modeling
approaches and are within the expected ranges of this modeling domain, where large
uncertainties still prevail in the state-of-the-art wildfire spread models. This highlighted
the need for more research to understand the complex wildfire spread process and find
solutions to translate this knowledge into advanced models.

This study demonstrated that both the spatial and temporal dimensions of wildfire
spread can have a strong influence on a model’s predictive capability. Results showed that
the STGNN was able to predict larger wildfire spread up to an optimum spread size of
50 H3 cells (approx. 5 km2) with increasing accuracy. Regarding the expected increase
in wildfire size and intensity in the Mediterranean, the ability to accurately predict larger
wildfire spread is beneficial. Furthermore, this study showed that the temporal evolution
of a wildfire had a positive effect on the model performance. However, more research
is needed to find alternative modeling frameworks that can predict the wildfire spread
with high accuracies at the start of a wildfire time series, as this would provide crucial
information for effective wildfire suppression measurements.

While not intended to replace established and operationally used wildfire spread mod-
els, this study addressed their prevailing transferability issues by developing a continental-
scale, data-driven modeling approach. Since the STGNN model could achieve similar
performances in various fire-prone Mediterranean countries, this showed that a data-
driven modeling approach might produce more robust results when applied to varying
environmental conditions. This helped form a promising methodology for developing
more comprehensive and transferable wildfire spread models. However, more research is
needed to assess the effects of local-scale environmental conditions on the performance of
such generalized wildfire spread models.

The availability and quality of reference data seem to be the most limiting factors
for the application of data-driven wildfire spread models. For this modeling problem,
basically no ground truth data are available, while large-scale reference datasets, mostly
derived from Earth observation data, come with many quality deficits regarding the spatial
and temporal resolution. The developed historic wildfire time series reference dataset has
proven to be a comprehensive dataset for modeling the behavior of wildfires on a daily
and continental scale. However, inaccuracies in the satellite-based burned area perimeters
or spatial data aggregations introduce noise into the dataset, which is probably the main
reason for the insufficient overall accuracies of the developed STGNN models. Supported
by these findings, future research must therefore focus on further improving the availability
and quality of wildfire-related data products to provide a solid foundation for modeling
wildfire spread based on promising data-driven methodologies that could potentially
overcome the prevailing accuracy and transferability problems of established wildfire
spread models.
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