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Abstract: Early detection of cable trench fires by locating the fire source in a timely manner can reduce
the risk of fire. However, existing fire warning methods have low accuracy, long calculation times
and difficulty coping with sudden fire situations. We established experimental platforms for cable
trenches with different structures and combined these with simulation analysis to investigate the
relationship between the ignition point position and the temperature distribution at the ceiling. An
exponential function for predicting the ignition point position and the maximum temperature rise of
tunnels is proposed based on the extreme values of ceiling temperature. The results indicate that the
vertical temperature of the ceiling exhibits an exponential function variation pattern. The maximum
deviation for identifying the ignition point is 0.098 m, with an average deviation of 0.044 m and an
average accuracy of 98.77%. The maximum temperature prediction error for the ceiling is 14 ◦C, with
an average deviation of 12.33 ◦C and an average accuracy of 98.30%. Compared to traditional fire
prediction methods, the method proposed here has higher accuracy and provides a theoretical basis
for early prevention and control of cable trench fires.

Keywords: cable trench; ceiling temperature; identification of ignition points; temperature prediction

1. Introduction

In recent years, China has experienced a continuous increase in the level of industri-
alization. In the realm of power transmission systems, underground cable transmission
offers several advantages, including reduced land usage and enhanced anti-interference
capabilities. Currently, long cable trenches are typically laid out in centralized configura-
tions resembling the shapes of “one” and “pin”. While this method enhances transmission
performance, it also introduces significant safety risks. Fires within cable trenches can lead
to severe consequences, such as explosions and electrical arcs, posing substantial threats to
both personnel and the environment [1–3]. In the initial phases of a fire, the source remains
relatively localized. As the fire plume ascends to the ceiling, it disperses laterally along the
channel, entraining the surrounding cooler air, which results in a temperature decrease on
both sides of the fire origin. Consequently, the spatial distribution of temperature on the
ceiling can be utilized to precisely determine the location of the fire source. This capability
is crucial for mitigating casualties and minimizing equipment damage [4,5].

The temperature rise law of the ceiling is an important component of current research
on cable trench fires. When a fire occurs in the trench, the ceiling temperature quickly
reaches its maximum value and remains stable, making it easier to obtain the general law of
fire development. Many scholars in China and abroad have conducted extensive research on
this topic [6–10]. Liang Kai et al. conducted numerical simulation studies on underground
cable gallery fires and obtained the laws of fire spread and smoke changes inside the
gallery [11]; Li Zhen et al. proposed a formula for predicting the maximum temperature
and longitudinal attenuation of tunnel arches through scaled physical model experiments
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and finite element simulations [12]; Zhao Yongjing et al. conducted different power fire
experiments by establishing a scaled comprehensive pipe gallery model and found that
there is a layered phenomenon in the fire propagation process and that the temperature
attenuation gradient increases with the increase in fire source power [13]; Wang Zhenrong
conducted small-scale long channel experiments and simulations to analyze the changes in
pipe gallery temperature and smoke under different cable connection point positions and
smoke exhaust fan ventilation rates [9]; Peng Yuhui et al. found the propagation law of
fire smoke in cable spaces through numerical simulation and analyzed the applicability of
fire detectors [14]; Hao Guanyu simulated the fire process of the cable compartment in a
comprehensive pipe gallery using FDS fire dynamics and proposed a series of reasonable
post disaster smoke exhaust strategies [15]; Gong Hao et al. analyzed how fire source
location affects cable fires, temperature, and smoke through numerical simulation. Their
results showed that the fire spread faster at high altitudes, and the fastest combustion
rate occurred in the middle of cable trenches [16]. Regarding the fire prevention plan for
cable trenches, Cram et al. studied the fire environmental parameters of cables under
different conditions and environments through distributed temperature sensing [17]; Jain
et al. improved the cable installation system by constructing a new type of firewall using
fire-resistant cavities [18]; B. M et al. proposed a cable layout functional modeling method
to minimize cable juxtaposition and reduce the probability of fire [19]; Yun et al. compared
the fire resistance of cables under three different forms of pairing by simulating polyimide
materials [20].

At present, research work focuses on theoretical foundations such as the spread
trend of underground pipe gallery fires, smoke diffusion laws, and related fire prevention
deployment plans [21,22]. There is relatively little research on the temperature distribution
law of early fire ceilings and how to quickly and accurately locate the ignition point.
The existing prediction and positioning methods have a series of problems such as weak
accuracy and lack of convenience.

Our research team has proposed a dual exponential function method for predicting
the location of ignition points [23]. The calculation method is simple and suitable for simple
and symmetrical ideal fire conditions. However, the internal working conditions of cable
trenches are complex, making it difficult to fully meet the requirements for predicting the
location of ignition points when there are external factors. Therefore, this article introduces
the initial propagation velocity coefficient and attenuation coefficient of a fire, proposes
an improved single exponential prediction method with parameters, and predicts the
maximum temperature of cable trenches to improve the accuracy of predicting the location
of ignition points.

This article first conducted fire simulation experiments with different powers to detect
the longitudinal temperature changes in cable trenches, and combined with simulation,
found the distribution pattern of ceiling temperature. Secondly, by fitting the fire experi-
mental data, a method for predicting the ignition point location and maximum temperature
rise of the ceiling temperature extreme was proposed. Finally, the accuracy of the method
was verified through comparative experiments, providing theoretical guidance for the
calculation of cable trench fires. Compared with the previously existing parameter-free
calculation methods of the research group, the calculation speed is faster and the accuracy
is higher, providing scientific guidance for the prevention and control of cable trench fires

2. Materials and Methods

This section uses the temperature changes in various sensors in the cable trench fire
experiment as a measurement index to explore the temperature distribution law of the
longitudinal position of the ceiling, and verifies it through simulation.

2.1. Cable Trench Fire Experimental Platform

This experiment selects a 10 m fire protection interval and establishes a 1:1 full-scale
circular cable trench fire model experimental platform. The effective height inside the
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trench is 1.64 m, and the wall is made of concrete pouring with a thickness of 0.18 m. The
platform is supported by a steel frame. Due to the barrier of the surrounding walls, the
closure of the ditch is strong in the event of a fire, and the external environment has a
relatively small impact on it, which can be ignored. The two ends of the ditch are set as
open structures for natural ventilation, and fireproof partitions are used to prevent the
spread of the fire. The experimental platform is built as shown in Figure 1.
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Figure 1. Circular cable trench experimental platform.

The temperature detector adopts K-type armored thermocouples, which are arranged
at intervals of 1 m on the ceiling, with their positions denoted as T0 (X = 0 m) to T5 (X = 5 m),
at a distance of 1.64 m. Fire barriers are laid above the ignition point to prevent the spread of
fire. Figure 2 shows a schematic representation of the thermocouple position arrangement.
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2.2. Longitudinal Temperature Distribution Law of Cable Trench Ceiling

The experimental fire source was tested using the Class A fire test standard combustion
material reference (GB/T31431 standard) [24]. Due to the large space required for solid
fuel at the same heat release rate, high concentration ethanol was used for oil pool fire
experiments. In order to meet the requirements of fire load density, the size of the oil pool
fire source was set to the standard fire source size of 0.7 m × 0.7 m × 0.3 m, and the fire
source was placed in the center of the channel. Due to the small size of the circular cable
channel experimental platform, smaller fire source powers are suitable, so the fire source
powers were selected as 0.2 MW and 0.5 MW. The maximum temperature at each sensor
under different fire source powers is shown in Table 1.
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Table 1. Experimental data on maximum temperature of channel sensors.

Temperature Sensor Location 0.2 MW 0.5 MW

T0 (◦C) 109.3 171.2
T1 (◦C) 134.1 201.3
T2 (◦C) 151.2 257.5
T3 (◦C) 171.8 300.8
T4 (◦C) 198.5 390.8
T5 (◦C) 254.5 525.2

At present, the theoretical research on the maximum ceiling temperature of tunnel
fires is relatively mature, among which Li et al. proposed a classic formula for predicting
the maximum ceiling temperature rise under natural ventilation conditions [25]:

∆Tmax = α × Q2/3

H5/3 (1)

where ∆Tmax represents the maximum temperature rise of the roof in a ditch fire; Q
represents the power of the ignition source; H represents the effective height of the channel;
and α, the empirical coefficient, is 17.5.

To verify the reliability of the experimental data, it is necessary to substitute the
experimental data into the formula and compare them with the empirical value of 17.5 to
obtain the error. This comparison is performed at an ambient temperature of 10 ◦C. The
calculation results are shown in Table 2.

Table 2. Experimental data calculation value.

Variable 0.2 MW 0.5 MW

Tmax (◦C) 254.5 525.2
∆Tmax (◦C) 244.5 515.2

Q2/3 34.19 62.99
H5/3 2.28 2.28

α 16.30 18.65

The relationship between the measured values and predicted values based on calcu-
lated data is shown in Figure 3.
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The maximum temperature rise measurement error for the ceiling for both types of fire
sources can be maintained within the 20% error limit, with measurement errors of 6.83%
and 6.56%, respectively, verifying the reliability of the experimental data.

In order to better understand the temperature changes in channel fires, a compre-
hensive evaluation of the experimental results was conducted. The experimental fire
conditions were replicated using finite element fire simulation. The maximum temperature
distribution of the ceiling at different positions was obtained, as illustrated in Figure 4.
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From the above figure, the following observations can be made:
When the power of the fire source is 0.2 MW, the ceiling temperature at the fire source

point reaches 54.5 ◦C. The temperature at the farthest position X = 0 m from the fire source
point is 109.3 ◦C, with a temperature decay rate of 57.05%. At X = 5 m, which is directly
above the fire source point, the temperature decay is most severe, exhibiting a longitudinal
decay rate of 56 ◦C/m. Conversely, the temperature decay at X = 0 m is the slowest, with a
longitudinal decay rate of 34.8 ◦C/m.

When the power of the fire source is increased to 0.5 MW, the ceiling temperature at
the fire source point rises to 525.2 ◦C. The temperature at the farthest position, X = 0 m from
the fire source point, is 171.2 ◦C, with a temperature decay rate of 67.42%. At X = 5 m, the
temperature decay remains the most severe, with a longitudinal decay rate of 134.4 ◦C/m.
The temperature decay at X = 0 m is still the slowest, with a longitudinal decay rate of
30.1 ◦C/m.

Comparing the two scenarios, the difference in attenuation rate at the far end of the
ignition point between the two ignition source powers is 13.51%. However, the difference
in attenuation rate directly above the ignition point is a staggering 140%.

The distribution trend in ceiling temperature under different power levels, as obtained
from both the simulation and experiment, is consistent. Nonetheless, the overall ceiling
temperature obtained from the simulation was found to be lower than that observed
in experiments at the same power level. There are several potential reasons for this
discrepancy in temperature, which include the following:

1. Material factors: there are differences between the materials used in experimen-
tal fires and simulations, such as differences in fuel conductivity and combustion
characteristics.

2. Environmental factors: there are differences between a series of environmental condi-
tions such as airflow, humidity, and pressure in experimental fires and simulations.

3. Theoretical factors: the combustion process of experimental fires is complex, with
factors such as diffusion of combustion products and gas convection making it difficult
to accurately simulate them all.
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Analyzing the trend of temperature distribution, it is clear that the temperature of
the ceiling at the ignition point is the highest, indicating a decreasing trend as one moves
away from the center towards both ends. At the same interval, the temperature measured
by sensors closer to the ignition point shows a more significant difference compared to
adjacent sensors, suggesting an exponential distribution pattern. Given this pattern, it is
feasible to predict both the position and the maximum temperature at the ignition point by
fitting an exponential function to the data.

3. Results and Discussion

In this section, we build upon the temperature distribution patterns established above
and conduct high-power fire source experiments. To analyze these experiments, we utilize
an exponential function model that factors in the height of the cable trench and the fire
temperature propagation coefficient. This model is employed to fit the experimental data
accurately. Using the fitting function derived from the model, we propose a method for
identifying the fire source point and predicting the maximum temperature that could be
reached. The effectiveness and accuracy of this method are then rigorously tested and
ultimately verified.

3.1. Fitting Function for Longitudinal Temperature of Ceiling

On the basis of the temperature distribution law of the cable trench ceiling obtained
in the previous section, four more cable trench fire experiments were conducted. The
cable trench structure was square, and the effective height of the cable trench was 1.77 m,
while the fuel used for ignition was mainly heptane. The construction of the square cable
platform is shown in Figure 5.
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Four experiments were conducted inside the square cable trench, with ignition points
1–4 (X = 1 m, X = 2 m, X = 3 m, and X = 4 m) placed at the center of the bottom of the cable
trench. The temperature sensor settings were the same as before. The ignition point power
was 1 MW, and the temperature sensor measurement results obtained from experiments
1–4 are shown in Figure 6.
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From the graphs, it can be seen that the ignition point in Experiment 1 was located at
X = 1 m. After the fire occurred, temperature sensor T1 registered the highest temperature
of 671 ◦C directly above the ignition source. The maximum temperatures at temperature
sensors T0 and T2 decreased to 561 ◦C and 588 ◦C, respectively. The temperatures at
temperature sensors T3, T4, and T5 decreased to 503 ◦C, 418 ◦C, and 370 ◦C, respectively.
The temperature decay pattern from Experiment 2 to Experiment 4 is approximately
consistent with Experiment 1. We performed dimensionless processing on the longitudinal
distance between each sensor and the fire source point, with an initial ambient temperature
of approximately 10 ◦C. The experimental parameters obtained by preprocessing the
experimental results are shown in Table 3:

Table 3. Experimental data calculation parameters.

Experiment Number Parameter X = 0 m X = 1 m X = 2 m X = 3 m X = 4 m X = 5 m

Experiment 1

∆Tmax 551 661 578 493 408 360
∆Tmax,x/∆Tmax 0.83 1 0.87 0.74 0.62 0.54
d 1 0 1 2 3 4
d/∆H 0.56 0 0.56 1.13 1.69 2.26

Experiment 2

∆Tmax 497 610 680 612 521 437
∆Tmax,x/∆Tmax 0.73 0.90 1 0.90 0.77 0.64
d 2 1 0 1 2 3
d/∆H 1.13 0.56 0 0.56 1.13 1.69

Experiment 3

∆Tmax 453 531 592 678 605 521
∆Tmax,x/∆Tmax 0.67 0.78 0.87 1 0.89 0.77
d 3 2 1 0 1 2
d/∆H 1.69 1.13 0.56 0 0.56 1.13

Experiment 4

∆Tmax 347 430 522 636 690 645
∆Tmax,x/∆Tmax 0.50 0.62 0.75 0.92 1 0.93
d 4 3 2 1 0 1
d/∆H 2.26 1.69 1.13 0.56 0 0.56

As can be seen from the above, the temperature within the cable trenches was ap-
proximately distributed according to an exponential function. Consequently, a single
exponential function was employed to develop a prediction method for the temperature
distribution pattern on the roofs of cable trenches. This method incorporates the impact of
the effective height of the cable trench by defining the independent variable as the ratio of
the longitudinal distance from the sensor to the fire source to the height of the trench. The
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dependent variable is determined by the ratio of the maximum temperature recorded at the
sensor to the maximum temperature at the top of the fire source. The parameters TD and
Tau are introduced to describe the initial propagation speed and attenuation degree of the
fire temperature, which are intercept and slope coefficients, respectively. The expression of
the dimensionless temperature longitudinal attenuation law is obtained as follows:

∆Tmax,x

∆Tmax
= y0 + A × (1 − e

−( d
∆H − TD)

Tau
)∆H (2)

In the formula, ∆Tmax,x represents the maximum temperature rise of the sensor at
X m, ∆Tmax represents the maximum temperature rise of the cable trench, d represents
the longitudinal distance between the sensor fire source and the sensor, ∆H represents
the vertical height difference between the sensor and the ground, while y0, A, TD and Tau
represent the formula coefficients.

Using Formula (2) for nonlinear fitting, the fitted curve obtained is shown in Figure 7.
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The fitted function expressions are summarized in Table 4.

Table 4. Fitting function for maximum temperature of ceiling.

Experiment Number Fitting Function Expression R2

1 ∆Tmax,x/∆Tmax = 0.6424 − 0.5736 × (1 − eˆ(−(d/∆H) + 1.5981)/3.3116) 0.993
2 ∆Tmax,x/∆Tmax = 0.6796 − 1.8827 × (1 − eˆ(−(d/∆H) + 1.5003)/9.1240) 0.981
3 ∆Tmax,x/∆Tmax = 0.6574 − 1.3661 × (1 − eˆ(−(d/∆H) + 1.7735)/7.9575) 0.996
4 ∆Tmax,x/∆Tmax = 0.6864 − 1.8099 × (1 − eˆ(−(d/∆H) + 1.4289)/7.9970) 0.981

Upon examining the chart, it is evident that the R-squared (R2) values for the four
exponential function fitting curves are 0.993, 0.981, 0.996, and 0.981, respectively. These
high R2 values signify an excellent fit to the data, suggesting that the model accurately
captures the temperature distribution within the cable trenches.

3.2. Verification of Ignition Point Location and Maximum Temperature Prediction Method
3.2.1. Method for Locating Ignition Points

The height difference ∆H of the cable trench can be measured. If the ceiling tem-
perature rise ∆Tmax,x1, ∆Tmax,x2, and longitudinal distance l of two different temperature
measurement points can be obtained, the maximum temperature rise ∆Tmax of the cable
trench can be obtained by solving the equation system through a fitting function, and
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the longitudinal distance d1 and d2 between the temperature measurement point and the
ignition point can be determined by calculation. The schematic diagram of temperature
sensor setting and ignition point positioning method within the fire protection zone is
shown in Figure 8.
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In summary, the equation system for predicting the location of the ignition point is
indicated by Formula (3). By substituting the known values of ∆Tmax, x1, ∆Tmax, x2, l, and
∆H into the equation, the maximum temperature rise of the cable trench, denoted as ∆Tmax,
can be determined. This calculation, along with the longitudinal distance between the
temperature measurement point and the ignition point, can help pinpoint the exact location
of the ignition point. 

d1 + d2 = l

∆Tmax,x1
∆Tmax
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d1
∆H −TD)

Tau )
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In this experiment, the roof temperature sensors T0 and T5 were selected as tempera-
ture sensors on both sides. The maximum temperature rise distribution fitting functions of
the roof were substituted into the equation system and the calculated results were compared
with the experimental results. Finally, the most accurate prediction equation system for the
ignition point position was determined. Based on the above ideas, three additional cable
fire experiments were conducted, with the ignition points located at X = 1.5 m, X = 2.5 m,
and X = 3.5 m, respectively. Temperature sensors T0 and T5 were placed at X = 0 m and
X = 5 m ceiling positions to obtain the maximum temperature rise at that position ∆Tmax, x1
∆Tmax, x5. The temperature sensors T1, T2, and T3 were placed on the ceiling at three
ignition points to obtain the maximum temperature rise ∆Tmax at the ignition point.

The maximum temperature rise directly above the ignition point can be approximated
as the maximum temperature rise inside the tunnel. Taking an ambient temperature of
10 ◦C, three sets of experimental data were obtained as shown in Table 5.

Table 5. Verify experimental data parameters.

Experiment Number d1/m d2/m T0/◦C T5/◦C Tmax/◦C ∆Tmax, x0/◦C ∆Tmax, x5/◦C ∆Tmax/◦C

5 1.5 3.5 577 399 709 567 389 699
6 2.5 2.5 497 505 715 487 495 705
7 3.5 1.5 411 565 706 401 555 696

According to the fitting curve obtained from the first set of experiments, we substituted
the parameters y0 = 0.6424, A = 0.5736, TD = 1.5981, and Tau = 3.3116 into the equation
system, and ∆H and experimental data ∆Tmax, x0, ∆Tmax, x5 were substituted to obtain the
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fire source localization results of the first set of fitting curves. By doing so, the fire source
localization results of the respective fitting curves for Experiment 2, Experiment 3, and
Experiment 4 can be obtained. The summary of ignition point positioning results is shown
in Table 6.

Table 6. Calculation results of ignition point location.

Example
Number

Parameter
Values

Predicting
Experimental

Subjects

d1
Calculation

Value/m

d2
Calculation

Value/m
d1 Actual
Value/m

d2 Actual
Value/m

Error
ε/m Accuracy

Example 1
y0 = 0.6424
A = 0.5736

TD = 1.5981
Tau = 3.3116

5 1.414 3.586 1.5 3.5 0.086 0.975
6 2.261 2.739 2.5 2.5 0.239 0.904
7 3.452 1.548 3.5 1.5 0.048 0.986

Example 2
y0 = 0.6796
A = 1.8827

TD = 1.5003
Tau = 9.1240

5 1.402 3.598 1.5 3.5 0.098 0.972
6 2.475 2.525 2.5 2.5 0.025 0.990
7 3.492 1.508 3.5 1.5 0.008 0.998

Example 3
y0 = 0.6574
A = 1.3661

TD = 1.7735
Tau = 7.9575

5 1.417 3.583 1.5 3.5 0.083 0.976
6 2.700 2.300 2.5 2.5 0.200 0.920
7 3.343 1.657 3.5 1.5 0.157 0.955

Example 4
y0 = 0.6864
A = 1.8099

TD = 1.2890
Tau = 7.9979

5 1.402 3.598 1.5 3.5 0.092 0.974
6 2.370 2.830 2.5 2.5 0.130 0.948
7 3.647 1.353 3.5 1.5 0.147 0.958

The accuracy verification of ignition point positioning is shown in Figure 9.
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From the above figure, it can be seen that the maximum deviation between the cal-
culated and actual values of the fire source position in fitting curve 1 is 0.239 m, with an
average deviation of 0.124 m and an average accuracy of 95.50%. The maximum deviation
between the calculated and actual values of the fire source position in curve 2 is 0.098 m,
with an average deviation of 0.044 m and an average accuracy of 98.77%. The maximum
deviation between the calculated and actual values of the fire source position in Curve 3
is 0.200 m, with an average deviation of 0.147 m and an average accuracy of 95.03%. The
maximum deviation between the calculated and actual values of the fire source position in
the fitting curve four is 0.330 m, with an average deviation of 0.123 m and an average accu-
racy of 96.00%. From the calculation results, it can be seen that the location of the ignition
point can be effectively identified by all four fitted curves. Especially when the parameters
y0 = 0.6796, A = 1.8827, TD = 1.5003, and Tau = 9.1240, the average accuracy reached 98.77%,
providing a good theoretical basis for identifying the location of fire sources.



Fire 2024, 7, 316 11 of 14

3.2.2. Maximum Temperature Prediction Method

In the calculation of ignition point location, the specific location of the ignition point
is obtained by using known temperature extremes. In the process of solving the equation
system, the maximum temperature rise ∆Tmax in the channel can be solved as an unknown
variable. The flowchart of the maximum temperature detection method for cable trenches
can be represented by Figure 10.
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According to the fitting formula for identifying the ignition point position obtained
from Example 2, we calculated the temperature extreme value in the cable trench, and
judged the accuracy of the results by the difference between the calculated value and the
experimental value. We then substituted the parameters into the equation system, and the
calculation results are shown in Table 7.

Table 7. Temperature prediction calculation results.

Example Number d1/m d2/m ∆Tmax
Measurement Value/◦C

∆Tmax
Calculated Value/◦C Error ε/◦C Accuracy

Example 5 1.5 3.5 699 710 11 0.986
Example 6 2.5 2.5 705 719 14 0.980
Example 7 3.5 1.5 696 708 12 0.983

A comparison of the accuracy of predicting the ignition point and maximum tempera-
ture in cable trenches is shown in Figure 11.
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From the graph, it can be seen that the prediction accuracy of the ignition point position
is relatively high and that the overall error is controlled within 5%. The temperature
prediction method can accurately calculate the maximum temperature inside the cable
trench. The error range between the calculated temperature and the actual temperature
is between 11 ◦C and 14 ◦C, with an average accuracy of 98.3%. Compared with the
double exponential function calculation method, there is a significant improvement in the
calculation accuracy of the ignition point position and the maximum temperature in the
cable trench.

4. Conclusions

In this article, we have conducted experiments and simulations to analyze the max-
imum temperature distribution law of the ceiling in cable trench fires with varying fire
source powers and structures. We have developed a set of parameters that include an expo-
nential function fitting method for predicting the ignition point position and the maximum
temperature rise in cable trench fires, and we have verified the accuracy of this method.

1. Through experiments and simulations with different fire source powers, it was ob-
served that the maximum temperature of the ceiling directly above the ignition point
corresponds to the highest temperature within the cable trench. Within the same
location range, the temperature changes more rapidly as it becomes closer to the
ignition point.

2. Utilizing four sets of experimental data on cable trench fires at various ignition points,
we proposed a parameterized exponential function fitting method. This method uses
the ratio of the longitudinal distance between the ignition point and the temperature
sensor to the vertical height difference of the trench as the independent variable. The
dependent variable is the ratio of the maximum temperature rise at the sensor to
the maximum temperature rise in the cable trench. The resulting sets of functions
demonstrate a high degree of fitting accuracy.

3. The deviation between the calculation results of the ignition point identification
method and the experimental results is small, with a positional deviation of within
0.098 m, and an average accuracy of 98.77%. The maximum temperature prediction
method for the ceiling has a maximum temperature deviation of within 14 ◦C, with
an average accuracy of 98.3%. Compared with traditional methods for predicting
the position and maximum temperature rise of cable trenches, this method takes
into account the influence of the fire temperature propagation coefficient and cable
tunnel structural parameters, enabling more accurate positioning and prediction and
providing a scientific basis and theoretical guidance for cable trench fire prevention.
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