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Abstract: Detecting wildfires presents significant challenges due to the presence of various potential
targets in fire imagery, such as smoke, vehicles, and people. To address these challenges, we propose
a novel multi-label classification model based on BiFormer’s feature extraction method, which
constructs sparse region-indexing relations and performs feature extraction only in key regions,
thereby facilitating more effective capture of flame characteristics. Additionally, we introduce a
feature screening method based on a domain-adversarial neural network (DANN) to minimize
misclassification by accurately determining feature domains. Furthermore, a feature discrimination
method utilizing a Graph Convolutional Network (GCN) is proposed, enabling the model to capture
label correlations more effectively and improve performance by constructing a label correlation matrix.
This model enhances cross-domain generalization capability and improves recognition performance
in fire scenarios. In the experimental phase, we developed a comprehensive dataset by integrating
multiple fire-related public datasets, and conducted detailed comparison and ablation experiments.
Results from the tenfold cross-validation demonstrate that the proposed model significantly improves
recognition of multi-labeled images in fire scenarios. Compared with the baseline model, the mAP
increased by 4.426%, CP by 4.14% and CF1 by 7.04%.

Keywords: wildfire detection; attention mechanisms; multi-label image recognition; transfer learning;
data augmentation

1. Introduction

In recent years, wildfires have increased in both severity and frequency worldwide.
These fires not only devastate infrastructure and result in casualties among both firefighters
and civilians [1,2], but they also release large amounts of carbon dioxide, causing significant
environmental harm [3,4]. To address these issues, computer vision methods have been
applied to fire hazard identification and risk assessment, including applications such
as fuel mapping [5], burned area detection [6], and wildfire detection [7]. However, the
complexity of wildfire scenarios, which involve a wide range of fire-related factors, presents
several challenges for computer vision-based wildfire detection. The main issues are
outlined below.

First Challenge: A wildfire detection model based on transfer learning for ternary
classification was proposed in [3], capable of detecting flames, smoke, and non-fire elements.
However, this model only utilizes a CNN to process image features, which is insufficient for
handling complex fire scenarios. To address this, we propose a feature extraction method
based on BiFormer [8], which constructs sparse region-indexing relations and focuses on
extracting features only in key regions. This allows the model to capture critical flame
features for more effective subsequent processing.

Second Challenge: A multi-label prediction model based on transfer learning, as
proposed in [4], identifies six labels. Despite some success in multi-label prediction [9],
it does not account for essential objects like cars, people, and buildings—elements that
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may contribute to secondary fires in wildfire scenarios. Moreover, it does not specifically
process these labels. To resolve this, we introduce a feature discrimination method based
on GCN [10], which constructs a label association matrix to capture the correlation between
labels, improving the model’s ability to predict multiple labels in fire scenarios.

Third Challenge: Although elements such as clouds and the sun were included in
the dataset in [4], no specific processing was performed to reduce the misclassification
of these visually similar objects as fire [11]. To address this issue, we propose a feature
screening method using a DANN [12,13], which divides the model’s features into domains
after extraction, effectively reducing the misclassification of similar elements.

Fourth Challenge: The limited availability of fire-related datasets hinders effective
model training. While transfer learning alleviates some of the issues caused by insufficient
data, it does not fully resolve the problem and may lead to overfitting, which can degrade
model performance. Moreover, most fire datasets are restricted to just three labels, which
do not reflect the complexity of real-world fire scenarios. To address this, we applied data
augmentation and transfer learning techniques, while also integrating several publicly
available datasets, including the Corsican Fire Database [14], VOC2012 [15], and the Korean
Tourist Spot (KTS) dataset [16]. These datasets include essential fire-related elements such
as cars, buildings, and people, as well as objects like clouds and the sun, which are prone
to causing misclassification. The integrated dataset contains ten labels, including flames,
wildfires, smoke, pedestrians, vehicle accidents, and more.

In this study, we propose a multi-label fire prediction model designed to better address
complex fire scenarios. The effectiveness of the model is demonstrated through comparison
and ablation experiments, with results visualized using class activation maps (CAM).

2. Related Work

Traditionally, wildfires have been detected primarily through human observation,
using fire towers or detection cameras. However, these methods are prone to observer error
and are limited by spatial and temporal constraints [17]. More recently, Maria Joao Sousa
et al. proposed a transfer learning technique integrated with data augmentation, which
was validated through tenfold cross-validation experiments [3]. Despite its improvements,
this method performs only binary classification and fails to provide additional contextual
information about the surrounding environment, highlighting the limitations of the dataset.
Conversely, the authors in [4] introduced a similar model based on transfer learning that
supports multi-label classification, offering predictions for multiple labels compared to its
predecessor. While this approach achieves hexadecimal multi-label classification, it does
not significantly improve the overall model performance.

During model validation, the color and texture of smoke often resemble other natural
phenomena such as fog, clouds, and water vapor. Similarly, the color of flames can
resemble the sun. As a result, algorithms based on smoke detection tend to generate
a high rate of false positives, especially during nighttime detection [3,18]. To mitigate
this issue, recent research has focused on incorporating these visually similar objects
into the dataset. Consequently, it is essential to classify these confounding elements
separately to improve detection accuracy. Traditional multi-label recognition presents
several challenges. A common approach is to train independent binary classifiers for
each label, but this method overlooks label relationships and can lead to exponential
label growth as categories increase [19]. To address this issue, researchers have focused
on capturing label dependencies. Wang et al. [20] employed recurrent neural networks
(RNNs) to convert labels into embedded vectors, enabling the modeling of label correlations.
Additionally, Wang et al. [21] incorporated a spatial transformer layer and Long Short-
Term Memory (LSTM) units to capture label dependencies. Graph structures have proven
more effective than the aforementioned learning methods for modeling label correlations.
Li et al. [22] applied the Maximum Spanning Tree algorithm to create a tree-structured
graph in label space, while Li et al. [23] generated image-dependent conditional label
structures using the graphical Lasso framework. Lee et al. [24] utilized knowledge graphs
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to model multiple label relationships. These studies demonstrate the efficacy of graph-
based methods, which is why this paper also employs Graph Convolutional Networks
(GCNs) to capture and explore label interdependencies. GCNs propagate information
across multiple labels, enabling the learning of interdependent classifiers for each image
label. These classifiers leverage information from the label graph and apply it to the global
image representation for final multi-label prediction. We also draw upon the work of
Yaroslav Ganin et al. [12], who introduced a domain-adaptive representation learning
method based on their DANN (domain-adversarial neural network) architecture. This
architecture consists of three linear components: a label predictor, a domain classifier,
and a feature extractor. It has demonstrated effectiveness in applying domain-adversarial
learning. In this paper, we employ ResNet101 as the base network for feature extraction,
which then feeds into a DANN’s domain classifier and label predictor. Finally, the model
integrates with a GCN to produce the final output. Experimental results confirm the
efficiency of our proposed approach, which is fully compatible with end-to-end training.

3. Materials and Methods

In this section, we provide a detailed overview of the proposed model. First, we de-
scribe the reconstructed dataset, followed by an explanation of the model’s key components.
Lastly, we outline the architecture of the relevant network model used in this study.

3.1. Dataset

Current fire prediction datasets are not comprehensive and mostly consist of binary
or ternary classified data, which are insufficient for training models capable of handling
complex fire scenarios. To address this, we aimed to develop datasets containing ten
categories, providing more detailed information about the surrounding scene to enable
decision-makers to make more accurate judgments. In our study, we integrated datasets
such as the Corsican Fire Database [14], Korean Tourist Spot (KTS) [16], VOC2012 [15], and
various flame and smoke datasets downloaded from the web. The final dataset consists
of 6213 images across ten categories: accidents, buildings, cars, clouds, flames, normal,
people, smoke, sun, and wildfires.

The construction process was as follows: First, all data from the Corsican Fire Database
were extracted, followed by the extraction of fire-related data, as well as data related
to buildings, clouds, smoke, and the sun, from the Korean Tourist Spot dataset. From
the VOC2012 dataset, images containing people and cars were primarily selected. After
obtaining the required images, labels were manually annotated to classify each image into
its respective category.

The Corsican Fire Database (CFDB) is an online image database that supports wildfire
research by providing test datasets for the comparison of computer vision algorithms [10].
It is intended to be an evolving dataset and, as of October 2023, it consists of 1135 visible
range images of wildfires. An example of this database is shown in Figure 1.
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The Korean Tourist Spot (KTS) dataset contains numerous images of buildings con-
structed from wooden materials [16]. Additionally, images of clouds and the sun, which
resemble early wildfire smoke and flames in color and shape, were included in the dataset
due to their tendency to be incorrectly detected as wildfires. To reduce model misdetection,
these images were incorporated into the dataset. A sample of the dataset is shown in
Figure 2.
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The VOC2012 dataset is a widely used standard for computer vision tasks, such as
object detection, image segmentation, and recognition. It contains 20 categories of objects,
including people, dogs, cats, cars, planes, bicycles, birds, chairs, bottles, and plants, with
approximately one thousand images per category. For our study, we selected data from only
two categories: people and cars. This selection was based on the frequent occurrence of
these elements in fire scenes, where the presence of people is crucial for directing firefighting
efforts, and cars may pose risks of secondary fires. Additionally, fire engines, which are
also categorized as cars, play a vital role in fire suppression. A sample of the dataset is
shown in Figure 3.
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The structural composition of our final integrated dataset is shown in Table 1. All
instances were annotated according to the following classes: “Accident”, “Building”, “Car”,
“Cloud”, “Flame”, “Non_Fire”, “Person”, “Smog”, “Sun”, and “Wildfire” (each class was
abbreviated as “A”, “B”, “Ca”, “Cl”, “F”, “N”, “P”, “Sm”, “Su”, and “W”, respectively).
We divided eighty per cent of the dataset into a training set and the remaining twenty per
cent into a test set.

Table 1. Structure of the dataset.

A B Ca Cl F N P Sm Su W

Train 1178 870 1240 217 1200 2090 732 1675 154 400
Test 294 217 310 54 300 522 182 418 38 100
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3.2. Basic Principle

The proposed model employs the ResNet101 network as the backbone for initial feature
extraction. These extracted features are then passed to the BiFormer attention module,
which enhances flame feature detection by constructing sparse region-indexing relations
and focusing feature extraction on key regions. Subsequently, the processed features
are input into the DANN for feature filtering, which performs domain segmentation to
minimize misclassification. Finally, the GCN captures label correlations by constructing
a label association matrix, enabling the final prediction. The network architecture is
illustrated in Figure 4.
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3.3. Base Model

For this research, any CNN base model can be utilized to comprehend the characteris-
tics of an image. ResNet-101 [25] was the preferred base model during our experiments,
with DesNet121 [26] being employed in subsequent experiments for contrast. The image
has a resolution of 448 × 448, and thus produces 2048 × 14 × 14 feature maps from the
“conv 5x” layer. We subsequently performed a global pooling process on the output, having
run it through a spatial and channel attention system. The product was then transmitted to
the domain classification and label classification networks. Ultimately, the final outcomes
are the consequence of the results received from the GCN being multiplied.

3.4. Graph Convolutional Networks

Graph Convolutional Networks (GCN) were first introduced in [25] for the task of
semi-supervised classification.

Unlike standard convolution, which operates exclusively on local Euclidean structures
in images, the goal of GCN is to acquire knowledge to learn a function f(·,·) on the graph G.
This process requires input from the feature description Hl+1 ∈ Rn×d′ and the correspond-
ing correlation matrix A ∈ Rn×n that signify n nodes and d dimensions of node features.
After this input, the GCN will update the node features to Hl+1 ∈ Rn×d′ . Each GCN layer
can be represented as a nonlinear function.

Hl+1 = f
(

Hl , A
)

(1)

After applying the convolution operation described in reference [25], the function f(·,·)
can be represented as the following:

Hl+1 = h
(

ˆ
AHlW l

)
(2)
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where the transformation matrix to be learned is W l ∈ Rd×d′ , the normalized correlation

matrix
ˆ
A ∈ R n×n, and the nonlinear operation h(·), which was performed by LeakyReLU

in our experiments.
A GCN propagates information between nodes based on a correlation matrix, making

the issue of how to build the matrix a crucial aspect of GCNs. This paper employs a data-
driven approach to construct the correlation matrix A, defining the correlation between
tags by mining co-occurrence patterns within the dataset [19].

We represent the relationship between label relevance using conditional probability,
denoted by P(Lj|Li), which indicates the probability of label Lj appearing when label Li
appears. As Figure 5 shows, P(Lj|Li) differs from P(Li|Lj), so the correlation matrix is
asymmetric [19]. To create the correlation matrix, we count the number of instances of label
pairs in the training set, resulting in a matrix M ∈ RC × C. C represents the total number
of categories, and Mij represents the number of times Li and Lj occur together. Technical
abbreviations are explained upon first usage. Using the label co-occurrence matrix, we can
generate the conditional probability matrix according to Equation (3). In this equation, Ni
represents the frequency of Li appearing in the training set and Pij = P(Lj|Li) indicates the
likelihood of label Lj when label Li appears:

Pi = Mi/Ni (3)
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Figure 5. An example of the conditional probability relationship between two labels is provided.
Typically, when the image contains “flame”, there is a high likelihood that “smoke” is also present.
However, if “smoke” is observed, “flame” may not necessarily be present.

However, there are two potential drawbacks with the aforementioned correlations.
Firstly, the pattern of co-occurrences amongst labels and other labels may exhibit a long-
tailed distribution, where some of the rarer co-occurrences could be considered extraneous.
Secondly, the total amount of co-occurrences during the training and testing phases may
not be equivalent, causing overfitting of the correlation matrix to the training set, thus
leading to a loss of generalization [19]. Thus, we binarize correlation P by employing a
threshold τ to remove noisy edges. This operation can be expressed as Equation (4).

Aij =

{
0, Pij < τ

1, Pij ≥ τ
(4)

Our primary aim in incorporating a GCN was to construct an efficient system for
capturing the correlation between labels of multi-label images. Consequently, this can
enhance the accuracy of multi-label predictions and reduce the potential misclassification
due to similar labels.

3.5. Attention Mechanisms

It is widely recognized that attention plays a critical role in human perception. A key
characteristic of the human visual system is its selective focus, where individuals process
scenes through a sequence of fragmented glances, prioritizing salient features to efficiently
comprehend visual information.

In this study, we incorporated the BiFormer Attention Block into the model to enhance
its ability to capture accurate information while filtering out irrelevant data. The BiFormer
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architecture consists of four modules. Each module first downsamples the feature map
using a convolutional layer, followed by feature extraction using the BiFormer Block. The
structure of the BiFormer Block is illustrated in Figure 6. The BiFormer Block is composed
of depthwise separable convolution, layer normalization, and bi-level routing attention,
all connected by residuals. The bi-level routing attention operates in two stages: first, the
feature map is projected through three fully connected layers to generate the query, key,
and value matrices. The query and key matrices are then downsampled using average
pooling at the regional level, and the correlation between them is calculated to filter out low-
correlation key-value pairs. In the second stage, the undownsampled query matrix is used
to compute attention only on the high-correlation key-value pairs derived from the first
step. This dynamic sparse attention reduces computational complexity while effectively
modeling long-range dependencies, thereby improving detection accuracy. The attention
calculation is shown in Equation (5), where softmax is the activation function, C is the
number of channels of the value matrix V, and T is the transpose operation. In the following
experiments, we verify the effectiveness of incorporating the attention mechanism.

Attention(Q, K, V) = sotmax
(

QKT
√

C

)
V (5)
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3.6. Domain Classification and Label Classification Networks

In our experiments, we found that the results obtained from directly processing
features extracted from the base model were unsatisfactory. The primary issue was that
when making direct predictions, the model tended to misclassify visually similar labels.
For example, the sun and flames, or smoke and clouds, share certain characteristics that can
confuse the model, necessitating further feature refinement. In [12], the authors proposed
a novel domain-adaptive method for feedforward neural networks, enabling large-scale
training using annotated data in the source domain and unannotated data in the target
domain. This approach is straightforward to implement in most deep learning frameworks
by incorporating a simple gradient inversion layer. In our model, we added domain and
label classification networks designed to filter features, extract the most relevant ones, and
reduce the final error rate. Our experiments confirmed the effectiveness of this method.
The structure of the domain and label classification networks is illustrated in Figure 7.
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3.7. Data Enhancement

Data augmentation is a widely used technique in Convolutional Neural Networks
(CNNs) to increase the size of the training dataset and enhance model generalization.
By applying various transformations and distortions to the original data, this technique
generates new training samples, allowing the model to better adapt to data variations.
Augmenting the dataset can significantly reduce error rates and improve model robustness.
In this study, preprocessing operations, including MultiScale Crop and random horizontal
flipping, were applied to ensure dataset diversity.

4. Results

In this section, we first describe the evaluation metrics and hyperparameter settings.
The rest of this section presents the results of each model on the integrated dataset. This is
followed by the corresponding visualization and finally a comprehensive analysis of the
misclassifications and their possible causes.

4.1. Evaluation Metrics

In accordance with conventional settings [20], we present the mean per class precision
(CP), recall (CR), F1 (CF1), mean overall precision (OP), recall (OR), and F1 (OF1) for
performance evaluation. Additionally, we calculate and report the mean accuracy (mAP).

4.2. Hyperparameter Setting

This study compares various models through tenfold cross-validation and ablation
experiments, evaluating their performance on reconstructed datasets. The hyperparameters
for each model are detailed in Table 2. All models were trained for 100 epochs.

Table 2. Parameters for each model.

DANN-GCN ResNet101-GCN ResNet101-DA-GCN DesNet121-GCN

τ 0.41 0.41 0.41 0.41
Batch size 32 32 32 32

Learning rate 0.1 0.1 0.1 0.1
Optimizer SGD SGD SGD SGD

4.3. Experimental Results
4.3.1. Comparison with State-of-the-Art Technology

The integrated dataset consists of 10 categories and 6213 images. We allocated 80% of
the images to the training set and the remaining 20% to the validation set. To augment the
data, input images were randomly cropped and resized to 448 × 448 during training, and
randomly flipped horizontally. To validate the proposed method, we used DenseNet121 as
the backbone network for feature extraction. The attention mechanism, along with domain
and label classification networks, were incorporated, and the model was further integrated
with the GCN. The final experimental results, averaged over five trials, are shown in Table 3.
The proposed model ranked first in five of the seven metrics and second in the remaining
two. However, the model’s performance slightly decreased after adding the GCN, likely
due to insufficient feature extraction, which hindered the GCN from accurately constructing
the label matrix. After incorporating the domain-adversarial network, both ResNet101 and
DenseNet121 exhibited significant performance improvements, surpassing their respective
base models.
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Table 3. Compare the performance scores of each model.

mAP CP CR CF1 OP OR OF1

DANN-GCN 70.0914 0.5938 0.5318 0.5546 0.8500 0.6628 0.7348
ResNet101 93.606 0.9064 0.8348 0.8634 0.9122 0.8344 0.866

ResNet101-GCN 89.4530 0.8696 0.7818 0.8106 0.8760 0.7910 0.8174
ResNet101-DA-GCN 93.879 0.911 0.868 0.881 0.926 0.891 0.899

DesNet121 90.382 0.882 0.863 0.864 0.903 0.88 0.879
DesNet121-GCN 91.6434 0.8872 0.8212 0.8428 0.8852 0.819 0.841

DesNet121-DA-GCN 92.7438 0.8960 0.8216 0.8514 0.9044 0.8292 0.8614

4.3.2. Tenfold Cross-Validation

To enhance generalization and mitigate the risk of overfitting, this study employs
tenfold cross-validation rather than a single train-validation split. The results, presented
in Table 4, demonstrate that the model performs optimally in tenfold cross-validation,
with most performance metrics ranking in the top three. The integration of the GCN
with the ResNet101 model did not lead to as significant an improvement as observed
with DenseNet121. This discrepancy may be attributed to differences in the underlying
model architectures. Nonetheless, the overall performance of the model improved with the
incorporation of the domain-adversarial network.

Table 4. Tenfold cross-validation results.

mAP CP CR CF1 OP OR OF1

DANN-GCN 65.295 0.806 0.527 0.536 0.806 0.746 0.74
ResNet101 87.379 0.859 0.744 0.759 0.902 0.863 0.874

ResNet101-GCN 79.569 0.784 0.772 0.738 0.834 0.866 0.787
ResNet101-DA-GCN 88.987 0.877 0.838 0.843 0.889 0.865 0.868

DesNet121 73.549 0.471 0.737 0.555 0.42 0.722 0.514
DesNet121-GCN 86.346 0.865 0.843 0.828 0.892 0.871 0.859

DesNet121-DA-GCN 88.144 0.848 0.758 0.756 0.892 0.869 0.871

4.3.3. Visualization of Results

To evaluate the effectiveness of the added attention mechanism, we visualized the
results using the GAP-CAM method [27]. We compared the visualizations before and after
applying the attention mechanism. The results are presented in Figure 8.
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The figure above illustrates that the baseline model fails to focus on several important
features and often neglects others. In contrast, our proposed model effectively emphasizes
most of the critical features. To evaluate the effectiveness of our model in learning improved
image representations, we conducted an image classification experiment. A Multi-Label
Graph Convolutional Network (MLGCN) [19] was used as the baseline for comparison.
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We presented three images for classification, and the results are depicted in Figure 9. Our
model’s performance significantly surpasses that of the baseline; as shown in Figure 9, the
labels predicted by our method closely match the true labels of the query images. These
results indicate that our model not only effectively captures label dependencies to enhance
classifier performance but also benefits from advanced image representation learning in
multi-label recognition.
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4.4. Ablation Studies

In this section, we investigate ablation from two different aspects, including the
effectiveness of our proposed plug-in and the effect of τ in the binarization of the correla-
tion matrix.

4.4.1. The Effect of Different Thresholds τ

We change the value of the threshold τ in Expression 4, as shown in Figure 10. Note
that we only considered the range of τ between 0.35 and 0.45, because we found that the
results were less satisfactory for values in other ranges, so we did not include them in
the results again. As shown in the figure, when edges with low probability (i.e., noisy
edges) are filtered out, the accuracy of multi-label recognition improves. However, if too
many edges are filtered out, the accuracy decreases because the relevant neighbors are also
ignored. According to our experiments, the optimal values of τ are all 0.41.
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4.4.2. Impact of Plug-Ins

We experimented with the domain and label classification networks and the attention
mechanism on ResNet101 [25] and DesNet121 [26], respectively. The final results are shown
in Table 5, and all show some improvement after the addition of our plug-ins.
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Table 5. Comparison results of model performance after adding the plug-in.

mAP CP CR CF1 OP OR OF1

ResNet101 88.2316 0.8765 0.7923 0.8217 0.8973 0.8012 0.8191
ResNet101-DA-GCN 93.879 0.911 0.868 0.881 0.926 0.891 0.899

DesNet121 90.382 0.8673 0.8346 0.8287 0.8915 0.8101 0.8327
DesNet121-DA-GCN 92.7438 0.8960 0.8216 0.8514 0.9044 0.8292 0.8614

We initially validated the BiFormer attention module independently, which enhances
flame feature detection by constructing sparse region-indexing relations and focusing
feature extraction on critical areas. The BiFormer module was integrated into both Res-
Net101 [25] and DenseNet121 [26] for experimentation. As shown in Table 6, the results
demonstrate improved model performance after incorporating the attention module.

Table 6. Comparison results of model performance after adding the plug-in.

mAP CP CR CF1 OP OR OF1

ResNet101 88.2316 0.8765 0.7923 0.8217 0.8973 0.8012 0.8191
ResNet101-BiFormer 90.1756 0.8861 0.8012 0.8431 0.9013 0.8762 0.8873

DesNet121 90.382 0.8673 0.8346 0.8287 0.8915 0.8101 0.8327
DesNet121-BiFormer 91.1145 0.8456 0.8091 0.8378 0.8987 0.8193 0.8572

Next, we independently validated the GCN, which captures label correlations by
constructing a label association matrix, enabling more accurate multi-label prediction. The
GCN module was integrated into both ResNet101 [25] and DenseNet121 [26] for experi-
mentation. As shown in Table 7, the results demonstrate improved model performance
after incorporating the GCN.

Table 7. Comparison results of model performance after adding the plug-in.

mAP CP CR CF1 OP OR OF1

ResNet101 88.2316 0.8765 0.7923 0.8217 0.8973 0.8012 0.8191
ResNet101-GCN 91.1373 0.9014 0.8257 0.8312 0.9139 0.8619 0.8534

DesNet121 90.382 0.8673 0.8346 0.8287 0.8915 0.8101 0.8327
DesNet121-GCN 91.6487 0.8712 0.8127 0.8349 0.8812 0.8137 0.8479

Finally, we independently validated the DANN, which filters features by dividing
them into domains to reduce model misclassification. The DANN module was integrated
into both ResNet101 [25] and DenseNet121 [26] for experimentation. As shown in Table 8,
the results demonstrate improved model performance after incorporating the DANN.

Table 8. Comparison results of model performance after adding the plug-in.

mAP CP CR CF1 OP OR OF1

ResNet101 88.2316 0.8765 0.7923 0.8217 0.8973 0.8012 0.8191
ResNet101-DA 90.5731 0.8801 0.8428 0.8356 0.9018 0.8427 0.8361

DesNet121 90.382 0.8673 0.8346 0.8287 0.8915 0.8101 0.8327
DesNet121-DA 90.9147 0.8517 0.8216 0.8417 0.8992 0.8184 0.8579

The experiments indicate that while each individual module enhances model perfor-
mance, the combined use of all modules yields a more significant improvement. Therefore,
we recommend using the modules in combination.
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4.4.3. False Positives

The reporting rate significantly affects the reliability of fire detection classifiers and
their applicability to real-world scenarios [3]. This paper specifically addresses the challenge
of distinguishing between sun and clouds. The color and shape of the sun closely resemble
those of flames, while clouds and smoke are often comparable in appearance. Consequently,
these similarities frequently lead to inaccurate detections. To address this issue, this paper
incorporates images of the sun and clouds into the reconstructed dataset. This approach
aims to mitigate potential errors during the validation stage and to develop more robust
models for detecting wildfire-like images. The fire prediction scores for all images shown in
Figure 11 should be below 0.5. While our models accurately detect the presence of fire, the
MLGCN model [19] occasionally misclassifies the sun as a flame. This tendency is evident
from the results, where the MLGCN often mistakes both flames and the sun for the sun.
Figure 12 demonstrates that all smoke prediction scores are below 0.5, and our proposed
model exhibits significantly fewer misclassifications compared to the MLGCN.
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To ensure the validity of the experiment, we performed a reverse comparison by
presenting the model with images of flames and smoke to assess its ability to mistakenly
predict the sun or clouds. The results are illustrated in Figure 13. Our recent findings
indicate that while both models exhibit misclassifications, the proposed model significantly
outperforms the MLGCN. This result underscores the effectiveness of incorporating both
the domain classification network and the label classification network.
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5. Discussion

In this study, we propose a model that combines a GCN, a DANN, and the BiFormer
attention mechanism. The experimental results demonstrate the effectiveness of this multi-
label image recognition model, showing significant improvements in key performance
metrics such as mAP, CP, CR, and F1 scores compared to the baseline. These results indicate
that integrating a GCN for learning label correlations and applying domain-adversarial
training to mitigate domain-specific biases greatly enhances the model’s ability to accurately
classify multiple labels in complex fire scenarios. Our model surpasses several state-of-the-
art methods, particularly in scenarios involving multiple objects (e.g., smoke, vehicles, and
people). The BiFormer attention mechanism, designed to capture long-range contextual
dependencies, effectively improves the model’s focus on the most relevant features of fire
scenes. This is crucial for reducing false alarms, which are common in fire detection tasks
due to visual similarities between fire-related objects and other environmental factors, such
as clouds or sunlight.

A major challenge in this research is the limited availability of labeled fire-related
datasets. Although we addressed this by integrating multiple public datasets, the com-
bined datasets may still not fully represent the diversity of real fire scenarios, particularly
regarding variations in lighting, weather conditions, and geography. Another challenge
is the occasional misclassification of visually similar objects (e.g., the sun and flames, or
clouds and smoke). While our model reduces such errors compared to the baseline, there
is still room for improvement in distinguishing these subtle differences, especially when
fire-related objects are occluded or only partially visible.

Despite these improvements, performance gains were not consistent across all met-
rics and models. For instance, adding the GCN to the ResNet101 model resulted in less
improvement compared to the DenseNet121 model, indicating that the underlying ar-
chitecture significantly influences how well the GCN leverages label correlation. This
highlights the need for further investigation into the compatibility of GCNs with various
backbone architectures.

Future work could explore other graph-based models or hybrid architectures that
combine GCNs with advanced techniques such as transformer, potentially enhancing the
model’s ability to capture complex label dependencies. Additionally, implementing real-
time testing in dynamic, real-world fire detection systems will be crucial for evaluating the
model’s robustness and practical applicability.

6. Conclusions

Previous computer vision-based fire management frameworks were limited to binary
or ternary classification. However, in disaster response scenarios, decision-makers must
consider multiple factors such as surrounding buildings, vehicles, and people to priori-
tize firefighting actions. Current fire datasets, however, do not encompass a sufficiently
wide range of information, potentially leading to models that yield suboptimal results.
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Additionally, the performance of existing fire prediction models in handling multi-label
classification is inadequate for providing accurate information to decision-makers. To
address these challenges, we integrated several fire-related datasets and constructed a
new dataset containing ten labels. We also propose a novel model based on the MLGCN
framework, which enhances the model’s ability to capture label correlations by incorpo-
rating a GCN and the BiFormer attention mechanism. The model employs both a domain
classification network and a label classification network for feature filtering. The proposed
model was validated using the integrated dataset, and the results were visualized using
Grad-CAM. Final metrics such as the mAP, CP, and CR surpassed the baseline model by
over four percent, confirming the advantages of our approach. Currently, transformer
models not only demonstrate exceptional performance in natural language processing
but also exhibit unique capabilities in image processing. In the future, we will explore
embedding a transformer model to further improve contextual relevance in image analysis.
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