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Abstract: A comprehensive understanding of airflow temperature distribution within
high-temperature tunnels is crucial for developing effective cooling strategies that ensure a
safe environment and acceptable construction costs. In this paper, we introduce a novel
cooling strategy that integrates thermal insulation layers and heat exchangers aligned
along the tunnel axis (TIL-HE strategy). We investigate variations in airflow temperature
and valid ventilation distance (VVD) and compare them with two other cooling strategies:
natural tunnels only employing mechanical ventilation (NT strategy) and tunnels featuring
thermal insulation layers (TIL strategy), through the 3D k-ε turbulence model in COMSOL
Multiphysics. Our findings indicate that (1) the TIL-HE strategy demonstrates superior
cooling performance, resulting in significantly lower airflow temperatures and markedly
higher VVD; (2) higher water velocity and more heat exchangers contribute to lower airflow
temperature and prolonged VVD; (3) positioning the heat exchangers within the surround-
ing rock rather than inside the insulation layer leads to even lower airflow temperature and
longer VVD. Longitudinal-arranged heat exchangers present fewer construction challenges
compared to traditional radial-drilled ones, ultimately reducing tunnel construction costs.
These findings provide valuable insights for optimizing cooling strategies and engineering
parameters in high-temperature tunnel environments.

Keywords: thermal hazards; high-temperature tunnel; insulation layer; heat exchanger;
valid ventilation distance

1. Introduction
Advancements in engineering technology have prompted humanity to embark on

underground engineering projects in regions exhibiting increasingly intricate geological
temperatures [1–3]. Tunnels with high geothermal temperatures are increasingly common,
as evidenced by projects such as the Nige Tunnel (88 ◦C) [4], the Sangzhuling Tunnel
(89 ◦C) [5,6], and the Sichuan-Tibet Railway Tunnel (208 ◦C) [7]. Notably, in the EGS-E
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(enhanced geothermal systems based on excavation) (Figure 1) employed for mining HDR
(hot dry rock) thermal energy, prolonged and extensive exposure to high-temperature
surrounding rock poses a more significant challenge to preventing thermal hazards [8,9].
Such extreme temperature environments may shorten the lifespan of equipment and
potentially pose health risks to personnel [10], compromising the safe excavation and
operation of underground engineering projects [11]. Therefore, a thorough comprehension
of the airflow temperature distribution within tunnels to propose effective insulation and
cooling strategies is paramount for guaranteeing the long-term safety and operational
sustainability of high-temperature tunnel projects [12,13].
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Figure 1. High-temperature tunnels in EGS-E.

The ambient temperature within a tunnel rapidly grows as the length of the excavated
tunnel increases due to the temperature differences between the surrounding rock and the
tunnel air [14]. Enhancing the heat removal capacity of the tunnel air through increasing
ventilation velocity and reducing inlet temperature with a cooling system are acceptable
ways to reduce such ambient temperatures [15,16]. Relevant studies mainly involve phys-
ical experiments and numerical models to propose reasonable airflow velocity and inlet
temperature for special tunnels to reduce the cost of treating thermal hazards [13,17]. In-
stalling an insulation layer increases thermal resistance and weakens heat transfer from
the surrounding rock to the tunnel airflow for a safe ambient temperature [18,19]. The
thermal insulation layer, whether laid on the surface of the surrounding rock or between
the preliminary lining (Figure 2a) and the surrounding rock (Figure 2b), can prevent the
tunnel from thermal damage [20,21]. Numerical simulation results indicate that the thermal
insulation scheme can effectively reduce the temperature of the lining structure, thereby
enhancing its thermal efficiency and performance [21]. Moreover, employing materials with
lower thermal conductivity [22] and a thickening insulation layer [20] effectively decreases
the airflow temperature, but presents exponentially increasing costs [23,24].
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Figure 2. Lining and insulation layers with different schemes: (a) tunnel model with TIL, (b) tunnel
model with TIL and concrete liner, and (c) tunnel model with multi-TIL.
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Recent research has increasingly focused on modifying the structure of insulation
layers. Examples include multi-layer insulation (Figure 2c) [21], corrugated insulation
layers [25,26], and off-air insulation layers [26]. Double-layer insulation shows better
cooling effects than single-layer insulation with the same total thickness [21], as well
as changing the insulation layer from flat to corrugated [25,26]. An off-air insulation
layer also enhances the cooling effect by adding an air layer with high thermal resistance
between the insulation layer and the support layer [26]. However, such a cooling effect
also rapidly decreases as the insulation layer thickens, which is unacceptable in ultra-high-
temperature areas [27,28].

A combined cooling strategy incorporating insulation layers and heat exchangers
demonstrates superior cooling performance in high-temperature tunnel environments.
This strategy involves installing the insulation layers and heat exchangers radially within
the surrounding rock at equal intervals using drilling technology. Various studies have pri-
marily focused on the arrangement, location, and internal heat transfer medium of the heat
exchangers, such as water pipelines (Figure 3a) [28] and thermosyphons (Figure 3b) [27].
Both systems significantly enhance cooling performance, albeit through different mecha-
nisms. The former system transitions from low temperature to high-temperature water
through conductive heat transfer between the surrounding rock and flowing water. Con-
versely, the latter operates based on phase change heat exchange, where high-temperature
vapor undergoes gasification, subsequently cooling into low temperature liquid water.
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Figure 3. Combined cooling strategies with insulation layers and heat exchangers. (a) is the enlarged
view of (1); (b) is the combined cooling strategies; (c) is the enlarged view of (2) in (b).

In summary, significant progress has been made in tunnel air cooling, enabling ongoing
projects in high-temperature tunnels. Notably, the combined cooling strategy effectively
reduces airflow temperature and harvests thermal energy from the high-temperature water
within the heat exchangers. However, existing heat exchangers remain complex structures
with significant construction difficulties, posing considerable challenges to their widespread
adoption. Additionally, the collaborative cooling mechanism between heat exchangers and
insulation layers has not been thoroughly explored.

Here, we propose a novel cooling strategy that combines insulation layers with easy-
to-build heat exchangers aligned along the tunnel axis (TIL-HE). Its cooling effectiveness
is analyzed by employing a 3D k-ε turbulence model in conjunction with solid–fluid
convective heat transfer in COMSOL Multiphysics (version 6.0). We conduct a comparative
analysis between the TIL-HE strategy and two other strategies: natural tunnels without a
thermal insulation layer (NT), and tunnels with a thermal insulation layer (TIL), focusing
on the alterations in airflow temperatures and associated valid ventilation distance (VVD).
Additionally, a sensitivity analysis of the TIL–HE strategy is performed by altering the heat
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exchanger configuration, water flow velocity, and installation position, which may yield
valuable insights into optimizing cooling strategies in high-temperature tunnels.

2. Materials and Methods
2.1. Fundamental Assumptions

We adopted several basal simplifications and assumptions to enhance the convergence
of turbulent flow calculations and facilitate computation and analysis [14,29,30]: (1) the
physical properties of surrounding rock, pipes, and insulation layers are constant, uniform,
and isotropically thermal; (2) the airflow in tunnels and the water in pipes are weakly
compressible; (3) the thermal radiation among tunnel walls is not considered, as well as
among pipe walls; (4) heat dissipation from the surrounding rocks and heat dissipation
caused by fluid viscosity were not considered; (5) the influence of pressure on airflow
density and temperature, moisture evaporation, and the humidity and mass exchanges
within the tunnel is inconsiderable; (6) effective thermal contact exists between each layer,
with negligible thermal resistance.

2.2. Governing Equations

Heat transfer within the tunnel consists of heat conduction and heat convection. Heat
conduction occurs in the surrounding rock, insulation layer, and heat exchanger, while heat
convection primarily occurs between the airflow and tunnel wall, as well as the water and
the pipe wall. When heat exchange occurs mainly in the form of heat convection within the
tunnel, insulation layer, and heat exchanger, the equation is as follows:

ρcp
∂T
∂t

+∇·q = Q (1)

q = −k∇T (2)

where ρ is the density of the surrounding rock, insulation layer, and heat exchanger; cp is
the specific heat capacity at constant pressure; T is the temperature; t is time; q is the heat
flux density; Q is the heat source; and k is the thermal conductivity.

The temperature field in the tunnel experiences temporal variations, signifying a
non-steady state condition during tunnel excavation. Thus, we employed the Reynolds-
averaged Navier–Stokes (RANS) equations, a well-established approach in fluid mechanics
for turbulence description with reliable results, to describe turbulent fluid within the
tunnel exhibiting non-isothermal flow characteristics. The pertinent governing equations
encompass the momentum equation (N-S equation), time-averaged mass equation, k-ε
two-equation turbulence model, and energy equation, as presented below [31,32]:

(1) Momentum conservation (Navier–Stokes equation)

ρa
∂u
∂t

+ ρa(ua·∇)ua = ∇·[−pI + K] + F (3)

K = (µ + µT)
(
∇ua + (∇ua)

Ta
)
− 2

3
(µ + µT)(∇·ua)I −

2
3

ρakI (4)

where µ, µT , and I are the viscosity coefficient, dynamic viscosity, and characteristic matrix
of the air and water flow, respectively. Regarding the second viscosity coefficient of airflow:
µ′ = 2/3µ(∇·ua); F = ρaX − ∂/∂x(µ′∇·ua), where X is the force along the axis.

(2) Mass conservation equation

∂ρa

∂t
+∇·(ρaua) = 0 (5)
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ρa = ρa(p, Ta) (6)

where ρa, ua, p, and Ta are the density, velocity, pressure, and temperature of the airflow
and water, respectively.

(3) k-ε turbulence model

ρa
∂k
∂t

+ ρa(ua·∇)k = ∇·
[(

µ +
µT
σk

)
∇k

]
+ pk − ρaς (7)

ρa
∂ς

∂t
+ ρa(ua·∇)ς = ∇·

[(
µ +

µT
σε

)
∇ς

]
+ Cς1

ς

k
p

k
− Cς2ρa

ς2

k
(8)

where k and ε are the turbulent kinetic energy and its dissipation rate of the airflow
and water, respectively. pk = µT

[
∇ua :

(
∇ua + (∇ua)

Ta
)]

− 2/3(∇·u)2 − 2/3ρak∇·ua;

µT = ρaCµk2/ς; Cς1, Cς2, Cµ, σς, and σk are empirical constants determined based on
previous studies [33].

(4) Energy conservation equation

ρaCpa
∂Ta

∂t
+ ρaCpaua∇Ta +∇·qa = Q (9)

qa = −λa∇Ta (10)

where Cpa is the specific heat capacity of the airflow and water; qa is the heat flux density;
λa is the variable thermal conductivity concerning Ta; and Q is their heat source.

2.3. Numerical Model and Boundary Conditions
2.3.1. Engineering Requirements

Dealing with high-temperature rock is an unavoidable challenge when exploiting deep
underground resources [34,35], during which manually solving intricate heat conduction
partial differential equations can be particularly challenging in the analysis of complex
fluid dynamics, thermal dynamics, and related fields. Numerical simulation software,
such as COMSOL Multiphysics [36], has become acceptable for simulating and analyzing
temperature variations in high-temperature tunnels [8,37–39]. We validate the results of
Blay’s laboratory experiments [39,40], through the same model in COMSOL Multiphysics
(version 6.0), as shown in Figure 4a. The numerical curves agree well with the experiment
data (Figure 4b). Thus, COMSOL Multiphysics is capable of predicting airflow temperature
distribution variation.
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2.3.2. Numerical Models

The numerical model in this paper encompasses various layers, including the sur-
rounding rock, insulation layer, heat exchanger, water flow, and airflow, necessitating
examining heat transfer between solid and fluid components. We built a 3D cylindrical
tunnel model (Figure 5a,b) with a hollow geometric shape lining the insulation layer and
heat exchanger to investigate the temperature variation in the airflow under three different
cooling strategies. Figure 5c shows the tunnel cross-section of the TIL-HE model, which
employs a composite structure consisting of insulation layers and heat exchangers aligned
along the tunnel axis. In this model, flow circulation is implemented by applying a constant
injection rate of airflow (ua) that flows through the tunnel from the left end (AC) to the
right end (BD). Thermal insulation is imposed on the left end (AI), top end (IJ), and right
end (BJ). The heat is transferred vertically from the surrounding rock to the heat exchanger,
then to the TIL boundary and airflow.
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Figure 5d is the tunnel cross-section of the TIL model lined with a thermal insulation
layer on the tunnel surface; Figure 5d presents the NT model, only with mechanical ventila-
tion for tunnel cooling without a thermal insulation layer. The length of the tunnel model
is 1000 m; the thickness of the TIL and surrounding rock are 0.1 m and 100 m, respectively;
and the radii of the tunnel and heat exchanger are 0.05 m and 2.75 m, respectively. The mesh
volume of the TIL-HE model is 2.82 × 106 m3, comprised of tetrahedra, prism, triangle, and
quadrilateral elements, where its total element number, minimum element quality, average
element quality, and element volume ratio are 5,978,691, 3.81 × 10−4, 0.60, and 1.02 × 10−8,
respectively. The thermophysical parameters of the surrounding rock, insulation layer, heat
exchanger, airflow, and water are detailed in Table 1.

Table 1. Thermophysical parameters of the high-temperature roadway model.

Layers Thermal Conductivity
(W/(m·K)) Density (kg/m3) Heat Capacity

(J/(kg·K))

Surrounding rock 2.4 2600 850
TIL 0.1 500 500

Heat exchanger 21.5 7930 518
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2.3.3. Boundary and Initial Conditions

The boundary and initial conditions are defined as follows:

(1) The airflow enters the tunnel from the inlet with a velocity of ua = −u0n and exits
through the outlet with following conditions: −n·q = 0 and p = patm. The water flows
in the heat exchanger inlet with a velocity of uw = −u1n and exits through the pipe
outlet with the same conditions as the airflow.

(2) Heat exchange between the surrounding rock and the airflow is governed by the
heat flux boundary: −n·q = h(Tr − Ta). We employed a wall function to calculate
the convective heat transfer coefficient of the airflow for improving computational
accuracy using the following formula:

h =
cpaρaCµ

0.25ka
0.5

T+
(11)

where T+ is the dimensionless temperature in COMSOL Multiphysics, expressed
using the dimensionless wall function (y+), where T+ = T+(y+).

(3) The outer boundary is set as a constant temperature, with a value equal to the initial
temperature of the surrounding rock.

(4) Due to a sufficiently wide computational domain in the model, the radial boundaries of
the surrounding rock and the airflow and water flow outlets are considered adiabatic.

(5) The initial conditions of the model are as follows: the temperature of the surrounding
rock is Tr = 200 ◦C, the temperature of the airflow is Ta = 20 ◦C, the velocity of the
airflow is ua = 1 m/s, and the velocity of the water flow is uw = 0.2 m/s.

3. Results and Analysis
3.1. Radial Temperature Variation in the High-Temperature Tunnel

Figure 6 illustrates the radial temperature distribution at different ventilation distances
(L) in the high-temperature tunnel. At the tunnel entrance (L = 0 m), the airflow temperature
stays at the initial state of 20 ◦C, where the rock temperature gradually increases from the
tunnel wall to the interior rock. The tunnel temperature ascends from the tunnel center to
the tunnel wall as the ventilation distance grows, resulting in a tunnel center temperature of
38.51 ◦C and a tunnel center temperature of 47.49 ◦C when the ventilation distance reaches
500 m. Such a temperature has exceeded the safety standard of the tunnel air temperature,
requiring mandatory cooling measures to decrease it [8].
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Figure 6. Temperature distribution at different ventilation distances under the NT strategy: (a) radial
temperature nephogram under different L and (b) radial temperature comparison under different L.
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Figure 7 compares the different temperature evolutions in the high-temperature tunnel
under three different cooling strategies. The tunnel temperature under the TIL strategy
presents a gradual decrease in the air region and a sharp increase in the rock region
compared to that without TIL, whereas the tunnel with TIL-HE presents a further decrease
in both regions. The difference in the air temperature under different strategies is negligible
at the tunnel entrance (Figure 7a,b), gradually becoming noticeable as the ventilation
distance grows (Figure 7c,d). The center air temperature in the tunnel with TIL-HE is
0.48 ◦C lower than that with TIL and 1.44 ◦C than that without TIL at L = 50 m (Figure 7b),
which grows to 8.33 ◦C and 16.46 ◦C at L = 500 m (Figure 7d), respectively. The rock
temperature under TIL-HE strategy is lowest, presenting a difference of 21.10 ◦C compared
to the NT tunnel and a difference of 98.96 ◦C compared to the TIL tunnel at the entrance
(Figure 7a). These differences decrease with the increased ventilation distances, which
decrease to 97.17 ◦C and 34.28 ◦C, respectively, at L = 100 m (Figure 7c). Meanwhile, this
rock temperature difference among three cooling strategies gradually reduces along the
tunnel wall to the interior when the ventilation distance remains unchanged. The wall
temperature of the tunnel with TIL-HE is lower, at 89.95 ◦C, than that with TIL, which
decreases to 13.71 ◦C when R = 20 m (Figure 7d).
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Figure 7. Temperature evolution along the radial direction under different strategies: (a) tunnel
temperature at L = 0 m, (b) tunnel temperature at L = 50 m, (c) tunnel temperature at L = 100 m, and
(d) tunnel temperature at L = 500 m.

Meanwhile, the TIL temperature jumps from the inner boundary to the outer in the
TIL tunnel, increasing from 20 ◦C to 119.37 ◦C at the entrance (Figure 7a). This dramatic
increase gradually weakens as the ventilated distance increases, decreasing from 99.37 ◦C
at L = 0 m to 92.37 ◦C at L = 500 m (Figure 7d). The difference between the inner boundary
and the outer in the TIL-HE tunnel is not obvious, at the entrance with an increase of
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0.05 ◦C (Figure 7a), which becomes pronounced as the ventilated distance increases, rising
to an increase of 11.44 ◦C (Figure 7d).

3.2. Air Temperature Evolution Along the Ventilation Direction

Figure 8 illustrates the airflow temperature distribution of the tunnel center and wall,
exhibiting the noticeable difference in temperature variation among the three cooling
strategies. Although the air temperature increases as the ventilation distance grows under
the different cooling strategies, significant variations are observed in the temperature
increase. The NT tunnel exhibits the highest increase, followed by the TIL tunnel, while the
TIL-HE tunnel shows the lowest.
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Figure 8. Evolution in temperature and associated temperature difference under three strategies.

Two distinct regions are exhibited along the ventilation direction: the entrance and
stable growth regions, with the temperature growth rate in the former sharper than that
in the latter. The wall temperature shows a markable increase in the former and a stable
growth in the latter, whereas the center temperature remains unchanged in the former
region and increases at a stable rate in the latter. That is consistent with our previous
research [8], in which a longer ventilation distance was used. Moreover, the difference in
temperature in the entrance region is negligible in the TIL and TIL-HE tunnels.

With the installation of heat exchangers, the overall wall temperature in the tunnel
decreases, leading to a gradual reduction in heat exchange between the tunnel wall and
the tunnel air. The wall temperature growth rate of the NT tunnel is 1.23 ◦C/m at L = 1 m,
which drops to 0.06 ◦C/m at L = 50 m, then presents an insignificant fluctuation from
L = 50 m to L = 1000 m. The temperature increases along the ventilation direction in the
TIL and TIL-HE tunnels are lower than those in the NT tunnel, showing 0.14 ◦C/m and
0.07 ◦C/m of the wall temperature growth rates at L = 1 m, respectively. The average
wall temperature growth rate also decreases to 0.02 ◦C/m and 0.01 ◦C/m in the TIL and
TIL-HE tunnels.

The difference in the temperature growth rate results in a gradual increase in the air
temperature of the three cooling strategies as the ventilation distance is prolonged. The
difference in the wall temperature between the TN and TIL tunnels is 16.20 ◦C at L = 200 m,
which increases to 20.23 ◦C and 25.73 ◦C when the ventilation distance rises to 500 m and
1000 m, while that difference between the TIL and TIL-HE tunnels increases from 24.17 ◦C
to 32.48 ◦C and 44.28 ◦C. That indicates that lining a TIL weakens the temperature growth,
while heat exchangers further reduce the airflow temperature. Moreover, these cooling
effects become increasingly effective with expanding ventilation distances, suggesting that
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heat exchangers play a significant role in enhancing the airflow cooling effect to lower the
construction costs of high-temperature tunnels.

3.3. Influence of TIL Parameters on Wall Temperature Distribution Under the TIL Strategy
3.3.1. Influence of TIL Thermal Conductivity on Temperature Distribution

Figure 9a illustrates the wall temperature distribution along the ventilation direction
with varying TIL thermal conductivities under the TIL strategy. The wall temperature
decreases as the TIL thermal conductivity descends, presenting a decrease from 45.79 ◦C to
29.17 ◦C at L = 1000 m when the TIL thermal conductivity decreases from 0.10 W/(m·K) to
0.02 W/(m·K). Moreover, the temperature reduction gradually increases with decreased
TIL thermal conductivity, showing a 2.64 ◦C reduction in wall temperature as the thermal
conductivity decreases from 0.10 W/(m·K) to 0.08 W/(m·K), which further increases to
6.28 ◦C when the thermal conductivity decreases from 0.04 W/(m·K) to 0.02 W/(m·K). This
means that reducing the TIL thermal conductivity effectively lowers tunnel temperatures,
presenting an acceptable effect for controlling airflow temperature in high-temperature tun-
nels by utilizing ultra-low thermal conductivity materials. However, it is important to note
that the cost of lining TIL rises exponentially as thermal conductivity decreases [24,41,42].
Therefore, selecting the appropriate thermal conductivity, and balancing project costs
and safety requirements, emerges as the optimal strategy in practical high-temperature
engineering applications [43].
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Figure 9. Wall temperature along ventilation direction under different TIL parameters: (a) wall temper-
ature under different thermal conductivity and (b) wall temperature under different airflow velocity.

3.3.2. Influence of Airflow Velocity on Wall Temperature Distribution

The wall temperature decreases with increasing the airflow velocity (ua) under the TIL
strategy, which descends from 45.76 ◦C to 25.94 ◦C at L = 1000 m as the airflow velocity
increases from 1 m/s to 5 m/s (Figure 9b). Unlike thermal conductivity, the cooling
benefits brought by increasing airflow speed rapidly decrease, significantly diminishing
the cooling benefits with higher airflow speeds. Increasing the airflow velocity from 1 m/s
to 2 m/s leads to a temperature drop of 11.86 ◦C at L = 1000 m, which drops to 1.38 ◦C
with the airflow velocity rising from 4 m/s to 5 m/s. This suggests that merely increasing
airflow velocity in high-temperature tunnels, despite aligning with a TIL, is inadequate for
achieving acceptable cooling effects. Rather, a shift in the cooling strategy, involving the
integration of combined heat exchangers, is imperative to attain the desired outcomes.

3.4. Influence of HE Parameters on Wall Temperature Distribution Under the TIL-HE Strategy
3.4.1. Influence of Water Flow Velocity on Wall Temperature Distribution

Figure 10a depicts the variations in wall temperature along the ventilation direction
with different water flow velocities (uw) under the TIL-HE strategy with eight heat exchang-
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ers (HEs). Increasing the water velocity from 0.2 m/s to 1.0 m/s enhances the cooling effect,
decreasing the wall temperature from 27.46 ◦C to 24.05 ◦C at L = 1000 m. Although the wall
temperature consistently remains below 30 ◦C regardless of the water flow velocity, the
cooling benefits derived from increasing the water flow velocity decline rapidly, similar to
the diminishing returns seen with higher airflow velocities. The decrease in wall temper-
ature is only 0.13 ◦C when the velocity increases from 0.8 m/s to 1.0 m/s, which equals
0.0625 times that increasing from 0.2 m/s to 0.4 m/s. Thus, further increasing the water
flow velocity is unacceptable for cooling airflow temperature when the water flow velocity
exceeds 0.4 m/s.
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Figure 10. Wall temperature along the ventilation direction under different HE parameters:
(a) wall temperature under different water flow velocities and (b) wall temperature under different
HE number.

3.4.2. Influence of the Number of Heat Exchangers on Wall Temperature Distribution

The cooling benefits provided by increasing the HE number are higher than those
provided by increasing water flow velocity under the TIL-HE strategy (Figure 10b). The
wall temperature decreases from 39.11 ◦C to 25.68 ◦C as the HE number increases from 2 to
10. The wall temperature reduction at L = 1000 m is 6.31 ◦C as the HE number increases
from 2 to 4, which remains at 1.63 ◦C even as the HE number increases from 8 to 10. This is
slightly higher than that seen when water flow velocity increases from 0.8 m/s to 1.0 m/s.
Moreover, the wall temperature remains below 30 ◦C when the HE number reaches 6,
presenting an acceptable cooling effect.

3.5. Average Airflow Temperature and Valid Ventilation Distance
3.5.1. Valid Ventilation Distance Under Different Cooling Strategies

The airflow temperature in a high-temperature tunnel rises incrementally with increas-
ing ventilation distance, leading to reduced labor efficiency and potentially mandating
production suspension if the air temperature surpasses the allowable threshold. Indus-
try regulations mandate that the average airflow temperature within a tunnel must not
exceed a specified limit, known as the allowable temperature, to ensure a safe and com-
fortable working environment. According to the Coal Mine Safety Regulation (2016) in
China, this allowable temperature is 30 ◦C; exceeding this limit requires an immediate
halt to excavation and the implementation of cooling measures. The ventilation distance
at which the allowable temperature is reached is termed the valid ventilation distance
(VVD). This metric provides a more intuitive representation of the evolution of airflow
temperature and aids in assessing the technical challenges and associated cooling costs in
high-temperature tunnels.
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As shown in Figure 11, the average airflow temperature along the ventilation direction
increases linearly as the ventilation distance extends from 0 m to 1000 m with different
growth rates under the different cooling strategies. The highest growth rate exists in the NT
tunnel, where the average temperature grows to 30 ◦C when the airflow reaches 232.42 m,
resulting in the shortest VVD (point a in Figure 11). The VVD extends to 481.53 m (point b
in Figure 11) when lining a TIL with a thermal conductivity of 0.1 W/(m·K) and a thickness
of 0.25 m, presenting a VVD growth rate of 107.18%. The growth rate of airflow temperature
is lowest in the TIL-HE tunnel, resulting in the VVD further increasing to over 1000 m
(point c in Figure 11). This means that TIL-HE significantly outperforms TIL in decreasing
airflow temperature, and employing 8 HEs is feasible under the same insulation layer and
other engineering parameters.
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Figure 11. Average airflow temperature and VVD under different strategies.

3.5.2. Average Airflow Temperature Variation Under Different HE Parameters

Figure 12 presents the average airflow temperature along the ventilation direction
in the high-temperature tunnel at different water flow velocities (uw) under the TIL-HE
strategy with 8 HEs. The average airflow temperature peaks at 25.36 ◦C at uw = 0.2 m/s
and L = 1000 m, which gradually decreases as the water flow velocity increases, albeit at a
diminishing rate. Specifically, the temperature difference observed between uw = 0.2 m/s
and uw = 0.4 m/s is 1.37 ◦C, whereas that between uw = 0.8 m/s and uw = 1.0 m/s drops to
merely 0.18 ◦C. Note that although the cooling effect of increasing the water flow velocity
diminishes, the TIL-HE strategies utilizing 8 HEs can still ensure an effective ventilation
distance exceeding 1000 m, irrespective of the water flow velocity.
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Figure 12. Variation in average airflow temperature under different HE parameters: (a) average
airflow temperature under different water flow velocities and (b) average airflow temperature under
different HE number.
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3.5.3. VVD Variation Under Different HE Parameters

The tunnel length is constrained to 1000 m for the sake of computation, which presents
challenges in directly determining the VVDs under various operational conditions. Thus,
we employed fitting curves to calculate VVDs under different TIL-HE cooling strategies
parameters. Assuming the ventilation distance is sufficiently long, the average fluid tem-
perature will converge towards the initial temperature of the surrounding rock. There is a
functional relationship between effective ventilation distance and average fluid tempera-
ture, which can be expressed as:

Ta = A ∗ e(−x/B) + C (12)

where x denotes the ventilation distance, and A, B, and C are constant variables associated
with HE number and water velocity.

Figure 13 illustrates the fitted curve and its mathematical expression under different
HE numbers and water velocities, indicating that the VVD increases as the HE number
grows and the water velocity increases. Specifically, the VVD rises from 738.05 m to
1576.58 m as the HE number increases from 2 to 10, resulting in an overall growth rate
of 113.60%. Notably, the increment in VVD induced by increasing per 2 HEs descends.
For instance, when the HE number increases from 2 to 4, the VVD increases by 252.99 m,
but this increment diminishes to 243.94 m when the HE number advances from 4 to 6,
and further decreases to 145.15 m as the HE number rises from 8 to 10. This gradual
attenuation in VVD concerning changes in parameters aligns with findings from prior
studies conducted in similar environments [8], which also corroborate the variations in
airflow temperature discussed in Section 3.3.
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Figure 13. VVD variation under different HE parameters: (a) VVD under different HE number and
(b) VVD under different water flow velocities.

Similarly, the VVD extends to 1431.43 m at a water velocity of 0.2 m/s, which increases
to 1805.41 m, 2088.09 m, 2308.81 m, and 2515.52 m with the water velocity increasing to
0.4 m/s, 0.6 m/s, 0.8 m/s, and 1.0 m/s, presenting corresponding growth rates of 26.13%,
15.66%, 10.54%, and 8.95%, respectively. Note that the VVD increment associated with
a 0.2 m/s increase in water velocity diminishes from 26.13% to 8.95%, paralleling the
trend observed with varying HE numbers. Consequently, optimizing the selection of HE
numbers and water velocity emerges as a critical strategy for effectively addressing the
cooling requirements of tunnel projects.
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3.5.4. VVD Variation Under Different HE Positions

We compared the average airflow temperature and the corresponding VVDs for HEs
positioned within the surrounding rock and the insulation layer to evaluate the influence
of HE position on cooling effectiveness (Figure 14). The VVD measures 775.23 m for HEs
located within the insulation layer, which increases to 1431.43 m, corresponding to a growth
rate of 84.65%. This observation indicates that embedding the HE in the surrounding rock
yields the most effective cooling. This enhanced performance can be attributed to the
insulation layer’s role in reducing heat transfer from the surrounding rock to the tunnel
air when the HE is positioned within the insulation layer. Consequently, the smaller
temperature differential between the interior and exterior of the heat exchanger diminishes
the heat loss transferred away by the water flow within the HEs, leading to a relatively
lower cooling effect on the tunnel airflow [19,37,44].
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4. Discussion
The increasing temperature in tunnel environments requires a combined cooling

strategy that integrates thermal insulation layers and heat exchangers as a prerequisite
for ensuring safe construction and operation [2]. The newly proposed TIL-HE strategy
offers an acceptable approach to tackle such issues, as its cooling superiority was verified
by comparing tunnel airflow temperature and VVD against two other strategies.

While integrated cooling strategies demonstrate high performance, they also result
in significant engineering costs due to complex construction involving multiple boreholes
for heat exchanger installation. Our longitudinal arrangement of heat exchangers reduces
construction challenges and project loads compared to traditional radial drilling methods,
thereby lowering tunnel construction costs.

However, comparisons between the proposed cooling strategy and other combined
approaches have not yet been conducted. Additionally, whether the outlet water flow
temperature meets the threshold for geothermal energy utilization remains unexplored,
which will be a focus of future research.

5. Conclusions
In this paper, we proposed a cooling strategy that integrates insulating layers and

heat exchangers along the tunnel direction, and its cooling superiority was verified by
comparing airflow temperature and vertical VVD against two other cooling strategies. The
main conclusions are as follows:
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(1) The TIL-HE demonstrates enhanced performance in cooling airflow temperature
within high-temperature tunnels, leading to a marked reduction in average airflow
temperature relative to the NT and TIL strategies. It yields an increase in VVD by
830.61 m, representing a 172.49% improvement compared to the TIL strategy.

(2) Increasing water flow velocity and the HE number enhance cooling effectiveness,
showing a reduction in the airflow temperature and growth in the VVD. Specifically,
the VVD extends from 1312.14 m to 2388.9 m as the water velocity escalates from
0.2 m/s to 1.0 m/s, while it grows from 738.00 m to 1576.58 m as the HE number
increases from 2 to 10.

(3) Building heat exchangers within the surrounding rock yields superior cooling effects,
outperforming configurations where exchangers are situated within insulation layers
or cement layers. Notably, the VVD under the surrounding rock layout increases by
656.20 m with a rate of 84.65% compared to the insulation layout.
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