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Abstract: As a high-frequency disaster with potentially devastating consequences, urban
fires not only threaten the lives of city residents but can also lead to severe property losses,
especially for hazardous chemical leaking scenarios. Quick and scientific decision-making
regarding resource allocation during urban fire emergency responses is crucial for reducing
disaster damages. Based on several key factors such as the number of trapped individuals
and hazardous chemical leaks during the early stages of an incident, an emergency weight
system for resource allocation is proposed to effectively address complex situations. In
addition, a multi-objective optimization model is built to achieve the shortest response time
for emergency rescue teams and the lowest cost for material transportation. Additionally,
a pre-allocated bee swarm algorithm is introduced to mitigate the issue of local incident
points being unable to participate in rescue due to low weights, and a comparison of
traditional genetic algorithms and particle swarm optimization algorithms is conducted.
Experiments conducted in a virtual urban fire scenario validate the effectiveness of the
proposed model. The results demonstrate that the proposed model can effectively achieve
the dual goals of minimizing transportation time and costs. Furthermore, the bee swarm
algorithm exhibits advantages in convergence speed, allowing for the faster identification
of ideal solutions, thereby providing a scientific basis for the rapid allocation of resources
in urban fire emergency rescues.

Keywords: urban fire emergency response; hazardous chemical leakage; emergency weight;
multi-objective optimization model; bee swarm algorithm

1. Introduction
In recent years, urban fires have become a severe social issue. Data from the Na-

tional Fire and Rescue Administration of China indicate that there have been as many
as 450,000 reported fire incidents nationwide, from residential buildings and factories to
public gathering places such as hotels and restaurants [1,2]. The multidimensional impacts
of fires cannot be overlooked: the fires directly destroy property, including buildings, equip-
ment, and inventories, placing significant economic pressure on individuals, businesses,
and government entities. On one hand, the toxic smoke, high temperatures, and com-
bustion products generated by fires severely threaten personal safety, potentially leading
to significant casualties. On the other hand, secondary disasters following fires, such as
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collapses, environmental pollution, and traffic disruptions, further complicate disaster
management [3,4]. Therefore, establishing an efficient and scientific urban fire emergency
response system and optimizing emergency resource allocation strategies are crucial for
enhancing urban disaster prevention and reduction capabilities and mitigating fire-related
losses [5].

Emergency resources are mobilized rapidly in response to sudden events (such as fires)
to ensure the safety of lives and property and to mitigate the impact of disasters [6,7]. The
allocation of emergency resources is based on the real-time conditions at the disaster site,
employing scientific planning and appropriate allocation to ensure that various resources
are delivered accurately and efficiently to the areas of greatest need, with the aim of
maximizing rescue efficiency and minimizing disaster losses [8,9]. The importance of this
process is self-evident: it not only pertains to whether critical resources can be delivered to
the rescue front lines in the most urgent moments, but also directly relates to the success
or failure of rescue operations and the preservation of lives and property. Additionally, it
requires making optimal choices under limited resource conditions to avoid unnecessary
waste and misuse [10]. Therefore, developing and optimizing the allocation mechanism
for emergency resources is a key component in enhancing the overall emergency response
capability of cities and even nations, ensuring social safety and stability [11].

In addition, hazardous chemical leakage in urban fires is a highly complex emergency
management challenge that requires the development of sound strategies and measures
throughout the entire process of prevention, response, and recovery [12]. For hazardous
chemical leakage problems, different disposal plans should be developed based on the area
of leakage, volatility, and other factors, so as to minimize the loss of people, property, and
the environment caused by fires and chemical leakage [13,14].

Modern cities frequently experience threats from fires, with their potential dangers
and damages far exceeding those of other urban safety issues like traffic accidents. Over
the past two decades in China, the annual direct economic losses caused by fires have
consistently exceeded CNY 2.55 billion. Notably, many severe fire incidents in China often
lack timely responsive firefighting resources and rescue forces, a situation that urgently
needs improvement.

Urban fires, as common sudden disasters, involve an emergency response process that
encompasses several key stages, including fire alarms, fire situation assessment, resource
allocation, on-site rescue, and follow-up handling, requiring collaboration among multiple
departments [15]. The suddenness and unpredictability of fires make resource demand
forecasting difficult, leading to delays or waste in resource allocation. [7]. Therefore,
optimizing resource allocation strategies to enhance emergency response efficiency and
cost-effectiveness has become an urgent issue to address.

In recent years, scholars have conducted extensive and in-depth research on the al-
location of emergency response resources for urban fires. In developed countries such as
those in Europe and America, researchers rely on mature emergency management systems
and continually optimize response efficiency through simulation exercises, detailed case
analyses, and other methods. In China, with increasing attention to public safety issues,
scholars have focused on optimizing the layout of emergency resources and innovating
intelligent allocation algorithms, proposing numerous novel theories and practical methods
aimed at enhancing the effectiveness of urban fire emergency responses. Wang et al. [16]
concentrated on the challenges of emergency transportation under limited resources and
proposed an optimization scheme aimed at achieving both minimum cost and maximum
response speed. The highlight of their research lies in fully considering the cooperation and
alliance mechanisms between multiple departments, providing new insights for improving
overall emergency response efficiency. Addressing the fuzzy problem of demand uncer-
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tainty, Yang et al. [17] introduced a post-disaster material demand-forecasting technology
based on fuzzy case reasoning. The results show that the proposed method can provide a
scientific prediction of the demand for emergency supplies. A hybrid ABC targeting the
deteriorating operational characteristics of the distributed flow-shop problem (DFSP) was
proposed by Li et al. [18], specifically introducing a new scout bee heuristic that integrates
information from global and local optimal solutions, significantly improving research
efficiency. An HMaPSO algorithm was designed [19] aiming at solving complex multi-
objective optimization problems. They not only validated the effectiveness of the HMaPSO
algorithm on DTLZ functions but also successfully applied it to optimize green coal produc-
tion, maximizing resource utilization. Kaewfak K et al. [20] developed a decision support
model using an analytic hierarchy process (AHP) and zero-one goal programing (ZOGP) to
determine an optimal multimodal transportation route. This methodology can provide a
guidance for effectively determining the multimodal transportation routes to improve the
performance of logistics systems. Guo et al. [21] addressed efficiency and accuracy issues
in grid resource allocation management, proposing a new algorithm which significantly
optimized the resource allocation process and improved allocation efficiency.

It is worth noting that a significant number of scholars in the current research field are
committed to addressing issues related to minimizing time and optimizing routes in fire
resource allocation. At the same time, researchers like Zhou et al. [22] have turned their
attention to the specific needs for fire resources in particular areas, such as those storing
hazardous chemicals, exploring the positive role of rational resource allocation in mitigating
the risks of fire and explosion incidents in such areas. Lu et al. [23] creatively applied a
scenario–response model to resource allocation decisions, focusing on the uncertainties in
emergency scenarios within subway systems, effectively enhancing the practical capabilities
of subway emergency rescues. Tang et al. [24] focused on the challenges of ambiguity in
railway emergency resource allocation, building an optimization model. They innovatively
employed a constrained parameter interval method to find quick solutions that achieve
Pareto optimality. Chen et al. [25] established a multi-objective optimization model for
minimizing the total transportation time, transportation cost, and container usage cost.
The results demonstrate that using railway containers and railway transportation as much
as possible in route selection can effectively solve the problem of container shortage and
balance transportation time and transportation cost. Zheng et al. [26] introduced an
improved particle swarm optimization algorithm (IPSO) to address the model, which has
been proven to retain a fast convergence rate and achieve outstanding solving accuracy
through the experimental study. Niyomubyeyi et al. [27] proposed an improved multi-
objective artificial bee colony algorithm (MOABC), which combines random exchange,
random insertion methods, as well as a two-point crossover operator and Pareto-based
optimization methods.

This paper focuses on the rescue scenarios of urban fire incidents and conducts an in-
depth analysis of the complex consequences of multi-disaster coupling emergency response
sites and shortages of various emergency resources to address the challenges of emergency
resource allocation under conditions of multiple disaster points, multiple rescue points,
and multi-disaster coupling.

2. Problem Description and Analysis
In the urban case, there exists a set of accident-prone areas denoted as D1, D2, . . ., Dh

and h is the number of areas requiring urgent rescue. A rescue system is established at
different supply points c (c = 1, 2, . . ., C), with each supply point containing a collection of
rescue stations denoted as R1, R2, . . ., Rm, m being the number of rescue stations. Command
centers are denoted as K1, K2, . . ., Kb, and b signifies the number of command centers.
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The quantity of emergency supplies stored for a specific supply point c (c = 1, 2, . . ., C) is
represented as number (ccb). Additionally, the amount of emergency supplies stored at
each rescue station is denoted as number (ccr).

The scenario (as shown in Figure 1) includes ten rescue points (R1 to R10), five accident
sites (D1 to D5), one command center (K), and seven types of core material requirements.
Based on the location, resource reserve capacity, and specialization, each rescue point
is equipped with different types of rescue supplies, such as fire engines, ambulances,
firefighting equipment, and life support equipment. Different accident locations require a
corresponding allocation of rescue materials. The types of materials available are shown in
Figure 2.
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3. Urban Fire Emergency Resource Allocation Model
This section aims to elaborate on the specific design and implementation process of

the resource allocation model constructed for emergency responses to urban fires. The
model is based on an improved swarm algorithm, which integrates the advantages of
genetic algorithms and particle swarm optimization, enhancing the algorithm’s directional
search capability by adding a pre-allocation step to enable a rapid and efficient deployment
of emergency rescue supplies in the event of a fire [28,29]. To build a model that meets
practical allocation needs and easy operation, this paper makes the following assumptions:

1. The transit time between rescue points and incident sites is fixed, while the demand
for emergency resources at the accident site remains constant throughout the process.

2. In order to address various emergencies that may arise during rescue operations, the
quantities of various emergency resources stored on-site are typically greater than the
actual needs, ensuring sufficiency and flexibility in emergency response.
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3. To reduce transportation costs, the transport of each type of rescue material is managed
and delivered by the corresponding rescue team, effectively avoiding waste and
redundancy. This arrangement ensures the rationality of resource allocation and
prevents the wasting of resources due to duplicative transport.

3.1. Multi-Objective Optimization Model

The rapid spread of fire poses a significant threat to life and property safety; therefore,
the time it takes for rescue supplies to arrive is one of the most critical optimization
objectives. This paper quantifies this objective as the shortest transportation time for
supplies from the rescue points and command centers to all demand points (fire scenes).
Specifically, it is assumed that there are multiple fire scenes, each with different demands for
supplies and varying levels of urgency. By reasonably planning transportation routes and
allocating transport vehicles, the total transportation time for all supplies can be minimized.
In addition to ensuring rescue efficiency, reducing transportation costs is also an essential
goal that cannot be overlooked. This includes vehicle operating costs, fuel consumption,
labor costs, and so on. Various cost factors are taken into account to build an objective
function aimed at minimizing the total transportation cost.

F1 = Tk + TS = ∑2
i =1

(
∑m

j =1 tdr + ∑b
k =1 tdk

)
(1)

F2 = CK + CS = ∑2
i =1

(
∑m

j =1 Ccdrnumber(Ccdr) + ∑b
k =1 Ccdknumber(Ccdk)

)
(2)

F1 represents the total time taken for emergency resource allocation, TK means the
transportation time of materials required to rescue trapped individuals, and TS indicates
the transportation time of materials required for firefighting. tdr signifies the time cost
required to transport materials from the rescue point R to the accident point D, while tdk

entails the time cost for transporting materials from the command center K to the accident
point D.

F2 indicates the total cost of emergency resource allocation, where CK represents
the cost of rescue materials for trapped individuals and CS denotes the cost of materials
required to firefight. Ccdr signifies the unit cost of transporting material c from R to D,
and number (Ccdr) represents the quantity of material c needed from R to D. Ccdk indicates
the unit cost of transporting material c from K to D, with number (Ccdk) representing the
quantity of material c needed from K to D.

3.2. Allocation Weights for Emergency Resources
3.2.1. Emergency Weighting of Trapped Individuals

In an urban fire, in order to quickly and effectively allocate rescue resources to ensure
the safety of trapped individuals, it is first necessary to calculate the emergency weights of
the trapped individuals. After the fire occurs, the rescue command center will immediately
collect and confirm the number of trapped individuals at incident point D (the location
of the fire), denoted as D(P). At the same time, based on past experiences and actual
capability assessments, the expected number of trapped individuals that each rescue team
can successfully save under ideal conditions will be determined, denoted as P. The value of
WD(P) reflects the professional level and equipment effectiveness of the rescue teams and
is an important indicator for assessing rescue capabilities. This weight can be used in the
calculation of emergency resources required at rescue points; certain emergency resources
related to the number of trapped individuals can be allocated based on the percentage of
the total emergency resources corresponding to the weights of different rescue points.
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WD(P) =
[

D(P)
P

]
(3)

where WD(P) represents the required number of rescue teams at incident point D and[
D(P)

P

]
means rounding up, meaning that even if the calculation results in a non-integer, it

should be rounded up to the nearest integer. This approach ensures that there are sufficient
rescue teams to respond to all trapped individuals, avoiding a shortage of rescue personnel
due to minor discrepancies in the calculation results.

3.2.2. Emergency Weights for Hazardous Chemicals

In urban fire incident sites, the emergency response to and management of hazardous
chemical leaks are crucial. The classification of their hazard levels directly affects the
formulation of rescue strategies and the effectiveness of resource allocation. According to
relevant regulations such as the “Regulations on the Safety Management of Hazardous
Chemicals” (revised in 2011), the “Safety Supervision and Management Measures for Haz-
ardous Chemical Construction Projects”, and the “Production Safety Law of the People’s
Republic of China”, combined with the leak area of the hazardous chemical and its volatil-
ity characteristics, it is possible to systematically determine the hazard levels of various
chemicals and quantify their emergency risk weight accordingly.

Firstly, when it is confirmed that there are no hazardous chemical leaks at the fire scene,
there is obviously no additional risk, so the emergency risk weight is directly assigned a
value of 0, indicating that the current situation is relatively safe and no specific emergency
measures are required for chemical leakage.

Secondly, if there is a hazardous chemical leakage, a comprehensive assessment must
be conducted based on the leak area and its volatility. For cases where the leak area is less
than 80 m2 and the chemicals are non-volatile, it is considered low risk, with an emergency
risk weight assigned a value of 1. When the leak area expands to greater than 80 m2

but less than 160 m2, if the chemicals remain non-volatile, the emergency risk weight is
assigned a value of 2. If the leak area is less than 80 m2 but the chemicals are volatile, it
is regarded as a higher risk, and the emergency risk weight is also assigned a value of 2,
because volatile substances may quickly disperse, increasing the risk of fire, explosion, and
poisoning. Finally, for leak areas exceeding 160 m2, particularly those accompanied by high
volatility, as well as other leaks that pose significant risks but are difficult to assess quickly,
the emergency risk weight is assigned a value of 3. This weight can also be used in the
calculation of emergency resources required at rescue points where hazardous material
leaks occur. Emergency resources for hazardous material handling can be allocated based
on the percentage of the total emergency resources, according to the weights of different
rescue points.

WD(C) =


0, S(C) = 0

1, S(C) ≤ 80 m2 and non-volatile
2, 80 m2 < S(C) < 160 m2 and non-volatile or S(C) < 80 m2 and volatile′

3, S(C) ≥ 160 m2 and volatile

(4)

where WD(C) represents the emergency weights for hazardous chemical leaks at accident
point D, while S(C) denotes the leakage area of the hazardous chemicals.

3.3. Pre-Allocation Model Based on Swarm Algorithm

This paper employs the bee swarm algorithm (BSA), genetic algorithm, and particle
swarm algorithm to solve multi-objective functions for comparative experiments. The
BSA algorithm is an optimization method based on swarm intelligence, simulating the
behavior of bees in search of nectar [30]. The BSA algorithm can be used to search for
optimal resource allocation plans aimed at minimizing response time and maximizing
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rescue efficiency. The algorithm can handle the interactions and coupling relationships
between different disasters, ensuring optimal resource allocation under limited resources.
The flowchart of the BSA algorithm is shown in Figure 3.
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In the BSA algorithm, the design goal of the fitness function is to optimize the cost and
time of delivering rescue supplies, thereby achieving the shortest delivery time and the
lowest cost. There are various methods for handling multi-objective functions, including
the weighted sum method, constraint method, and Pareto optimization method, each with
its own unique applicable scenarios, advantages, and disadvantages. Based on Pareto
optimization theory, this paper seeks a set of non-dominated solutions (such as the Pareto
optimal solution set) that cannot be compared to each other, achieving a certain balance
between different objectives that cannot be further improved through simple trade-offs [31].
The Pareto optimization method can find a set of solutions rather than a single solution,
providing decision-makers with more options. In multi-objective optimization problems, if
there are two or more solutions and one solution is no worse than another in all objectives
while being better in at least one objective, the former is said to dominate the latter. The
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Pareto optimal solution set is the collection of all solutions that are not dominated by any
other solutions [32]. Therefore, this paper constructs a set of non-dominated solutions
and adds offspring solutions that can optimize at least one objective function to the non-
dominated solution set during each iteration [33]. Simultaneously, through a greedy
strategy, poorer solutions are filtered out from the dominated solution set. Since the various
objective functions in this paper are not completely conflicting, it is sufficient to select the
solution with the shortest time from the non-dominated solution set, which is usually also
the solution with the lowest cost.

The procedure of the pre-allocation model based on swarm algorithm is as follows:

1. Problem definition and modeling: First, the decision variables are defined, including
the selection of types of supplies, vehicles, and the allocation number of supplies; then,
the objective functions are defined: Objective 1 (minimization): arrival time of rescue
supplies F1. Objective 2 (minimization): transportation cost of rescue supplies F2.

2. Initialization of algorithm parameters: A certain number of initial solutions (sources
of nectar) are randomly generated, with each solution representing a possible rescue
plan. The number of bees (including employed bees, onlooker bees, and scout bees),
the number of iterations, search limits, and other parameters are set.

3. Fitness assessment stage: Based on the actual conditions of the disaster area (such
as fire intensity, number of trapped individuals, and the presence of hazardous
chemical leaks), the fitness values of each resource allocation plan are calculated. The
fitness value can be measured by the emergency response time and the emergency
response cost.

4. Employed bee phase: Each employed bee corresponds to a nectar source (solution)
and performs neighborhood searches around it to find better solutions, evaluating
the values of the two objective functions F1 and F2 for the new solutions [34]. If
the new solution is superior to the current solution in any one objective, or is better
in a multi-objective sense (such as using Pareto dominance), the current solution is
replaced (greedy selection).

5. Perspective bee phase: The onlooker bees select a portion of nectar sources for further
searching based on the information (such as fitness) provided by the employed bees.
Following a bee search in the vicinity of the selected nectar sources to find new
resource allocation plans, the fitness value of the new plan is calculated and compared
with that of the original plan. If the fitness value of the new plan is superior, the nectar
source location is updated (similar to the employed bee phase).

6. Scout bee phase: If a certain nectar source (solution) has not been updated after
multiple iterations (i.e., it has become trapped in a local optimum), that nectar source
is abandoned, and a new nectar source is randomly generated by a scout bee. The
fitness value of the new plan is calculated and compared with that of the original plan.
If the fitness value of the new plan is superior, the nectar source location is updated.

7. Iterative optimization phase: Step 4 (Employed Bee Search), Step 5 (Onlooker Bee
Selection), and Step 6 (Scout Bee Search) are repeated, conducting multiple iterations
to find better emergency resource allocation plans. In each iteration, update the bee
population based on the fitness values, retaining superior solutions while eliminating
inferior ones.

8. Termination condition assessment phase: The preset termination conditions, such as
reaching the maximum number of iterations or finding a satisfactory solution, are
checked. If the termination conditions are met, stop the iteration and output the
current optimal emergency resource allocation plan; otherwise, return to Step 7 to
continue the iterative optimization.
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9. Result analysis phase: The output optimal emergency resource allocation plan is
analyzed, and its actual effectiveness in urban fire rescue scenarios is assessed. Based
on the analysis results, the algorithm is improved or parameters to further enhance
the emergency resource allocation are adjusted.

4. Results and Discussion
4.1. Transporting and Time Costs Analysis

The costs associated with transporting different types of supplies (Material 1 to Ma-
terial 7) from various rescue points (R1 to R10) to different accident sites (D1 to D5) are
shown in Figure 4. The height of each rectangular bar indicates the cost of transporting
specific supplies from a particular rescue point (Ri, i = 1–10) to a specific accident site (Dj,
j = 1–5). Transportation costs include fuel expenses, vehicle maintenance fees, personnel
wages, and more. The cost variations reflect various factors that may be encountered during
transportation, such as distance, road conditions, and the choice of transportation vehicle.
This figure provides a clear understanding of the transportation costs of supplies between
rescue points and affected areas, offering a basis for developing efficient allocation plans
for rescue materials.

Figure 5 provides a detailed representation of the time costs required to transport
different types of supplies (Material 1 to Material 7) from various rescue points (R1 to R10)
to different accident sites (D1 to D5). The height of each rectangular bar indicates the time
required to transport specific supplies from a particular rescue point (Ri, i = 1–10) to a
specific accident site (Dj, j = 1–10). Road conditions, distances, and potential traffic jams are
considered in the time costs. This time cost encompasses all time expenditures related to
the transportation process, including loading, transportation, and unloading. The impact
of various factors such as road conditions, the speed of transportation vehicles, and the
efficiency of loading and unloading materials are reflected as well.
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A list of the key information regarding the accident sites, including the number of
trapped individuals and the severity of hazardous chemical leaks, are listed in Table 1.
These data are of significant reference value for accurately assessing rescue needs.

Table 1. Fire situation initiation at the accident sites.

Fire Situation at the Accident Sites D1 D2 D3 D4 D5

Trapped individuals 10 5 15 8 12
Chemical leaks conditions Yes No Yes No Yes

Leak area (m2) 60 0 120 0 75

Using the weighting calculation method described in Section 3.2, the required number
of rescue teams to be dispatched from each rescue point has been determined (please see
Table 2). The dispatched rescue teams include rescue teams and hazardous material cleanup
teams, aiming to provide a rapid response at the scene and effectively manage various
complex situations that may arise during the disaster.

Table 2. Quantity of various rescue teams required at the accident sites.

The Number of Rescue Teams D1 D2 D3 D4 D5

Rescue teams 3 2 4 2 3
Cleanup teams 1 0 2 0 1

Total of rescue teams 4 2 6 2 4

4.2. Comparison of Resource Allocation Schemes Using Three Algorithms

Based on the types and quantities of supplies available at each rescue point, along
with the emergency weights of trapped individuals and hazardous chemicals at each
accident site, the following three resource allocation schemes can be derived using the
multi-objective function solving method proposed in Section 3.1.
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According to the operational steps of the bee swarm algorithm, corresponding resource
allocation schemes can be generated, as shown in Figure 6a. Each point represents the
quantity of supplies allocated from the rescue points to the target accident sites. Figure 6b
illustrates the algorithm iterative process, demonstrating how the algorithm gradually
approaches the optimal solution through step-by-step adjustments to the resource allocation
strategy. The results of this resource allocation scheme for command center K1 are shown
in Table 3.
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Table 3. Results of resource allocation for command center K1 using BSA.

R1 R2 R3 R4 R5 R6 R7

D1 20 15 10 5 3 4 2
D2 15 10 5 3 2 2 1
D3 25 20 10 8 5 6 3
D4 10 8 5 4 3 2 2
D5 18 15 10 6 4 3 2

The genetic algorithm is an optimization algorithm based on the principles of evolu-
tion, simulating the biological evolution process in nature. Through operations such as
competition, selection, crossover, and mutation among individuals in a population, it grad-
ually optimizes the search for the optimal solution to a problem [35,36]. According to the
genetic algorithm procedure, corresponding resource allocation schemes can be generated;
please refer to Figure 7a where the quantity of supplies allocated from each rescue point
to the accident sites are shown. Meanwhile, the iterative process of the genetic algorithm
is shown in Figure 7b, depicting how the algorithm gradually optimizes and evolves in
the search space to seek the optimal solution. The results of this resource allocation for
command center K1 are shown in Table 4.

Table 4. Results of resource allocation for command center K1 using GA.

R1 R2 R3 R4 R5 R6 R7

D1 20 15 10 5 3 4 2
D2 15 10 5 3 2 2 1
D3 25 20 10 8 5 6 3
D4 10 8 5 4 3 2 2
D5 18 15 10 6 4 3 2
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Particle swarm optimization is a meta-heuristic algorithm used to solve optimization
problems, with its fundamental idea derived from the study results of modeling and
simulating the behavior of bird flocks [37,38]. Based on the particle swarm algorithm
procedure, corresponding resource allocation schemes and their iterative processes can be
generated. The resource allocation results obtained through the particle swarm algorithm
are displayed in Figure 8a, where each point represents the quantity of supplies allocated
from different rescue points to the accident sites. Figure 8b depicts the dynamic process
of particles continuously adjusting their positions in the search space during the iterative
process in order to find the optimal solution. The results of this resource allocation scheme
for command center K1 is shown in Table 5.
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Table 5. Results of resource allocation scheme for command center K1 using PSO.

R1 R2 R3 R4 R5 R6 R7

D1 20 15 10 5 3 4 2
D2 15 10 5 3 2 2 1
D3 25 20 10 8 5 6 3
D4 10 8 5 4 3 2 2
D5 18 15 10 6 4 3 2
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4.3. Comparison of Three Algorithms

Through the application of three heuristic algorithms (GA, PSO, and BSA), different
resource allocation schemes have been derived, and the transportation and time cost
expenditures of each scheme in material transportation have been further calculated. The
Table 6. below presents the comparative results of the cost analysis.

Table 6. Results of cost and speed of the three algorithms.

GA PSO BSA

Transportation cost 22,000 27,000 15,000
Time cost 300 400 200

Convergence speed 500 800 200

The bee swarm algorithm significantly outperforms the genetic algorithm and particle
swarm optimization in terms of both transportation and time cost efficiency, and it also
has a faster overall convergence speed. The result indicates that the bee swarm algorithm,
based on the pre-allocation strategy, is not only more efficient than the traditional genetic
algorithm and particle swarm optimization in solving emergency rescue resource allocation
problems, but also consumes fewer resources, demonstrating a clear advantage.

5. Conclusions
This article focuses on urban fire disaster rescue scenarios, which are characterized by

a wide impact range. In response to these scenarios, a plan that includes multiple disaster
points and multiple rescue points is designed, and a method for calculating the emergency
weights of rescue teams based on the needs of rescue points is proposed. At the same time,
to optimize the emergency response efficiency and reduce costs, the transportation and
time costs of emergency rescue operations were quantified through simulation experiments.
A multi-objective optimization model is constructed to achieve the shortest response time
for emergency rescue teams and the lowest cost for emergency material transportation.

A solution method based on a pre-allocated bee swarm algorithm model is proposed.
Through comparative analyses with genetic algorithms and particle swarm optimization
algorithms, conduct a comparative analysis of the implementation of the plan and the
speed of iteration, optimizing the algorithm. This method can effectively select the opti-
mal emergency resource allocation plan, ensuring the rapid and accurate mobilization of
resources in emergencies, thus improving rescue efficiency.

Through the verification of the arithmetic cases, it has been found that both heuristic
algorithms can effectively complete tasks under the given conditions. In terms of resource
allocation effectiveness, the bee swarm algorithm demonstrates a significant advantage
over traditional genetic algorithms and particle swarm optimization. This rescue plan holds
important significance for addressing emergency situations involving multiple coupled
disasters, since rescue teams could complete the emergency rescue tasks in the shortest
time at the lowest cost.
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