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Abstract: Forest fires pose a severe threat to ecological environments and the safety of
human lives and property, making real-time forest fire monitoring crucial. This study
addresses challenges in forest fire image object detection, including small fire targets,
sparse smoke, and difficulties in feature extraction, by proposing TFNet, a Transformer-
based multi-scale feature fusion detection network. TFNet integrates several components:
SRModule, CG-MSFF Encoder, Decoder and Head, and WIOU Loss. The SRModule
employs a multi-branch structure to learn diverse feature representations of forest fire
images, utilizing 1 X 1 convolutions to generate redundant feature maps and enhance
feature diversity. The CG-MSFF Encoder introduces a context-guided attention mechanism
combined with adaptive feature fusion (AFF), enabling effective multi-scale feature fusion
by reweighting features across layers and extracting both local and global representations.
The Decoder and Head refine the output by iteratively optimizing target queries using
self- and cross-attention, improving detection accuracy. Additionally, the WIOU Loss
assigns varying weights to the IoU metric for predicted versus ground truth boxes, thereby
balancing positive and negative samples and improving localization accuracy. Experimental
results on two publicly available datasets, D-Fire and M4SFWD, demonstrate that TFNet
outperforms comparative models in terms of precision, recall, F1-Score, mAP50, and
mAP50-95. Specifically, on the D-Fire dataset, TFNet achieved metrics of 81.6% precision,
74.8% recall, an F1-Score of 78.1%, mAP50 of 81.2%, and mAP50-95 of 46.8%. On the
MA4SFWD dataset, these metrics improved to 86.6% precision, 83.3% recall, an F1-Score of
84.9%, mAP50 of 89.2%, and mAP50-95 of 52.2%. The proposed TFNet offers technical
support for developing efficient and practical forest fire monitoring systems.

Keywords: forest fire; object detection; Transformer; multi-scale feature fusion; UAV inspection

1. Introduction

Forests are critical ecosystems on Earth and serve as habitats for diverse wildlife.
However, the frequency of forest fires has been increasing annually due to global warming
and human encroachment [1]. Forest fires lead to severe economic losses and casualties,
as well as significant and irreversible ecological harm. Consequently, real-time forest fire
monitoring is of paramount importance.
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Forest fires often come with smoke, and fire detection primarily involves identify-
ing fire points and smoke. Traditional forest fire monitoring methods primarily rely on
manual ground patrols, where rangers use watchtowers or conduct inspections within
forests. However, this approach may fail to detect fires promptly and can endanger the
safety of rangers during large-scale fires [2]. With the development of electronics and
information technology, sensor-based forest fire monitoring has emerged [3]. Sensors detect
fires by measuring heat and smoke concentrations but are limited in their detection range.
Remote sensing satellites provide large-scale monitoring of forest fires, but processing
high-resolution remote sensing images is challenging and highly weather-dependent [4,5].
The advent of machine learning (ML) has spurred research into its application for forest fire
prevention, leading to a variety of ML-based solutions [6]. For instance, Peruzzi et al. [7]
utilized embedded ML models on low-power IoT devices to process audio and images
for forest fire detection. Similarly, Guria et al. [8] employed ML algorithms to analyze
20 conditional factors and create forest fire probability maps for effective prevention. How-
ever, the application of machine learning in this field faces challenges such as the difficulty
of obtaining forest fire data, limited real-time capabilities, poor model generalization, and
high technical costs [9]. Compared to the complex conditional factor datasets required for
machine learning, forest fire image data captured by drones is easier to obtain. Recent
research has increasingly focused on applying deep learning techniques—such as image
classification [10,11], object detection [12-14], and semantic segmentation [15]—to forest
fire image analysis for fire monitoring. Drones enable 24/7 real-time monitoring of forest
fires. By leveraging convolutional neural networks (CNNs), deep learning-based forest fire
detection methods can directly output detection results based on learned features, allowing
for timely detection and localization of fire points at the early stages of a fire [16,17].

In drone-based forest fire monitoring, drones typically begin by patrolling at high
altitudes to cover larger areas. Equipped with cameras, they scan and monitor forest
conditions in real time. Upon detecting fire, smoke, or suspected targets, drones lower their
altitude for more accurate localization of fire points. Throughout this process, the images
captured by drones are transmitted in real time to ground servers, where object detection
algorithms identify fire points or smoke [18]. However, forest fire image detection using
deep learning models presents several challenges: (1) Fire points in images captured at high
altitudes are small, smoke is sparse, and feature extraction is difficult. (2) Deep and complex
models improve feature extraction but result in large model parameters, slower processing
speeds, and difficulty balancing feature extraction and model lightweighting. (3) Forest fire
images have complex backgrounds, with significant occlusion and environmental noise.
Smoke can easily be confused with fog, further complicating detection.

In response to these challenges, we propose TFNet, a Transformer-based multi-scale
feature fusion network for detection. Specifically, TFNet addresses the difficulties posed by
small fire targets, sparse smoke, and complex feature extraction by introducing a series of
innovative techniques. The SRModule enhances feature extraction through a novel S-RConv
structure, which improves feature diversity without significantly increasing computational
costs. To effectively fuse multi-scale features, the CG-MSFF Encoder integrates a content-
guided attention mechanism and adaptive feature fusion (AFF), enabling better handling of
both local and global features. The Decoder optimizes the detection queries, and the WIOU
Loss function improves localization accuracy by adjusting the IoU metric and balancing
sample distribution. These components work together to overcome the challenges of
traditional detection systems, offering a more efficient and accurate solution for forest
fire detection.
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This study contributes the following:

e A novel Transformer-based multi-scale feature fusion detection network (TFNet) is
proposed, achieving remarkable detection accuracy on two public forest fire datasets:
D-Fire and M4SFWD.

e A new SRModule is introduced for feature extraction, which replaces ResNet18’s
residual blocks with S-RConv.

e A content-guided multi-scale feature fusion encoder (CG-MSFF Encoder) is intro-
duced. This encoder leverages content-guided attention to adaptively assign weights
to features, effectively integrating multi-level information and extracting detailed local
and global features.

e The WIOU Loss function is adopted to improve detection accuracy. By assigning
differentiated weights to IoU values, WIOU balances positive and negative samples
and enhances localization precision.

2. Related Work

Forests are vital ecosystems that play a crucial role in maintaining biodiversity, reg-
ulating carbon cycles and climate, protecting water sources, conserving soil fertility, and
enhancing air quality. Protecting forests and promoting sustainable forest management are
essential for maintaining ecological balance and ensuring long-term human development.
Forest fires are among the most significant threats to forest ecosystems, causing biodiversity
loss, releasing large amounts of greenhouse gases, exacerbating climate change, and leading
to severe economic damage. Preventing forest fires is therefore critical for safeguarding
ecosystems and human environments. Effective forest fire management involves increasing
public awareness, improving fire prevention technologies, enhancing infrastructure, and
adopting scientific forest management practices.

Traditional forest fire monitoring methods primarily rely on smoke detectors, thermal
imaging devices, and flame sensors. However, in the open and obstructed outdoor environ-
ments typical of forests, these methods often yield significant inaccuracies. In many cases,
fires are detected only after they have spread extensively [19]. To address the limitations of
traditional sensor-based monitoring systems, researchers have devoted efforts to develop-
ing vision-based forest fire monitoring systems using surveillance cameras, drones, and
remote sensing satellites [20].

Early vision-based forest fire monitoring methods primarily used machine learn-
ing techniques to extract features from images for distinguishing fire points from non-
fire regions [21]. Numerous machine learning-based forest fire detection methods have
emerged [9]. For instance, Chanthiya et al. [22] utilized SVMs to classify forest fire im-
ages into two categories, employing Euclidean distance to predict whether a query image
contained flames based on test and training image comparisons. Bi et al. [23] proposed
a video-based fire detection method that combined Gaussian mixture background mod-
eling, the RGB color model, a region-growing algorithm, and an improved SVM. This
method effectively identified and segmented suspected fire regions and integrated dy-
namic features for early fire warnings. Wahyono et al. [24] introduced a fire detection
method that integrates color, motion, and shape features using machine learning. Yang
et al. [25] proposed PreVM, which achieved higher detection accuracy and lower error
rates by introducing novel regularization constraints. Despite their effectiveness, machine
learning-based approaches for image analysis often suffer from poor generalization and
are prone to overfitting. Although high-precision fire detection models can be developed
using machine learning, there has been an increasing shift towards deep learning due to its
superior scalability and practical applicability [26].
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Deep learning techniques for detecting fire and smoke in images identify their presence
and provide real-time, accurate localization. Real-time object detection can significantly
reduce fire response times while minimizing human supervision costs in practical appli-
cations. Deep learning-based object detection primarily relies on convolutional neural
networks (CNNs), with prominent models including the Faster R-CNN and YOLO se-
ries. Zhang et al. [27] applied Faster R-CNN for fire points and smoke detection in forest
fire images, but the model achieved high detection accuracy only for simulated smoke,
showing poor sensitivity to sparse smoke. Pan et al. [28] proposed a method for early fire
and smoke detection using Faster R-CNN, but Faster R-CNN relies on region proposal
networks (RPNs) to generate candidate regions, which is computationally expensive and
time-consuming. Moreover, due to RPN limitations, the model struggles with detecting
small or occluded targets, resulting in lower recall rates. Kristiani et al. [29] utilized transfer
learning for real-time fire and smoke identification on intelligent edge devices, but the sys-
tem’s performance was significantly degraded by external noise, such as lighting variations.
The YOLO series has demonstrated exceptional performance in real-time object detection
tasks. Zhang et al. [30] introduced FasterNet in YOLOVS5 to reduce memory consumption
and increase detection speed for fire detection. Mamadaliev et al. [14] proposed a novel
fire detection method for smoke based on the YOLOv8 model. Despite their strengths,
YOLO models face limitations in complex environments with occlusions, small fire points,
or sparse smoke.

CNN-based models often struggle to capture contextual features that are critical for
accurate detection in long-distance forest fire images. To address this issue, researchers
have explored attention-based models. Attention mechanisms enable models to detect
small target features effectively by focusing on critical areas and capturing contextual
information [31]. Han et al. [32] introduced YOLO for forest fire detection, balancing high
detection accuracy with model efficiency through attention mechanisms and multi-level
feature fusion. The promising results of attention mechanisms in forest fire image detection
have encouraged researchers to integrate different attention mechanisms into various object
detection models [33,34]. While attention mechanisms can significantly enhance feature
extraction capabilities, they often require substantial computational resources, posing
challenges for hardware deployment. Additionally, indiscriminate integration of atten-
tion mechanisms may lead to overfitting. Future research directions include developing
innovative methods for seamlessly integrating attention mechanisms into models to im-
prove feature extraction capabilities without significantly increasing model complexity.
Balancing model accuracy and computational efficiency remains a key challenge in forest
fire detection.

Our work introduces a novel approach to forest fire detection that addresses the
limitations of traditional CNN and attention-based models. Unlike previous methods,
which primarily rely on local feature extraction, our model leverages a Transformer-based
architecture that captures long-range dependencies and contextual information. This
approach significantly improves detection performance, especially for small and sparse fire
points, which are often overlooked by conventional CNN models. Moreover, our method
incorporates a multi-scale feature fusion mechanism through the CG-MSFF Encoder, which
integrates features from different scales to enhance both local and global contexts, further
improving detection accuracy. Additionally, we apply the WIOU Loss function to address
the issue of sample imbalance in fire detection tasks, improving localization accuracy,
particularly for small and occluded fire points.
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3. Methodology

This study proposes a Transformer-based multi-scale feature fusion network (TFNet)
to address the challenges of forest fire image detection. TFNet utilizes a novel feature
extraction module, SRModule, as the backbone, and the outputs from the last three layers
of SRModule are fed into the CG-MSFF (content-guided multi-scale feature fusion) Encoder.
The CG-MSFF Encoder employs a context-guided attention mechanism and adaptive
feature fusion (AFF) to weight features from different layers, effectively fusing multi-level
features and extracting both local and global features. The Decoder refines these fused
features, enhancing spatial resolution and capturing long-range dependencies for accurate
detection. The final detection is performed by the Head, which uses a detection head
to predict fire locations and classifications, with the WIOU Loss balancing positive and
negative samples. The overall architecture of TFNet, illustrated in Figure 1, provides a
comprehensive overview of the network’s structure and how its components interact to
achieve efficient and accurate forest fire image detection.
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Figure 1. Overview of the TFNet model architecture.

3.1. SRModule

In the proposed architecture, the SRModule is designed to enhance the feature extrac-
tion capability while maintaining the efficiency of the network. Specifically, SRModule
modifies the residual block of ResNet18 by replacing the second convolutional layer in
each stage with the novel S-RConv structure.

The S-RConv plays a crucial role in enhancing feature extraction and improving the
efficiency of the architecture. As shown in Figure 2, first, the input feature map undergoes
an initial transformation through a 1 x 1 convolutional layer, which adjusts the channel
count to twice the size of the hidden layer channels. This operation serves to capture a richer
variety of features by operating across different levels of abstraction, while also setting up
the data for the subsequent steps. Following this, the S-RConv performs a key operation
known as the Split operation, which divides the feature map along the channel dimension
into two separate branches, each containing half of the original number of channels. This
division is crucial for enabling parallel processing of the input features, allowing the model
to capture different aspects of the data. One of the branches is directly passed to the output
without any further transformation, retaining the raw features to contribute to the final
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result. The second branch, however, undergoes additional processing. First, it passes
through a RepConv [35] layer, which reparameterizes the convolutional weights to improve
computational efficiency and reduce redundancy. Following this, the branch is processed
through a 3 x 3 convolutional layer, which further refines the feature map, and thena1 x 1
convolutional layer to adjust the output. The results of these operations are then combined
with the output from the first branch, allowing the model to leverage both raw and refined
features in the final output.

BatchNorm2d

BatchNorm2d

N
Conv2d 05

RepConv

l
1x1 Conv

Concat

BatchNorm2d

N

(a) The Original Residual Block |(b) The Modified Residual Block  (c) S-RConv

Figure 2. The S-RConv structure within the SRModule, showcasing the changes made to the residual
block architecture for enhanced feature extraction.

RepConv, designed to simplify and optimize convolutions, consists of multiple
branches during training. Specifically, it includes a 3 x 3 convolution followed by batch
normalization (BN), a 1 x 1 convolution followed by BN, and a BN-only branch. The
purpose of these branches is to reduce computational complexity by fusing the convolution
and BN operations. Each branch is then converted to an equivalent 3 x 3 convolution
during the fusion process. The weights of the 1 x 1 convolution are zero-padded to match
the spatial dimensions of a 3 x 3 convolution, and the weights and biases from all branches
are summed together to form the final convolutional weights and biases. This reparame-
terization step ensures that the computation is both efficient and redundant-free. During
inference, the entire structure is replaced by a single 3 x 3 convolution, eliminating the need
for separate convolution and BN layers and further enhancing efficiency. The resulting
fused 3 x 3 convolution allows the network to maintain high performance while reducing
the computational load, which is crucial for real-time applications.

3.2. CG-MSFF Encoder

The outputs of the last three stages of SRModule (F3, Fy, and F5) are fed into the CG-
MSEFF Encoder (Figure 1), which consists of a local branch and a global branch. Adaptive
feature fusion (AFF), convolution, and channel shuffling operations in the local branch are
used for local feature extraction. In the global branch, the self-attention mechanism is used
to capture a wider range of small target information. The local branch processes F3 and F,
while the global branch processes Fs.

In the local branch, the feature maps F; and F; contain information at different levels
of abstraction. Simply concatenating them along the channel dimension does not effectively
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highlight the important features and may lead to the dilution of critical information or
the introduction of redundancy, which can restrict the model’s detection performance.
To achieve more efficient multi-scale feature fusion, we propose the adaptive feature
fusion (AFF) method, as illustrated in Figure 3. By generating channel-wise attention
weight matrices, AFF adaptively adjusts the contribution of each feature map, allowing for
more effective fusion of features at different scales. This approach enhances the ability to
emphasize important features while suppressing noise during information fusion.

O

e [ ) N O/
Dconv Conv Sigmoid W, N

L

Figure 3. The AFF structure.

Specifically, the process begins by concatenating the low-level feature map F; and the
high-level feature map Fy along the channel dimension. This concatenated feature map
is then passed through a depthwise separable convolution for further feature extraction,
producing a new feature map F;:

F = Convy«1(DConvsyz(Concat(Fr, Fy))) 1)

where DConvs.3 denotes a depthwise convolution with a kernel size of 3, and Concat
represents the channel concatenation operation. Next, a sigmoid function is applied to
generate two weight matrices, Wy and Wy, which will be used to adaptively adjust the
contributions of the low-level and high-level features during the fusion process. These
weight matrices are generated as follows:

x=o0(x)= 1 +1e*x 2)
Wi, Wy = Split(O’(Ft), [CL, CH]) 3)

where x represents the input to the sigmoid function, and o(x) is the output within the
range (0, 1). The Split operation divides the feature map into two parts, with C; and
Cp representing the channel splitting parameters. Wy and Wy denote the two generated
weight matrices.

The weight matrices W and Wy are then element-wise multiplied with the low-level
feature map F; and the high-level feature map Fp, respectively, to generate the weighted
feature maps F; and Fj;:

Ff = FL X WL (4)

F;_} = FH X WH (5)

After weighting, the low-level and high-level features are fused in both directions.
The weighted high-level feature map Fy}; is added to the low-level feature map Fr, and
the weighted low-level feature map F; is added to the high-level feature map Fy. This
bidirectional fusion facilitates the flow and interaction of feature information, allowing
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the fine-grained details from the low-level features and the semantic information from the
high-level features to complement each other. This process enhances the diversity and
expressiveness of the feature representation:

Fiy=F +Fy (6)

Fy = Ff_} + F;, (7)

where Fp i and Fyy, represent the feature maps generated after the fusion of low-level and
high-level features.

Finally, the fused results are concatenated along the channel dimension and passed
through a1 x 1 convolution to perform linear combination and dimensionality reduction,
yielding the final output feature map Fy:

Ff = Conlel(Concat(FLH, FHL)) (8)

where Concat denotes the channel concatenation operation. This step further enhances the
expressive power of the features, improving the overall quality of the learned representations.

Furthermore, in order to enhance cross-channel interaction and facilitate information
integration, a 1 x 1 convolution is first used to adjust channel dimensions. The features are
then processed through a channel transformation operation, which divides features into
groups, applies depthwise separable convolutions, and concatenates the output tensors
along the channel dimension. A final 3 x 3 x 3 convolution extracts the following features:

Fiocal = C0”03x3x3(C5 <C0n01x1 (Ff>)) )

where Fj,.; is the output of the local branch, Convs.s«3 is the 3 x 3 x 3 convolution,
Convy 1 is the 1 x 1 convolution, and CS represents the channel transformation operation.

In the global branch, after a 1 x 1 convolution, three parallel 3 x 3 convolutions
are used to generate the query (Q), key (K), and value (V) tensors, each with dimensions
H x W x C. Q and K are reshaped as Q € RF"W*C and K € R®*HW and an attention map
ATT € R“*C is calculated to reduce computational complexity:

ATT(Q,K,V) = V-Softmax(KQ/w) (10)

where « is a learnable scaling parameter. The output Fgjop, 0f the global branch is the
following:

F

alobal = Conv11 ATT(Q,K, V) + Fs (11)

Finally, the outputs from the local and global branches are summed to produce the
CG-MSFF Encoder’s final output:

Fout = Flocal + Fglobal (12)

3.3. Decoder and Head

The Decoder is a crucial component in the architecture, responsible for refining the
initial target queries and leveraging the feature sequences produced by the CG-MSFF
Encoder to predict the final object detection results. It operates by iteratively optimizing
the target queries through multiple layers of self-attention and cross-attention, allowing it
to capture both internal relationships within the queries and the dependencies between
the queries and the encoder’s feature map outputs. By progressively refining the target
queries in this manner, the Decoder is able to focus on the most relevant aspects of the
input feature maps, facilitating the generation of accurate class labels and bounding box
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coordinates. The output of the Decoder is a refined set of queries that are then passed to
the Head for final prediction.

The Decoder is constructed following the structure of a classical Transformer Decoder,
consisting of a stack of multiple Decoder Layers. Each Decoder Layer is composed of three
key submodules: self-attention, cross-attention, and feed-forward networks (FFNs). The
self-attention mechanism allows the Decoder to capture dependencies within the sequence
of target queries, enabling the model to refine its understanding of the relationships between
different queries. The cross-attention mechanism, on the other hand, facilitates interaction
between the target queries and the encoded feature map from the encoder, ensuring that
the queries are aligned with the feature map information. The feed-forward networks then
further process the output of the attention mechanisms, enabling non-linear transformations
and enhancing the capacity of the model to learn complex relationships within the data.

Once the Decoder has refined the queries, these queries are passed to the Head
component, which maps the output of the Decoder to the final detection results. The Head
consists of a simple feed-forward network, which processes the query features through two
distinct branches: one for classification and one for regression. The classification branch
generates the class probabilities for each query, typically through a softmax function that
provides a probability distribution over all possible object classes. The regression branch,
on the other hand, outputs the coordinates for the predicted bounding boxes, including
parameters such as the position, width, and height of the boxes. This two-branch structure
allows the Head to simultaneously handle both the classification and localization tasks,
ensuring that the model can accurately predict both the category and the spatial location
of objects.

3.4. WIOU Loss

WIOU Loss introduces a dynamic, non-monotonic focusing mechanism to evaluate
the quality of predicted bounding boxes. It reduces the harmful gradients from low-quality
predictions while enhancing overall detector performance. In TFNet, WIOU Loss is used
to compute the loss between predicted and ground truth bounding boxes, improving the
precision of fire point and smoke detection. The formula for WIOU Loss is the following:

Lwiou = Rwrou-Liou (13)

where Ryyjoy; is a dynamic weight factor, and Lj,; is the standard IoU-based loss function,
defined as follows:

12 1\?

(cx — i)+ (cy - cy)
2
cx+ep

L[ou =1-IolU (15)

Rwiou = exp( (14)

where (cx, ¢,) and (c’, c’y)

boxes, respectively; ¢,y and cj, are the width and height of the smallest enclosing box that

are the centroids of the ground truth and predicted bounding

contains both the predicted and ground truth boxes.

4. Experiments and Results
4.1. Datasets

The experiments in this study are conducted on two publicly available datasets, D-Fire
and M4SFWD. The D-Fire [36] dataset (https://github.com/gaiasd /DFireDataset, accessed
on 11 July 2024) contains 21,527 annotated images, including scenarios of fires, smoke, and
the coexistence of both. For this study, we filtered the dataset to retain 9869 images featuring
fire and smoke in forest environments. The M4SFWD [37] dataset (https:/ /github.com/
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Philharmy-Wang/M4SFWD, accessed on 2 August 2024) is designed for remote sensing
forest fires and smoke detection. It includes 3974 annotated images of forests in various
landscapes such as plains, mountains, lakes, and rivers. Both datasets are widely used
for forest fire image analysis and contribute significantly to the development of effective
wildfire monitoring systems [32,38]. To ensure robust model evaluation, each dataset is
split into training, validation, and testing sets in a 7:2:1 ratio, as detailed in Table 1. Sample
images from the D-Fire and M4SFWD datasets are shown in Figure 4.

Table 1. Details of the datasets.

Sets D-Fire M4SFWD Percentage
Training 6908 2782 70%
Validation 1974 795 20%
Testing 987 397 10%

D-Fire

M4SFWD

Figure 4. The sample images from the D-Fire and M4SFWD datasets.

4.2. Evaluation Metrics

All experiments are implemented using Python 3.8 on a machine equipped with
an NVIDIA GeForce RTX 4090 (24 G) GPU, sourced from NVIDIA Corporation, Santa
Clara, California, USA. The operating system is Ubuntu 18.04, and the PyTorch framework
(version 1.11.0) is employed. The initial learning rate is set to 0.0001, the batch size to 16,
and the models are trained for 200 epochs. To objectively evaluate the performance of the
proposed TENet model, the following metrics are utilized:

Precision measures the proportion of correctly identified targets among all predicted targets:

. TP
Precision = TP L EP (16)
where TP is the number of true positives (correctly detected targets), and FP is the number
of false positives (incorrect detections).
Recall measures the proportion of true targets correctly identified by the model:
TP

Recall = TP—F—FI\] (17)
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where FN is the number of false negatives (missed targets).
F1-Score is the harmonic mean of precision and recall, offering a balanced measure of

accuracy:
2 x (Precision x Recall)

F1-S = —
core (Precision + Recall)

(18)

mAP50 is the mean Average Precision (AP) computed at an IoU threshold of 0.5. A
prediction is considered correct if the IoU between the predicted and ground truth bounding
boxes is >0.5:

1
mAP50 = N APS50; (19)

where AP50; is the Average Precision for the i-th class, calculated as follows:
AP50; = ), Precision;(t)-ARecall;(t) (20)
where ARecall;(t) represents the change in Recall at step :
ARecall;(t) = Recall;(t) — Recall;(t — 1) (21)

mAP50-95 is the mean Average Precision over IoU thresholds ranging from 0.5 to 0.95
(step size = 0.05), providing a more comprehensive evaluation:

1
mAP50 - 90 = =Y, mAP50, (22)

where M is the total number of IoU thresholds, and mAP50, is the mAP at threshold r.
GFLOPs measures the computational complexity of the model in billions of floating-
point operations per second.

1
GFLOPs = WFLOPS (23)
4.3. Comparison Experiment
4.3.1. Feature Extraction Capability

To evaluate the effectiveness of the proposed TFNet model, which builds upon and
improves the RT-DETR baseline, we conducted a series of experiments on the D-Fire and
M4SFWD datasets. Figure 5 presents the heatmaps of feature extraction by both the baseline
RT-DETR model and TFNet, highlighting the regions that are most relevant to targets. In
the D-Fire dataset, TFNet demonstrated significant advantages over the baseline in its
ability to focus on fire and smoke features. For example, as shown in Figure 5a, the baseline
model’s attention was easily distracted by complex forest backgrounds, leading to false
activations, whereas TFNet effectively suppressed these distractions and concentrated
on meaningful features, showcasing better robustness in handling noisy environments.
Figure 5b highlights TFNet’s superior sensitivity to small targets, accurately capturing fire
points that the baseline model often missed. Similarly, on the M4SFWD dataset, TFNet
showed considerable improvements in identifying fire points and smoke features. As seen
in Figure 5c, TFNet not only detected fire points but also highlighted smoke regions, a
key predictive feature for fire spread. In Figure 5d, the baseline model failed to effectively
identify smoke features in dense forest areas, while TFNet consistently captured these
critical indicators. These results demonstrate TFNet’s ability to handle complex detection
tasks in forest fire scenarios, particularly in terms of early fire and smoke detection.
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Baseline

TFNet

(a) (b) (c) (d)

Figure 5. The heatmaps of feature extraction. (a,b) represents two samples from D-Fire and
(c,d) represents two samples from M4SFWD.

4.3.2. Parameter Efficiency and Computational Complexity

In addition to feature extraction capabilities, we compared the parameter efficiency
and computational complexity of TFNet with other state-of-the-art object detection models,
including Faster R-CNN [39], SSD [40], Yolov5s [31], Yolov8s [14], Yolov1ln [41], and
DETR [42]. These factors are crucial for real-time applications like wildfire detection, where
both high performance and low computational demand are essential. As shown in Table 2,
TFNet strikes a good balance between model size and computational efficiency, making it
ideal for resource-constrained environments.

Table 2. Parameter quantities and GFLOPs of different models.

Methods Faster R-CNN SSD Yolov5s Yolov8s Yolovlln DETR TFNet
Parameters 26.3 M 7.0M 111 M 20.1 M 41.3M 154 M
GFLOPs 62.75 16.0 28.6 68.2 101.36 53.3

In terms of parameter count, TFNet has 15.4 million parameters, significantly smaller
than Faster R-CNN (137.1 M) and DETR (41.3 M), which are more computationally ex-
pensive. TFNet’s parameter count is higher than Yolov5s (7.0 M) and Yolov8s (11.1 M)
but lower than SSD (26.3 M) and Yolov11n (20.1 M), positioning it as a competitive model
for real-time applications. Despite a slightly larger parameter count than lighter models,
TENet provides better performance for detecting small or dispersed fire and smoke signals.
Regarding computational complexity, TFNet achieves 53.3 GFLOPs, significantly lower
than Faster R-CNN (370.21 GFLOPs) and DETR (101.36 GFLOPs), making it more efficient
for real-time use. While TFNet’s GFLOPs are higher than Yolov5s (16.0 GFLOPs) and
Yolov8s (28.6 GFLOPs), it remains more efficient than Yolov11ln (68.2 GFLOPs) and SSD
(62.75 GFLOPs). This balance between model size and computational efficiency makes
TFNet an excellent choice for real-time wildfire monitoring, where quick, accurate detection
is crucial.
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4.3.3. Loss Analysis and Model Performance

In addition to evaluating parameter efficiency, the training and testing loss variations
provide crucial insights into the learning behavior and generalization capabilities of the
models. TFNet and the baseline model’s loss changes during training and testing serve as
vital indicators of how well the models learn from the data.

The loss variations can be used to monitor training progress, adjust model structures,
optimize hyperparameters, and prevent overfitting. As shown in Figure 6, which illustrates
the loss changes on the M4SFWD dataset, TFNet and the baseline model exhibit distinct
learning behaviors. During training, TFNet’s loss drops significantly between epochs 5 and
30, showing its ability to quickly extract feature information in the early stages. Both models
experience steady learning from epochs 30 to 150, but TFNet reaches a plateau earlier,
starting from epoch 150, whereas the baseline model begins to stabilize only after epoch
175. This indicates that TFNet achieves optimal performance faster than the baseline model.
During testing, both models exhibit decreasing test losses, indicating strong generalization
capabilities. However, TFNet demonstrates a quicker decline in test loss, which stabilizes
at a lower value than the baseline, suggesting that TFNet generalizes more effectively to
unseen fire images.

train_loss val_loss

1.4
—— Baseline —— Baseline

Ours 1.2 1 —— Ours
121

1.0 1
1.0 1

0.8 0.8 1

0.6 1 0.6 1

0.4

0 25 50 75 100 125 150 175 200 0 25 s0 75 100 125 150 175 200
epoch epoch

Figure 6. The training and testing loss variations.

4.3.4. Detection Performance on the D-Fire Dataset

To validate the detection performance of TFNet, we conducted extensive experiments
on the D-Fire dataset and compared the results with other state-of-the-art models, as shown
in Table 3. TFNet achieved an impressive precision of 81.6%, the highest among all models,
demonstrating its strong ability to minimize false positives, which is crucial for real-time
wildfire monitoring. The model’s precision indicates that it reliably identifies true fire
points and smoke without mistakenly flagging irrelevant objects. While recall for TFNet
was slightly lower at 74.8% compared to Faster R-CNN’s 78.2%, this difference reflects the
trade-off between precision and recall. Faster R-CNN'’s higher recall comes from its broader
target detection approach, which often leads to more false positives. In contrast, TFNet
prioritizes reducing false positives, ensuring only highly relevant targets are flagged, a key
advantage in wildfire detection where false alarms can be costly. TENet also outperformed
other models in F1-Score, with a value of 78.1%, reflecting an optimal balance between
precision and recall. The F1-Score captures the trade-off between detecting more targets
(recall) while maintaining high detection confidence (precision). TFNet’s highest F1-Score
highlights its well-rounded performance. Additionally, TFNet excelled in mAP50, scoring
81.2%, demonstrating not only its ability to detect fire points and smoke but also its accurate
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localization. The high mAP50 indicates that predicted bounding boxes closely align with
the true locations. For small target detection, TFNet achieved 46.8% mAP50-95, slightly
behind Yolov1ln's 47.5%, but with fewer trade-offs in precision. While Yolov11ln performs
better on small target detection, it sacrifices precision, whereas TFNet maintains a good
balance. This capability is crucial for detecting small fire spots or smoke plumes in complex
forest environments. These results demonstrate that TFNet provides reliable and efficient
detection across multiple aspects, even in dynamic and challenging conditions.

Table 3. Comparison experiments of different models on the D-Fire dataset.

Models Precision (%) Recall (%) F1-Score mAP50 (%) mAP50-95 (%)
Faster R-CNN 33.3 78.2 46.7 63.5 28.4
SSD 80.7 49.6 61.4 60.6 29.6
Yolov5s 774 72.6 74.9 76.9 43.4
Yolov8s 77.1 72.7 74.8 77.7 46.4
Yolovllm 77.1 72.8 74.9 78.1 47.5
DETR 63.9 57.6 60.6 65.3 31.6
TFNet (ours) 81.6 74.8 78.1 81.2 46.8

The confusion matrix for the D-Fire dataset, shown in Figure 7, provides an insightful
analysis of the model’s classification performance. The model successfully classifies fire
instances 85% of the time and smoke instances 90% of the time, demonstrating strong
overall accuracy in detecting these two key categories. However, misclassifications are
evident in certain areas. Specifically, the background is often incorrectly classified as either
smoke (36%) or fire (64%). This suggests that the model faces challenges in effectively
distinguishing between the background and the fire or smoke regions, which can lead
to false positives. Furthermore, there are instances where fire is mistakenly classified
as background (15%), and smoke is also occasionally misclassified as background (9%).
These results underscore the model’s proficiency in detecting fire and smoke but also point
to areas for improvement, particularly in differentiating background elements from fire
or smoke.
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Figure 7. Confusion matrix analysis on D-Fire dataset.
The visualization analysis of the detection results further supports these methods.

Figure 8 shows the sample detection results on the D-Fire dataset. Faster R-CNN, as a
two-stage object detection model, often produces redundant bounding boxes and fails to
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handle complex forest backgrounds, leading to false negatives in the results. For example,
thin smoke is missed in Figure 8a,c, and small fire points are missed in Figure 8b,d. In
contrast, TFNet can consistently detect fire points and thin smoke with high accuracy even
in challenging environments. Yolovllm and DETR, as representatives of one-stage object
detection models and end-to-end object detection models, have higher detection accuracy
than Faster R-CNN. However, they still miss small fire points and thin smoke, and their
results are not as good as those of TFNet.

Yolovl1lm |

Figure 8. The sample detection results on the D-Fire dataset. (a-d) represents four different samples
from D-Fire dataset.

4.3.5. Detection Performance on the M4SFWD Dataset

On the M4SFWD dataset, TENet continued to outperform other models across most
evaluation metrics, as shown in Table 4. TFNet achieved the highest precision (86.6%),
significantly surpassing Faster R-CNN (49.1%) and highlighting its ability to reduce false
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positives. In terms of recall, TENet scored 83.3%, slightly lower than Yolov5s (82.5%)
and Yolov8s (81.6%) but higher than all other models, indicating its strong capacity for
comprehensive detection. TFNet also achieved the best F1-Score (84.9%), reflecting a
balanced performance in precision and recall. Furthermore, TFNet demonstrated superior
performance in mAP50 (89.2%) and mAP50-95 (52.2%), underscoring its ability to handle
both general and small-target detection tasks effectively. Compared to Faster R-CNN
and DETR, which struggled with small fire points and sparse smoke, TFNet consistently
provided accurate and reliable detection in complex forest environments.

Table 4. Comparison experiments of different models on the M4SFWD dataset.

Models Precision (%) Recall (%) F1-Score mAP50 (%) mAP50-95 (%)
Faster

R-CNN 49.1 775 60.1 66.2 29.0
SSD 85.1 62.2 719 64.8 30.8
Yolov5s 85.8 82.5 74.8 84.1 47.3
Yolov8s 84.1 81.6 82.8 87.7 49.5
Yolovllm 83.2 82.4 82.8 86.9 50.7
DETR 76.8 52.7 62.5 775 36.4
TFNet (ours) 86.6 83.3 84.9 89.2 52.2

The confusion matrix for the M4SFWD dataset, shown in Figure 9, shows that fire
instances are correctly classified 94% of the time, with only 6% misclassified as background.
Smoke instances are correctly identified 92% of the time, but 7% of smoke instances are
misclassified as background and 1% as fire. In total, 30% of the background instances were
misclassified as fire and 70% as smoke. These results suggest that the model is highly
accurate in detecting fire and smoke but faces challenges in distinguishing background
from fire and smoke, particularly with the background being misclassified as fire or smoke.
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Figure 9. Confusion matrix analysis on M4SFWD dataset.

Similarly, Figure 10 presents the sample detection results on the M4SFWD dataset.
Faster R-CNN and DETR are not sensitive to small fire points, which is particularly no-
ticeable in Figure 10a. Yolov1llm is not effective in detecting thin smoke, as illustrated in
Figure 10c, where it struggles to correctly identify thin smoke in the presence of cloud inter-
ference. Compared to other models, TFNet can detect fire points and smoke with greater
accuracy. In more complex backgrounds, such as in Figure 10a,d, TFNet can accurately
detect small fire points and smoke that is partially obscured. In cases where there is an
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overlap between smoke and fire points, as shown in Figure 10b, TFNet can separately iden-
tify the specific locations of both smoke and fire points. In situations where the background
is cluttered with clouds, as in Figure 10c, TENet can correctly detect thin smoke.

Image |
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Figure 10. The sample detection results on the M4SFWD dataset. (a—d) represents four different
samples from M4SFWD dataset.

4.4. Ablation Experiment

To validate the effectiveness of the SRModule, CG-MSFF Encoder, and WIoU Loss
components in the TFNet model for forest fire image object detection, we conducted
ablation experiments by incrementally adding these modules to the baseline RT-DETR
model. For simplicity, SRModule is denoted as P1, CG-MSFF Encoder as P2, and WIloU
Loss as P3. The results of these experiments on the D-Fire and M4SFWD datasets are
presented in Tables 5 and 6, respectively.
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Table 5. Ablation experiment results of the TFNet model on the D-Fire dataset.
Model Precision  gecall (%) F1-Score mAPS0 W AP50-95 (%)
(%) (%)
Baseline 79.8 73.8 76.7 79.6 45.9
Baseline + P1 80.3 74.2 77.1 80.4 46.4
Baseline + P2 81.4 73.5 77.2 80.6 46.7
Baseline + P3 81.6 74.4 77.8 80.8 46.6
Baseline + P1 + P2 81.5 74.5 77.8 81.0 46.4
Baseline + P1 + P3 79.9 75.8 77.8 80.9 46.8
Baseline + P2 + P3 83.2 72.4 77.4 80.9 46.7
Baseline + P1 + P2 + P3 81.6 74.8 78.1 81.2 46.8
Table 6. Ablation experiment results of the TFNet model on the M4SFWD dataset.
Model Precision  gecall (%) F1-Score mAPS0 1 AP50-95 (%)
(%) (%)
Baseline 85.2 83.2 84.2 88.5 51.4
Baseline + P1 85.5 84 84.7 88.9 51.7
Baseline + P2 85.9 83.3 84.6 88.8 51.7
Baseline + P3 85.6 83.0 84.3 88.7 51.9
Baseline + P1 + P2 85.3 83.9 84.6 89.0 52.0
Baseline + P1 + P3 85.9 83.2 84.5 88.9 51.9
Baseline + P2 + P3 86.8 83 84.9 88.9 51.8
Baseline + P1 + P2 + P3 86.6 83.3 84.9 89.2 52.2

From the results on the D-Fire dataset (Table 5), it can be observed that adding SR-
Module (P1) or CG-MSFF Encoder (P2) improves the F1-Score, mAP50, and mAP50-95.
This demonstrates that these modules are effective in extracting features from forest fire
images and fusing multi-scale information. For example, adding SRModule (Baseline + P1)
improves the mAP50 from 79.6% to 80.4% and the F1-Score from 76.7% to 77.1%, while
adding CG-MSFF Encoder (Baseline + P2) achieves further improvements, increasing the
mAP50 to 80.6%. On the other hand, WIoU Loss (P3) slightly improves recall and mAP50-
95, indicating that this loss function balances positive and negative samples and enhances
localization accuracy. When combining multiple modules, such as Baseline + P1 + P2 + P3,
the model achieves the best performance, with an mAP50 of 81.2%, an F1-Score of 78.1%,
and an mAP50-95 of 46.8%.

On the M4SFWD dataset (Table 6), a similar trend is observed. Adding SRModule
and CG-MSFF Encoder significantly improves all evaluation metrics, consistent with the
findings on the D-Fire dataset. Notably, the impact of WIoU Loss is more pronounced on
the M4SFWD dataset, where it contributes to higher F1-Scores and mAP50-95. For example,
adding WIoU Loss (Baseline + P3) increases mAP50-95 from 51.4% to 51.9% and F1-Score
from 84.2% to 84.3%. When all three modules are combined (Baseline + P1 + P2 + P3), the
model achieves the best overall performance, with a precision of 86.6%, recall of 83.3%, an
F1-Score of 84.9%, an mAP50 of 89.2%, and an mAP50-95 of 52.2%. These results validate
the complementary contributions of SRModule, CG-MSFF Encoder, and WIoU Loss to the
performance of TFNet.

To further analyze the trade-off between model performance and computational ef-
ficiency, we plotted the GFLOPs against mAP50 for various configurations of the TFNet
model (Figure 11). From this scatter plot, it is evident that model parameter size and
computational complexity (measured by GFLOPs) have a significant impact on detection
performance (measured by mAP50). For example, the baseline model achieves an mAP50
of 79.6% on the D-Fire dataset and 88.5% on the M4SFWD dataset with a computational
complexity of 57.0 GFLOPs. Adding SRModule (Baseline + P1) reduces computational
complexity to 44.6 GFLOPs while improving mAP50 to 80.4% and 88.9% on the respec-
tive datasets, demonstrating that it is possible to enhance detection accuracy without
significantly increasing computational overhead.
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Figure 11. Scatter plot of model performance and computational complexity under different improve-
ment strategies on different datasets.

However, certain strategies, such as adding CG-MSFF Encoder (Baseline + P2), re-
sult in increased computational complexity. For instance, Baseline + P2 raises GFLOPs to
65.2, achieving an mAP50 of 80.6% on the D-Fire dataset. While this strategy improves
performance, it may not be practical for real-time applications where efficiency is criti-
cal. The combination of all three modules (Baseline + P1 + P2 + P3) achieves the best
balance between performance and efficiency. This configuration maintains a relatively low
computational complexity (53.3 GFLOPs) while achieving the highest mAP50 scores of
81.2% on the D-Fire dataset and 89.2% on the M4SFWD dataset. These results highlight
that a thoughtful combination of optimization strategies can strike a balance between
performance and computational efficiency, making the model both effective and practical
for real-world applications.

5. Discussion

This research aims to tackle the challenges of small fire point targets, sparse smoke,
and difficulty in feature extraction in wildfire image detection, while also improving the
model’s lightweight design and detection accuracy. To this end, we propose TFNet, a
multi-scale feature fusion network for wildfire image detection based on Transformer.
This model is an improvement upon the RT-DETR model and incorporates SRModule,
CG-MSFF Encoder, and WIoU Loss modules. Through experiments on the D-Fire and
M4SFWD datasets, we have validated the effectiveness of the TFNet model, which has
outperformed comparison models in multiple metrics.

Compared to traditional machine learning-based wildfire image detection methods,
the TFNet model demonstrates superior precision and generalization capabilities. For
example, compared to the method proposed by Chanthiya et al. [22], which uses support
vector machines for wildfire image classification, TFNet is able to more accurately identify
fire points and smoke and precisely locate them in the image. Furthermore, in comparison
with Bi et al.’s [23] video-based wildfire detection method, TFNet also shows improved
detection accuracy. This improvement is primarily attributed to the model’s ability to
capture contextual information and small target features in the image, enabled by the
Transformer structure and attention mechanism, which are superior to traditional CNN-
based detection models [27,28].

The high accuracy of TFNet in wildfire image detection can be attributed to several
key factors. First, the SRModule module utilizes a multi-branch structure to learn different
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feature representations of wildfire images, generating redundant feature maps through
1 x 1 convolutions. This improves the diversity of wildfire image features and effectively
addresses issues such as small fire point targets, sparse smoke, and difficulty in feature ex-
traction. Second, the CG-MSFF Encoder introduces a context-guided attention mechanism
and combines AIFI with weight to effectively fuse multi-level features of wildfire images,
extracting both local and global features. Third, the WIoU Loss function assigns different
weights to the IoU, balancing positive and negative samples and improving the model’s
localization accuracy.

However, the TFNet model does have certain limitations. First, the size of the datasets
used in this study is relatively small, which may affect the model’s generalization ability.
Second, the model’s computational complexity is relatively high, and further optimization
may be needed for practical applications. Third, this study did not consider the impact of
environmental factors such as weather and lighting on the model’s performance. Future
research should explore how to improve the model’s robustness in complex environments.
Future improvements could focus on several areas. Expanding the dataset by collecting
more wildfire images under various conditions, including different scenes, times, and
weather situations, would help enhance the model’s generalization ability. Additionally,
exploring lighter network structures and attention mechanisms could reduce the model’s
computational complexity, making it more practical. Finally, addressing environmental
noise through techniques such as image augmentation or the incorporation of environment-
aware modules could enhance the model’s robustness in complex environments.

The TFNet model proposed in this study provides a new approach for wildfire image
detection and offers technical support for the development of efficient and practical forest
fire monitoring systems. The model can be applied to fields such as drone inspection and
remote sensing satellite monitoring, helping to detect and control wildfires in a timely
manner, thereby protecting forest resources and human life and property. Furthermore,
this research provides a reference for academic development in related fields, such as
deep learning applications in remote sensing image processing and the use of attention
mechanisms in object detection. The results also offer insights for policy making and
practical operations, such as how to establish a more complete wildfire monitoring system
and improve wildfire early warning and prevention capabilities.

6. Conclusions

In this study, a Transformer-based multi-scale feature fusion network for forest fire
detection, TFNet, was proposed. The model was an improvement upon the RT-DETR frame-
work by introducing SRModule, CG-MSFF Encoder, and WIoU Loss, which effectively
enhanced its feature extraction capabilities and object detection accuracy. Experimental
results on two public wildfire datasets, D-Fire and M4SFWD, demonstrated that TFNet
achieved performance comparable to other state-of-the-art object detection models, while
maintaining lower parameter counts and computational complexity. Notably, the model
performed exceptionally well in small object detection. Ablation experiments further veri-
fied the effectiveness of each module in TFNet. The SRModule was shown to efficiently
extract features from wildfire images, the CG-MSFF Encoder effectively fused multi-scale in-
formation, and the WIoU Loss balanced positive and negative samples, thereby improving
localization precision. The proposed TFNet model provides a novel approach to forest fire
detection and offers a valuable reference for future research, contributing to the protection
of forest resources and the human living environment.
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