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Abstract: The estimation of vertical ground reaction forces (VGRFs) during running is necessary
to understand running mechanisms. For this purpose, the use of force platforms is fundamental.
However, to extend the study of VGRFs to real conditions, wearable accelerometers are a promising
alternative to force platforms, whose use is often limited to the laboratory environment. The objective
of this study was to develop a VGRF model using wearable accelerometers and a stepwise regression
algorithm. Several models were developed and validated using the VGRFs and acceleration signals
collected during 100 stances performed by one participant. The validated models were tested on eight
participants. In a sensitivity study, the strongest correlations were observed at cut-off frequencies of
≤25 Hz and in models developed with 30 to 90 stances. After the validation phase, the 10 best models
had, on average, low relative differences (≤10%) in the estimation of discrete VGRF parameters,
i.e., the passive peak (

∣∣εpp
∣∣ = 6.26%), active peak (

∣∣εap
∣∣ = 2.22%

)
, and loading rate (|ε lr| = 2.17%).

The results indicate that the development of personalized models is more suitable for achieving the
best estimates. The proposed methodology opens many perspectives for monitoring VGRFs under
real conditions using a limited number of wearable sensors.
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1. Introduction

The use of force platform data is the gold standard for measuring ground reaction
forces (GRFs). In running, their vertical component (VGRF) provides several indicators
of interest for performance and injury studies. The passive peak is related to a particular
running technique and is observed particularly in runners impacting the ground with the
heel (i.e., rearfoot strikers) [1]. The active peak, which represents the maximum of the
VGRF curve, is associated with the performance of the runner. Runners reach faster speeds
when stronger vertical forces are applied to the ground [2]. Additionally, the loading rate,
which represents the upward slope of the VGRF curve, is associated with the occurrence
of tibial stress fractures when it is high [3,4]. However, force platforms are expensive and
technically difficult to use in sport fields. Hence, wearable sensors, such as inertial sensors,
are promising tools for collecting large amounts of data, allowing sports activity to be
described in detail via the estimation of VGRF indicators during running. Moreover, these
sensors can be used under real conditions, avoiding the constraints related to the simulated
environments of studies performed in the laboratory [5].
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For several years, the scientific community has been interested in the relationship between
GRFs and wearable accelerometer signals during walking, running, and jumping [6–10]. With
regards to walking, this relationship may allow the detection of muscle weakness in patients
with osteogenesis imperfecta in their living conditions [6]. With regards to jumping, this
relationship can be used to evaluate performance during sports training and conditioning in
an ecologically valid environment rather than in a laboratory [9]. With regards to running,
it has been shown that there are correlations between the value of the peak measured by
an accelerometer located on the tibia and the loading rate or the amplitude of the passive
peak during running [11]. Thus, the estimation of VGRFs during running using wearable
sensors—particularly accelerometers—has become a subject of interest.

Several models, based on three main methodologies, have been proposed [12]. The
first method uses Newton’s second law of motion: the acceleration of the center of mass is
estimated by placing an accelerometer at the trunk [13,14]. Thus, acceleration is directly
related to GRFs by the mass of the participant. Although this methodology allows the
estimation of indicators such as the maximum peak [13] or step average force [14], it does
not fully validate the shape of the estimated force curves. In addition, this method neglects
the dynamic effects of the impact of the foot on the ground, which is the origin of the
passive peak. The second method involves a mechanical mass–spring–damper model of
the human body [15–17]. The objective is to estimate the acceleration of the model mass
using an onboard accelerometer. Thus, the properties of the model can be determined,
and the forces can be estimated. This method was used by Nedergaard et al. [18], who
reported that while the model fit the measured mass acceleration well, the VGRF estimation
accuracy was poor, as errors increased with the running speed. Although this type of
model facilitates a physical interpretation of the relationship between acceleration and
force, the results of the modelling do not allow the evaluation of effort under real running
conditions. The third methodology involves statistical modelling, such as machine learning
algorithms [19,20] or regression algorithms [8,21–23]. Using this method, Derie et al. [19]
accurately estimated the vertical instantaneous loading rate measured via a force platform
with two accelerometers located on the tibias. Seeley et al. [22] proposed a model involving
different VGRF indicators (i.e., passive peak, active peak, and loading rate). Small errors
were observed in these indicators. Ngoh et al. [20] proposed a complete VGRF model based
on a neural network using a single axial accelerometer. Their results indicated that the
VGRF was accurately estimated. Among the three methodologies, the statistical approach
is the most promising. Although statistical modelling provides a physical description that
is less detailed than the biomechanical model and does not consider all the subtleties of the
body’s anatomy [12], it yields more accurate results than modelling based on Newton’s
second law of motion or mass–spring–damper models. Moreover, statistical modelling can
integrate information specific to the participant for personalization.

Nevertheless, numerous questions remain unanswered. To date, there is no consensus
on the positioning of the sensors on the participant, although sensors located on the trunk
appear to provide more relevant information for modelling the active peak [8,13,21] and
those on the lower limbs appear to provide more relevant information for modelling the
passive peak and the loading rate [19]. Furthermore, there is no agreement on the most
suitable filtering method for accelerometers, even if frequencies remain below 50 Hz. The
results of Wundersitz et al. [13] indicated that to achieve the most accurate estimates of the
maximum peaks of VGRFs using an accelerometer positioned at the center of the upper back,
a low-pass filter with a cut-off frequency of 10 Hz is needed to eliminate the unnecessary
high frequencies (the typical estimation error was 11.7% for filtered acceleration and 16.4%
for unfiltered acceleration). In a study by Derie et al. [19], which focused on the estimation
of vertical instantaneous loading rates with two accelerometers located on the tibias, the
choice was made to limit the effects of high frequencies and gravity bias by filtering
the acceleration using a bandpass filter between 0.8 and 45 Hz. Finally, there is also no
agreement on the amount of data needed to develop a reliable model. Indeed, while the
study of Derie et al. [19] was based on a dataset of more than 4000 steps from more than
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90 participants, Ngoh et al. [20] used 280 steps for training the model. Nevertheless, an
important feature of this type of tool may be its ease of deployment in the field using the
minimum amount of laboratory data.

In summary, the state of the literature shows that while statistical models are the
most efficient for estimating VGRFs, there is little methodological information on either
the optimal development or physical interpretation of the model. For this purpose, the
objective of this study was to develop a specific and personalized model for predicting
VGRFs via accelerometers placed on the trunk and lower limbs using a linear regression
algorithm. Thus, a methodology was developed for evaluating the sensitivity of the model.
It was hypothesized that (1) it is possible to model VGRFs using a small dataset size;
(2) there is an optimal cut-off frequency for the low-pass filter applied to the data that
maximizes the quality of the modelling; and (3) in a limited amateur population, a specific
model will be able to estimate VGRFs for other runners.

2. Materials and Methods
2.1. Participants

Nine runners without lower extremity injuries or pathologies volunteered for this
study (5 females and 4 males; age: 23.4 ± 2.5 years; height: 175 ± 8 cm; mass: 68 ± 8 kg).
The participants were recruited for recreational running without a particular competitive
goal. They were asked to wear personal running shoes for the test. All subjects gave
their informed consent for inclusion before they participated in the study. The study was
conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the local Research Ethics Committee prior to the initiation of the research.

2.2. Materials

VGRFs were measured using a triaxial force platform (OR6, AMTI, Watertown, MA,
USA) at a sampling frequency of 1 kHz. The force platform was fixed at the middle of a
10 m straight line in the laboratory. Acceleration data were collected using two triaxial
accelerometers connected to a wearable datalogger (S3-1000G-HA & MWX8, Biometrics
Ltd., Ynysddu, UK) at a sampling frequency of 20 kHz. One of the accelerometers was
mounted on the trunk, in the L4–L5 space of the lumbar spine, on the line between the
two iliac crests, with one axis oriented along the longitudinal axis of the trunk. The second
accelerometer was mounted on the distal extremity of the medial surface of the right tibia.
One axis of this accelerometer was aligned with the longitudinal axis of the segment and
directed upwards. The two accelerometers were fixed to the skin using adhesive tape and
secured using an elastic band that was tightened to the limit of comfort. Both systems
were connected to the hardware (Lock Lab, Vicon, Oxford, UK), and acquisitions were
synchronized in the software (Nexus, Vicon, Oxford, UK) to record all data simultaneously.

2.3. Protocol

Participants were asked to run at a constant and self-selected comfortable speed
along a 10 m straight line and to run over the force platform keeping their eyes forward.
Before the measurement session, an unlimited warm-up period was provided to familiarize
participants with the experimental context. Participants performed as many trials as needed
to complete 10 successful trials per session, according to the task realization criteria (impact
of the right foot against the platform, visually undisturbed running pattern, and successful
measurement of forces). One participant participated in 10 sessions spread over 10 weeks
(a total of 100 successful trials). The remaining eight participants participated in only one
session (10 successful trials each).

2.4. Data Management

The data were divided into two datasets. The first set (set #1) was composed of data
from the participant who completed 10 sessions (N = 100 trials). As the intra- and inter-test
repeatability of these signals had been controlled and considered acceptable in a previous
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study [24], set #1 was considered as one group of 100 stance measurements. Set #1 was used
to train and validate the proposed model. For this purpose, set #1 was divided into two
groups dedicated to the training and validation phases. In the training phase, a stepwise
regression algorithm was used to generate the VGRF equation using three-dimensional
(3D) signals from the two accelerometers. In the validation phase, the equation generated
during the training phase was used to estimate the VGRF from the accelerometric data.

The second set (set #2) comprised data from participants who completed only one
session each. As the intra-subject repeatability of these signals had been controlled and
considered acceptable in a previous study [24], set #2 was considered as eight groups
of 10 stance measurements. This set was used to test the model (test phase) which had
previously been trained and validated using set #1. In the test phase, the validated equation
was used to estimate the VGRFs from the accelerometric data of other participants. This
phase was applied to each participant with data from set #2 to study the possibility of using
this specific model on a different population.

2.5. Pre-Processing

The data were pre-processed via the following four steps: First, only 3D accelerometer
signals were passed through a low-pass filter with zero phase shift (resulting in a second
order Butterworth filter) to match the frequency content observed in VGRF signals (signals
which were not filtered) [25]. Different cut-off frequencies between 5 and 50 Hz (with
steps of 5 Hz) were tested to study the sensitivity of the developed model to filtering
during the training phase. Second, the stance phase during running was defined as the
period between foot strike and foot-off. These events are commonly defined by VGRFs
of >10 N on rising (foot strike) and <25 N on descending (foot-off) [26]. Thus, stance
phase events were extracted from force platform signals, and then VGRFs and acceleration
were segmented according to these events. In this study, the events were not determined
on the accelerometers as it had been proposed in the literature [27,28], in order to avoid
errors due to the detection of heel strike and toe-off. Third, as the stance duration differed
among the trials, the signals were standardized to a uniform length of 5000 sample points
(representing 100% of the stance). Fourth, as the intra- and inter-test repeatability of these
signals had been controlled and considered acceptable in a previous study [24], the selected
stance signals were averaged to extract the mean VGRF signal and six mean acceleration
signals. To study the sensitivity of the developed model to the size of the training dataset,
the models were developed using the mean signals of the 10th, 30th, 50th, 70th, or 90th first
stance signals. During the validation phase, the developed model was applied to the mean
of the last 10 stance signals. During the test phase, the validated model was applied to the
mean of 10 stance signals per participant.

2.6. Model Development

A multiple stepwise regression algorithm (function stepwiselm, Matlab 2021b, Mat-
works, Natick, MA, USA) was used to model the VGRFs with six acceleration signals
(i.e., three components per two accelerometers). Using a Fisher’s exact test, the algorithm
selected or discarded accelerations according to their interdependence and significance
in explaining the VGRF. The estimated vertical ground reaction force

( ˆVGRF ) was then
expressed as a function (first order polynomial) of the different acceleration signals Aj
(with j = 1 to 6), weighted by the coefficients β j determined by the algorithm as presented
in Equation (1):

V̂GRF = β0 + β1·A1 + . . . + β j·Aj + . . . β J ·AJ (1)

2.7. Statistics and Model Validation

For all the phases, prediction quality was studied using the determination coefficient
R2, and average error was represented as the root-mean-square error (RMSE). An extremely
strong coefficient of determination was considered to be R2 > 0.90 [29]. Moreover, to
physically validate the estimated VGRF, three criteria were computed as absolute values:
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the relative difference between the real passive peak value and the estimated value at
the same temporal (abscise) point (

∣∣εpp
∣∣ in %); the relative difference between the real

active peak value and the estimated value at the same abscise point (
∣∣εap

∣∣ in %); and the
relative difference between the real loading rate and the estimated loading rate at the same
abscise point (|ε lr| in %). Loading rate (considered as the vertical average loading rate in
this study) was defined as the slope between the points representing 20% and 80% of the
passive peak [4]. The relative differences were rated very low for |εii| < 5% and low for
5% < |εii| < 10% [30]. A summary of the applied methodology is presented in Figure 1.
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0.06 and 3.39 ± 0.19 m/s (see Table 1 for details). Except for participant #7, the participants 
in set #2 ran slower than the participant in set #1 (based on a Wilcoxon statistical test, alpha 
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Figure 1. Summary of the applied methodology. The red dashed box represents the first dataset
(set #1) composed of data from one participant who completed 100 stances on the force platform. The
blue dashed box represents the second dataset (set #2) composed of data from eight participants who
each completed 10 stances on the force platform.

3. Results
3.1. General Results

For set #1, one participant completed 100 trials at an average speed of 3.36 ± 0.11 m/s.
For set #2, eight participants completed 10 trials each at an average speed between
2.75 ± 0.06 and 3.39 ± 0.19 m/s (see Table 1 for details). Except for participant #7, the par-
ticipants in set #2 ran slower than the participant in set #1 (based on a Wilcoxon statistical
test, alpha set at 0.05). Participants #2 and #7 exhibited wider speed distributions than the
other participants over the 10 trials.

Table 1. Speed results (m/s) of the 10 trials for each participant in set #2.

Participant
# Mean Standard

Deviation

1 3.19 0.11
2 3.13 0.25
3 2.78 0.03
4 3.08 0.06
5 2.75 0.06
6 2.83 0.06
7 3.39 0.19
8 3.11 0.06
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3.2. Training Phase

Fifty VGRF models were developed to evaluate the performance of ten filtering
conditions and five stance numbers. For each modelling condition, Table 2 presents the
resulting coefficients of determination, which reflect the quality of the VGRF predictions
obtained from the acceleration signals. Forty-seven models exhibited extremely strong
coefficients of determination. The strongest correlation (R2 = 0.992) was observed at
cut-off frequencies between 20 and 30 Hz using 50 stances. Filtering above 30 Hz led to
lower correlations.

Table 2. Prediction quality for the ten filtering conditions and five stance numbers, i.e., coefficient of
determination (R2) results of the training phase for the different models developed. Extremely strong
coefficients of determination are presented on white background.

Cut-Off Frequency (Hz)Number of
Stances 5 10 15 20 25 30 35 40 45 50

10 0.987 0.983 0.970 0.952 0.934 0.917 0.903 0.891 0.880 0.872
30 0.985 0.988 0.990 0.990 0.986 0.981 0.973 0.964 0.954 0.943
50 0.988 0.989 0.991 0.992 0.992 0.992 0.990 0.989 0.986 0.984
70 0.989 0.990 0.990 0.989 0.986 0.982 0.978 0.974 0.969 0.965
90 0.989 0.990 0.990 0.989 0.985 0.981 0.975 0.970 0.964 0.959

A summary of the results of the training phases is presented in Appendix A (Table A1).
For the models with the strongest correlation, the RMSE was <0.07 BW (i.e., <50 N). Of
the fifty models developed, twenty-two exhibited low relative differences (±10%) for the
passive peak, active peak, and loading rate (

∣∣εpp
∣∣, ∣∣εap

∣∣, and |ε lr|, respectively), and only
three exhibited very low relative differences (±5%). Figure 2 shows the worst and best
model outputs.
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Figure 2. Results of the models developed, presented as a comparison of the estimated VGRF (blue
dashed line) and actual VGRF (orange solid line). The left and right arrows indicate the differences
between the actual and estimated passive peaks

∣∣εpp
∣∣ and active peaks

∣∣εap
∣∣, respectively. The dashed

segments represent the differences between the actual and estimated loading rates |ε lr|. The left
frame corresponds to a model developed with filtered accelerations with a cut-off frequency of 50 Hz
for 10 stances (R2 = 0.872; RMSE = 0.27 BW). The right frame corresponds to a model developed
with filtered accelerations at 20 Hz for 30 stances (R2 = 0.990; RMSE = 0.07 BW).

3.3. Validation Phase

Table 3 presents the resulting quality of VGRF predictions based on acceleration in the
validation phase. Of the 50 models developed, 18 exhibited an extremely strong coefficient
of determination. Extremely strong coefficients of determination were observed at cut-off
frequencies of ≤25 Hz and in models developed with 30 to 90 stances. The strongest
correlation was observed in the model developed with 50 stances and at a cut-off frequency
of 5 Hz. In this case, the RMSE was 0.15 BW. A summary of the results of the validation
phases is presented in Appendix A.
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Table 3. Prediction quality for the ten filtering conditions and five stance numbers, i.e., coefficient
of determination (R2) results of the validation phase for the different models developed. Extremely
strong coefficients of determination are presented on white background.

Cut-Off Frequency (Hz)Number of
Stances 5 10 15 20 25 30 35 40 45 50

10 0.712 0.658 0.548 0.425 0.323 0.249 0.196 0.159 0.134 0.115
30 0.970 0.931 0.900 0.873 0.847 0.822 0.799 0.778 0.759 0.742
50 0.979 0.975 0.960 0.935 0.904 0.869 0.835 0.803 0.775 0.750
70 0.971 0.968 0.956 0.934 0.908 0.879 0.851 0.825 0.802 0.782
90 0.967 0.963 0.951 0.932 0.909 0.885 0.863 0.842 0.824 0.808

Of the fifty developed models, ten exhibited low relative differences (
∣∣εpp

∣∣, ∣∣εap
∣∣, and

|ε lr|), and only six exhibited very low relative differences. An example of the two extremes
is shown in Figure 3. The shapes of the curves indicate that models that do not have an
extremely strong coefficient of determination can exhibit local divergences, which explains
the large relative errors.
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Figure 3. Results of the models developed, presented as a comparison of the estimated VGRF (blue
dashed line) and actual VGRF (orange solid line). The left and right arrows indicate the differences
between the actual and estimated passive peaks

∣∣εpp
∣∣ and active peaks

∣∣εap
∣∣, respectively. The

dashed segments represent the differences between the actual and estimated loading rates |ε lr|. The
left frame corresponds to a model developed with filtered accelerations at 40 Hz for 10 stances
(R2 = 0.159; RMSE = 0.99 BW). The right frame corresponds to a model developed with filtered
accelerations at 10 Hz for 50 stances (R2 = 0.975; RMSE = 0.13 BW).

3.4. Test Phase

To limit the number of results, only the 10 models exhibiting the largest coefficients of
determination (all >0.95 during the validation phase) were tested on the eight participants
in set #2. None of the 10 validated models exhibited extremely strong coefficients of
determination (R2 > 0.90) for all eight participants. Generally, the models exhibited
extremely strong coefficients of determination only for two or three participants. An
example of the results of a specific model developed with filtered accelerations at 15 Hz for
50 stances is presented in Table 4. Equation (2) presents the values of the coefficients of this
particular model:

V̂GRF = 483.09 + 298.63T1 − 182.96 T2 + 241.20 T3 + 742.04 L1 − 474.90 L2 − 142.00 L3 (2)

where variables T and L represent the accelerations measured by the tibia and lumbar
sensors, respectively; indices 1, 2, and 3 represent the longitudinal, medio-lateral-oriented,
and antero-posterior-oriented axes, respectively.
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Table 4. Results of the validated model developed with filtered accelerations at 15 Hz for 50 stances
applied to the eight participants.

Participant
# R2 RMSE (BW)

∣∣εpp
∣∣

(%)

∣∣εap
∣∣

(%)
|εlr|
(%)

1 0.924 0.45 30.77 32.42 40.90
2 0.661 0.45 47.25 23.62 56.36
3 0.742 0.84 33.26 43.95 3.64
4 0.985 0.17 1.57 4.27 15.15
5 0.793 0.36 51.20 12.81 25.42
6 0.900 0.42 26.30 33.21 28.59
7 0.340 0.74 68.45 23.80 21.77
8 0.411 0.75 60.16 23.15 55.65

The results indicated that regardless of the model, the quality of the prediction de-
pended on the participant (Table 5). Although VGRF signals derived from participants
#1 and #4 exhibited large R2 values, the RMSEs were important (approximately 0.45 BW).
Conversely, for participants #7 and #8, VGRF predictions always had small R2 values. None
of the solutions exhibited low or very low relative differences (

∣∣εpp
∣∣, ∣∣εap

∣∣, and |ε lr|). The
results of two of the best-performing models are presented in Figure 4.

Table 5. Mean and standard deviation (Mean ± SD) of R2, RMSE,
∣∣εpp

∣∣, ∣∣εap
∣∣, and |ε lr| for the 10

validated models used in the test phase for each participant.

Participant
# R2 RMSE

(BW)

∣∣εpp
∣∣

(%)

∣∣εap
∣∣

(%)
|εlr|
(%)

1 0.957 ± 0.016 0.45 ± 0.08 18.32 ± 7.36 24.33 ± 7.09 34.94 ± 2.75
2 0.749 ± 0.136 0.41 ± 0.10 21.28 ± 15.36 18.91 ± 6.15 48.78 ± 5.94
3 0.785 ± 0.055 1.02 ± 0.28 25.45 ± 7.07 58.77 ± 19.22 14.74 ± 10.46
4 0.947 ± 0.036 0.45 ± 0.29 21.96 ± 19.39 21.96 ± 18.04 20.09 ± 9.81
5 0.898 ± 0.062 0.43 ± 0.15 51.41 ± 11.74 12.06 ± 7.84 13.25 ± 7.49
6 0.807 ± 0.084 0.48 ± 0.08 10.49 ± 7.83 29.83 ± 5.97 15.35 ± 6.85
7 0.294 ± 0.111 0.88 ± 0.23 77.05 ± 15.64 28.43 ± 6.83 23.43 ± 5.36
8 0.574 ± 0.111 0.63 ± 0.08 56.87 ± 4.23 16.09 ± 4.75 49.69 ± 3.51
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Figure 4. Results of the models developed, presented as a comparison of the estimated VGRF (blue
dashed line) and actual VGRF (orange solid line). The left and right arrows indicate the differences
between the actual and estimated passive peaks

∣∣εpp
∣∣ and active peaks

∣∣εap
∣∣, respectively. The dashed

segments represent the differences between the actual and estimated loading rates |ε lr|. The left frame
corresponds to a model tested on participant #4 with filtered accelerations at 10 Hz for 50 stances
(R2 = 0.987; RMSE = 0.26 BW). The right frame corresponds to a model tested on participant #4
with filtered accelerations at 15 Hz for 50 stances (R2 = 0.985; RMSE = 0.17 BW).

4. Discussion

The objective of this study was to develop personalized statistical VGRF models
during running using two triaxial accelerometers located in the tibia and lumbar regions.
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First, models were developed using a dataset of VGRFs and acceleration signals collected
from one participant running over a force platform. The developed models were validated
using a dataset obtained from the same participant. Finally, the validated models were
tested using a dataset of signals collected from eight other participants.

4.1. Training and Validation Phases

The results indicate that after the training and validation phases, it was possible
to develop personalized models to estimate VGRFs during running using two wearable
accelerometers with extremely strong correlation (R2 > 0.90) and very low error rates
(|εii| < 5%). Following the validation phase, the 10 models exhibiting the highest coeffi-
cients of determination (R2 > 0.95) were considered to be the best-performing models. For
the passive peak, these models achieved on average low relative differences (

∣∣εpp
∣∣ = 6.26%).

These results indicate that acceleration measurement on the lower limbs provided relevant
information on the impact of the foot against the ground, and thus also on running tech-
nique and the passive peak. This can explain why the values of the passive peak obtained
in this study were better than those obtained by Seeley et al. [22] (approximately 9%) in a
subject-specific linear regression model. Indeed, in this previous work, the authors used
a low-range accelerometer (full range: 16 g; sampling frequency: 16 Hz). However, the
acceleration amplitudes reached on the lower limbs during running may have exceeded
16 g and led to saturation of the sensor. The acceleration measurement would then not
have allowed a correct estimation of the passive peak. Our recommendation is to use ac-
celerometers with a high range on the lower limbs for an accurate estimation of the passive
peak. For the active peak, our models exhibited low relative differences (

∣∣εap
∣∣ = 2.22%)

on average, which is consistent with the literature (between 3% and 8.3% [21–23]). These
results indicate the importance of using an accelerometer on the trunk close to the center
of mass, in correspondence with previous studies [8,13,21]. This methodology allows the
direct relationship of the acceleration and active peak of the VGRF by the mass of the
participant, allowing a simple and accurate estimation of the active peak. Regarding the
loading rate, our models achieved on average low relative differences (|ε lr| = 2.17%). This
result was better than that of Derie et al. [19] who developed a subject-dependent model
using a machine learning approach. However, the comparison remains debatable, because
there are different definitions of loading rates in the literature [31]. Nevertheless, this
small relative difference can be considered acceptable for certain applications. For example,
Huang et al. [32] reported a difference of >30% in the loading rate between forefoot and
rearfoot runners. In the same way, Milner et al. [4] reported a difference of >10% in the
loading rate between subjects subjected to tibial stress fractures and a control group.

4.2. Sensitivity to Cut-Off Frequency Conditions and Size of Training Dataset

In this study, the training and validation phases indicated that the best-performing
models were developed with 50 stances. With more or fewer steps, the coefficient of
determination decreased, and the models appeared to be overtrained or undertrained.
However, these results remain highly dependent on the protocol used, which imposed
relatively fixed conditions and did not validate the hypothesis (1). The number of steps can
be modulated if different conditions are integrated into the model; for example, in previous
studies, velocity conditions were integrated into the models [20,22]. Considering the
filtering conditions, the training and validation phases indicated that the best-performing
models were developed using filtered accelerations with a maximum cut-off frequency
of 15 Hz. This cut-off frequency seems to provide a closer approximation of the general
shape of the VGRF curve by eliminating the occurrence of unwanted peaks (as can be
seen in Figure 2) due to the damping effect of the foot against the ground. Wundersitz
et al. [13] reported that for an accurate estimation of the vertical and resultant force peaks
using an accelerometer located in the middle of the back, the optimal cut-off frequency
was 10 Hz. Derie et al. [19] reported that the optimal cut-off frequency for estimating the
loading rate with accelerometers on the shins was 45 Hz. As their methodologies and
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sensor characteristics were similar to those used in the present study, these differences can
be explained by the different locations of the sensors and different indicators estimated.
Indeed, the results of the present study indicated that the accelerometer located on the tibia
provided information for modelling the onset of the VGRF curve through the passive peak
and loading rate. These results are due to observations of the weights of each axis in the
model equation, but also due to the shape of the signals. On the tibia, longitudinal and
antero-posterior signals are characteristic of a damped shock and provide the equation
with the information it needs to model the passive peak (representative of the impact of the
foot against the ground). However, these two indicators are sensitive to high frequencies,
because they are related to the impact of the foot on the ground. These observations are
consistent with those of Seeley et al. [22] who attributed the high errors in the loading rate
obtained using an accelerometer located on the foot to the low sampling frequency of the
sensor, which did not allow the high-frequency content of these signals to be captured.
In contrast, a sensor located in the lumbar region (particularly on the longitudinal axis)
provides information for modelling a general sinusoidal shape, particularly for the active
peak. This signal has a characteristic shape, very similar to VGRFs. It also has the highest
weight in the equations compared to the other axis. The associated coefficient is also close to
the weight of the human body and therefore logically refers to Newton’s second law, linking
external forces to the acceleration of the center of gravity. This indicator was sensitive
to low frequencies. These observations coincide well with the 10 Hz cut-off frequency
proposed by Wundersitz et al. [13]. Thus, hypothesis (2) is validated, and we recommend
a low cut-off frequency (10 Hz) for the sensor at the lumbar level and a higher cut-off
frequency (50 Hz) for the sensor at the tibia level.

4.3. Test Phase

In the test phase, in which the developed and validated models were used to estimate
VGRFs for the eight participants, the results indicated that none of the 10 models provided
accurate estimates for all the participants (R2 > 0.90 for three of the eight participants) and
invalidated hypothesis (3). These results can be explained by the differences in the personal
characteristics of the participants (age: 23.4± 2.5 years; height: 175± 8 cm; mass: 68± 8 kg)
and the differences in the realization of the protocol. In this study, no speed was imposed
on the participants, and their results were different (Table 1). However, a previous study
indicated that an increase in running speed tended to increase the average amplitude of the
accelerometric signals at the tibia and lumbar regions in amateur runners [33]. This implies
that model coefficients associated with acceleration signals are sensitive to running speed.

Nonetheless, the application of some of the models to participant #1 and (in particular)
participant #4 yielded accurate VGRF predictions. In terms of personal characteristics (sex,
height, weight, speed, shoe size, and shoe type), the participant on whom the models were
based and participant #4 differed. Other characteristics, such as details of the running
technique or kinematics, may have been involved and should be considered in the devel-
opment of a prediction model. Nevertheless, if kinematics must be included in the VGRF
model, as has been proposed in the literature [34,35], the acquisition of these data remains
a significant technical challenge for describing running activity in ecological conditions.
Either the acquisition volume provided by optical systems is insufficient or the movement
is limited by the large number of onboard sensors required to capture it. Accordingly, if the
running kinematics differ between experimental running conditions (overground running
in laboratory, ecological situations, treadmill running, etc.), as has been demonstrated [36],
models aimed at deployment in real running conditions can yield mitigated results. In
previous studies, models were systematically developed using measures realized under
laboratory conditions (in a controlled measurement space or on a treadmill). Developing
models that are as close as possible to ecological conditions is the main recommendation
for this type of work.

However, non-negligible errors still appeared in the best-estimated VGRF curves.
These divergences between the model and measured signals essentially originate from two
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factors. The first is the bias between the two curves, which appears to shift the ordinate
of the estimated curve with respect to the real curve (Figure 4, left). This explains the
good coefficient of determination, because the shape of the estimated curve is similar
to the actual one, but with a relatively high RMSE because of the shift. While this bias
can easily be corrected in the model by changing the constant of the equation, it can be
explained by the difference in velocity between the participant on which the models were
developed and participant #4. Indeed, velocity is a factor that has already been shown
in the literature to impact the amplitudes of force [37] and acceleration [33,38] signals
(generally in a linear relation). As these amplitudes are different between the training set
and the test set, the constant of the equation is no longer adapted and thus causes a bias. A
possible improvement of the model would be to define the equation constant as a linear
function of running speed. The second factor is the difference between the model at the end
and at the beginning of the contact (Figure 4, right and left). Two methods can be used to
reduce this error and improve loading rate estimates. The first method is to add boundary
conditions to the modelling algorithm consistent with the contact description proposed by
Hunter et al. [26] (i.e., VGRF is >10 N on the rise for foot strike and <25 N on the fall for foot
strike). The second method is to apply corrections at the beginning and end of the signal to
impose remarkable values on the curve while maintaining the continuity of the signal.

4.4. Personalized Model

This study indicated that the development of personalized models is more suitable for
achieving accurate estimates. After the validation phase for the 10 best-performing models
(R2 > 0.95), estimation errors were generally high and reached high relative mean difference
values (

∣∣εpp
∣∣ = 35.35%,

∣∣εap
∣∣ = 26.29%, and |ε lr| = 27.53%). These results are consistent

with those of Derie et al. [19], who reported that estimation errors were greater when the
model was developed independently of the participant (the mean absolute errors were
5.39 and 12.41 BW·s−1 for personalized and independent models, respectively). Similar
conclusions were drawn by Seeley et al. [22], indicating the importance of developing cus-
tomized models that can include race-specific indicators, such as equipment or techniques,
as proposed in the literature [8,21].

4.5. Perspectives

A potential direction for improvement is to add different running conditions to the
models so that they can be used in a wider range of cases. In this study, the results of
the models were specific to the developed protocol and to the running technique with
a heel strike. As the signature curve of the VGRF of a foot striker can differ [1], it is
necessary to adapt the model to different running techniques. More generally, the addition
of different speed conditions, as well as different types of shoes, running techniques, or
even slopes, has been proposed [39], and could be a better way to reflect the ecological
conditions of running and thus develop a more reliable model for in-field use. Subsequently,
improvements can be made to the algorithm used to develop the model. Indeed, if this
algorithm has demonstrated its performance in proposing a simple model of the VGRF,
it remains necessary to estimate the VGRF at the beginning and end of the contact. The
addition of boundary conditions would allow some local estimation errors to be eliminated.
Finally, in this study, the contact phase was defined using force platform signals and not
accelerometer signals. As the long-term objective is to only use wearable sensors, further
work is underway to add the heel strike and toe-off detections directly to accelerometer
data, according to the literature [28,40,41].

5. Conclusions

This paper proposes promising VGRF prediction models using two accelerometers
for running. After the training and validation phases, the results indicate that it is possi-
ble to develop personal models for estimating VGRF in running with extremely strong
correlations (R2 > 0.90) and very low errors (|εii| < 5%). The results indicated that it was
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possible to develop relevant models with a small number of stances (50), representing
a short acquisition time and an affordable size of the dataset. Moreover, accelerations
must be filtered under 15 Hz to remove the high frequencies contained in these signals,
allowing low-cost sensors with low-frequency ranges to acquire the data needed for the
models. Although the models provided accurate results for two of eight subjects, the
current results and methodology do not allow us to conclude on the relevance of custom
model development. The results obtained make it possible to accurately describe the VGRF
curve for a specific running speed. This model provides many perspectives for monitoring
the biomechanics of running under real conditions, as it requires a small number of sensors.
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Appendix A

Table A1. Results of the fifty models for the training and validation phase developed on set #1.

Cut-Off Freq.
(Hz)

Stance
#

Training Validation

R2 RMSE
(BW)

∣∣εpp
∣∣

(%)

∣∣εap
∣∣

(%) |εlr| (%) R2 RMSE
(BW)

∣∣εpp
∣∣

(%)

∣∣εap
∣∣

(%) |εlr| (%)

5

10 0.987 0.08 10.95 1.71 18.08 0.712 0.48 72.31 11.39 49.41
30 0.985 0.09 14.14 1.79 8.33 0.970 0.23 21.39 15.45 2.80
50 0.988 0.08 12.50 0.87 9.26 0.979 0.15 4.86 7.19 3.51
70 0.989 0.08 11.99 0.44 8.95 0.971 0.13 1.51 1.29 1.15
90 0.989 0.08 12.02 0.68 9.51 0.967 0.14 1.17 0.17 5.90

10

10 0.983 0.10 6.41 1.15 15.39 0.658 0.52 96.81 13.87 115.70
30 0.988 0.08 11.33 1.75 7.20 0.931 0.25 35.87 11.64 21.07
50 0.989 0.08 11.02 0.53 8.79 0.975 0.13 11.18 2.80 0.95
70 0.990 0.07 10.39 0.70 7.23 0.968 0.14 2.71 0.61 0.85
90 0.990 0.07 10.23 0.46 7.33 0.963 0.14 1.51 2.11 1.89

15

10 0.970 0.13 1.18 1.34 13.09 0.548 0.59 114.19 15.68 176.38
30 0.990 0.07 7.77 2.20 5.83 0.900 0.28 42.23 11.68 41.68
50 0.991 0.07 8.98 0.11 8.01 0.960 0.16 15.23 1.59 10.51
70 0.990 0.07 8.21 2.44 5.08 0.956 0.16 2.84 1.01 1.40
90 0.990 0.07 7.80 2.20 4.71 0.951 0.17 0.26 2.48 1.54

20

10 0.952 0.16 2.71 1.72 11.73 0.425 0.68 128.22 17.94 221.23
30 0.990 0.07 3.82 2.95 4.49 0.873 0.31 45.99 12.14 60.70
50 0.992 0.07 6.57 0.96 7.11 0.935 0.20 19.38 1.21 22.37
70 0.989 0.08 5.63 4.46 3.09 0.934 0.20 3.50 0.84 6.60
90 0.989 0.08 4.94 4.22 2.40 0.932 0.20 0.45 2.24 4.28

25

10 0.934 0.19 5.49 2.12 11.21 0.323 0.77 140.79 20.08 254.36
30 0.986 0.08 0.21 3.87 3.62 0.847 0.33 48.22 12.40 77.05
50 0.992 0.06 4.00 1.90 6.38 0.904 0.25 23.38 1.26 34.40
70 0.986 0.09 2.91 6.49 1.72 0.908 0.24 4.63 0.35 13.38
90 0.985 0.09 1.94 6.24 0.96 0.909 0.23 0.54 1.71 9.09
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Table A1. Cont.

Cut-Off Freq.
(Hz)

Stance
#

Training Validation

R2 RMSE
(BW)

∣∣εpp
∣∣

(%)

∣∣εap
∣∣

(%) |εlr| (%) R2 RMSE
(BW)

∣∣εpp
∣∣

(%)

∣∣εap
∣∣

(%) |εlr| (%)

30

10 0.917 0.21 7.38 2.54 11.25 0.249 0.85 152.24 21.94 279.08
30 0.981 0.10 4.15 4.88 3.38 0.822 0.35 49.39 12.33 90.66
50 0.992 0.07 1.42 2.87 5.98 0.869 0.29 26.95 1.48 45.47
70 0.982 0.10 0.21 8.38 1.12 0.879 0.28 5.98 0.22 20.70
90 0.981 0.10 0.97 8.10 0.50 0.885 0.26 0.20 1.18 14.97

35

10 0.903 0.23 8.63 3.00 11.56 0.196 0.93 162.60 23.51 297.54
30 0.973 0.12 7.86 5.92 3.75 0.799 0.36 49.82 11.95 101.73
50 0.990 0.07 1.08 3.81 5.94 0.835 0.33 29.96 1.73 55.14
70 0.978 0.11 2.33 10.06 1.22 0.851 0.31 7.34 0.71 27.85
90 0.975 0.11 3.64 9.75 0.90 0.863 0.29 0.39 0.78 21.16

40

10 0.891 0.24 9.44 3.48 11.97 0.159 0.99 171.86 24.83 311.26
30 0.964 0.14 11.27 6.96 4.61 0.778 0.38 49.74 11.32 110.54
50 0.989 0.08 3.44 4.72 6.25 0.803 0.37 32.40 1.92 63.30
70 0.974 0.12 4.66 11.52 1.87 0.825 0.34 8.58 1.05 34.47
90 0.970 0.13 6.01 11.18 1.93 0.842 0.31 1.04 0.56 27.18

45

10 0.880 0.26 9.93 3.97 12.36 0.134 1.04 180.03 25.94 321.39
30 0.954 0.16 14.33 7.95 5.81 0.759 0.39 49.33 10.51 117.43
50 0.986 0.08 5.61 5.55 6.83 0.775 0.39 34.31 2.02 70.07
70 0.969 0.13 6.76 12.77 2.91 0.802 0.36 9.67 1.24 40.39
90 0.964 0.14 8.07 12.40 3.38 0.824 0.32 1.69 0.50 32.77

50

10 0.872 0.27 10.21 4.46 12.70 0.115 1.08 187.19 26.88 328.78
30 0.943 0.17 17.03 8.87 7.25 0.742 0.40 48.74 9.60 122.75
50 0.984 0.09 7.59 6.32 7.62 0.750 0.42 35.79 2.04 75.61
70 0.965 0.14 8.61 13.85 4.20 0.782 0.38 10.57 1.29 45.60
90 0.959 0.15 9.83 13.44 5.06 0.808 0.34 2.27 0.58 37.82
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