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Abstract: In this study, an analytical-based numerical approach was proposed for the analysis of
the free axial vibration of homogeneous and functionally graded rods with varying cross-sectional
areas. The proposed approach is based on analytical approximation techniques, such as the Adomian
decomposition method, variational iteration method, and homotopy perturbation method. However,
the governing equations of the problems solved in this study were variable coefficient differential
equations. These equations provide analytical solutions for strictly limited cases. Analytical approxi-
mation methods easily handle problems with uniform material properties and constant cross-sections,
whereas with varying cross-sectional areas, the analytical integration process becomes a difficult
task for the software. If the rod’s material is functionally graded with varying cross-sectional areas,
the analytical integration process becomes a cumbersome task. The proposed approach eliminates
all difficulties and requires computation within several seconds. The application of this method is
straightforward, and the results obtained in this study are in excellent agreement with the solutions
provided in the literature.
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1. Introduction

The vibration of rods is of great interest and is still receiving considerable attention
from researchers in structural, mechanical, and aeronautical engineering. The longitu-
dinal vibration of rods with constant cross-sections has an exact well-known solution
considering different boundary conditions. However, if the cross-sectional area varies with
the length of the rod, the governing equation becomes a variable coefficient differential
equation for which the exact solutions are very limited. In the case of functionally graded
rods, additional functions are added to the governing equation, which makes obtaining a
solution difficult.

Raman [1] used transformations to the equation of motion to transform it into a form
similar to the one-dimensional Schroedinger equation in order to obtain the analytical
solutions of several rods with variable cross-sections. This study examines a process that
converts the Sturm–Liouville equation into a specific form of the equation of motion under
study. By retracing the analysis, the shape of the cross-section of the rod can be identified
for any second-order differential equation with a guaranteed solution existence.

Eisenberger [2] developed a technique called the exact element method, in which the
dynamic axial stiffness of the rod is used to obtain exact solutions for the longitudinal
vibration of variable cross-section rods. This technique is suitable for any polynomial
variation in the cross-sectional area and mass distribution of a member. A comparison of
the results of various examples is also available.
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Abrate [3] transformed the equation of motion into a wave equation and determined
the axial vibration frequencies using the Rayleigh–Ritz method. The free vibration of
nonuniform beams with arbitrary boundary conditions and general shapes was examined.
Simple equations are presented to determine the fundamental natural frequencies of beams
with different end-support conditions.

Bapat [4] studied the vibration of rods composed of uniformly tapered sections with
nonclassical boundary conditions. An efficient method was proposed to solve the vibration
problem of rods consisting of N uniformly tapered sections with nonclassical boundary
conditions. The proposed technique integrates the transfer matrix technique with the
closed-form solution of the uniformly tapered rod, which results in a singular equation
with only one unknown for every uniformly tapered section, requiring only one matrix
multiplication for each section.

Kumar and Sujith [5] provided exact solutions for the longitudinal vibrations of non-
uniform rods with specific cross-sectional area functions by applying a transformation to the
governing equation. The study utilized special functions, including Bessel, Neumann, and
trigonometric functions, to obtain solutions. Simple formulas were provided to predict the
natural frequencies of non-uniform rods with varying end conditions, and the dependence
on the taper was also discussed.

Li [6] presented an exact solution approach for the free longitudinal vibrations of
one-step non-uniform rods with classical and non-classical boundary conditions using an
appropriate functional transformation, where the distribution of mass is arbitrary, and the
distribution of longitudinal stiffness is expressed as a functional relation with the mass
distribution. The presented approach simplifies the governing differential equations for the
free vibrations of one-step non-uniform rods, resulting in solvable differential equations
for various functional relationships between the stiffness and mass.

Li [7] analyzed the longitudinal vibration of stepped non-uniform rods by describing
the distribution of mass as arbitrary, and the distribution of longitudinal stiffness was
expressed as a functional relation with respect to mass distribution. The differential
equations governing the longitudinal free vibration of rods with variable cross-sections
were reduced to Bessel’s equations or other analytically solvable differential equations by
selecting appropriate expressions, such as power functions and exponential functions, for
functional relations. Simple formulas were proposed to predict the longitudinal vibration
frequencies and mode shapes of one-step rods with continuously varying cross sections.
The transfer matrix technique and closed-form solutions of one-step non-uniform rods
were integrated to generate a single-frequency equation for a multistep non-uniform rod
with any number of steps.

Zeng and Bert [8] used the differential transformation method for vibration analyses of
tapered bars with fixed-end conditions, assuming a linear variation for both cross-sectional
are and mass.

Raj and Sujith [9] developed a family of closed-form solutions in terms of confluent
hypergeometric functions for the longitudinal vibration of rods with variable cross-sectional
areas, reducing the governing equation to confluent hypergeometric differential equations
with a generic transformation. This study presents the eigenfrequencies of rods with certain
area variations subjected to classical boundary conditions.

Elishakoff [10] provided exact solutions for the vibration and stability problems of
non-uniform and inhomogeneous rods, beams, and plates.

Al-Kaisy et al. [11] studied the free vibration of a general non-uniform rod using the
differential quadrature method to determine the non-dimensional natural frequency and
normalized mode shapes of a non-uniform rod for free and clamped boundary conditions
while accounting for the influence of varying cross-sectional area on vibration.

Provatidis [12] proposed a novel global collocation method for eigenvalue analyses
of freely vibrated elastic structures where the proposed methodology was designed to
handle various types of boundary conditions, including instances of two Dirichlet and one
Dirichlet and one Neumann condition.
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Calio and Elishakoff [13] developed a class of closed-form solutions for longitudi-
nally vibrating inhomogeneous rods for a given distribution of material density that were
clamped at one end and free at the other, yielding distributions of axial rigidity, which,
together with a specific law of material density, satisfied the governing eigenvalue problem.

Arndt et al. [14] introduced an adaptive generalized finite element method for ana-
lyzing the free longitudinal vibrations of straight bars and trusses. The method involves
enriching the standard finite element method space with functions that depend on the
geometric and mechanical properties of the element.

Inaudi and Matusevich [15] devised a technique based on power series with domain
partitioning, and it was presented in a matrix formulation, which effectively solved linear
differential equations up to a desired degree of accuracy. This approach has been proposed
as an alternative to other power series techniques employed in vibration analysis. This
technique was presented in a study of the longitudinal vibration of a rod with a linearly
varying cross-sectional area.

Guo and Yang [16] proposed a series solution for the vibration of arbitrary non-
uniform rods with four types of profiles and variations in geometry or material properties
and compared their results with the solutions obtained using the WKB method.

Yardimoglu and Aydin [17] used appropriate transformations to obtain exact solutions
for the longitudinal natural vibration frequencies of rods with cross-sectional variations as
the power of sinusoidal functions. The transformation reduces the governing equation to
the associated Legendre equation, which is the frequency equation of a rod with a certain
cross-sectional area variation and boundary conditions. The effects of variations in the
cross-sectional area of the rods on the natural characteristics were also considered.

Shahba et al. [18] analyzed the longitudinal and transverse vibrations and stability of
axially functionally graded beams using the finite element method.

Shahba and Rajasekaran [19] studied the free vibration and stability of axially func-
tionally graded tapered Euler–Bernoulli beams, which were solved using the governing
differential equations of motion and differential transform element method (DTEM) based
on the differential transform method (DTM).

Shahba et al. [20] studied the structural analysis of axially functionally graded tapered
beams from a mechanical point of view using the finite element method by introducing the
concept of basic displacement functions.

Gan et al. [21] investigated longitudinal wave propagation in a rod with a variable
cross-section using the transfer matrix method by establishing the equation of motion
for the rod based on the elementary wave theory, the Love theory, and the Mindlin–
Herrmann theory. Two types of rods with cross-sections varying in the exponential
and polynomial forms were considered to illustrate the analytical predictions of the
propagation characteristics of the longitudinal wave, and the results were compared
with the results from the finite element analysis (FEA) method.

Hong et al. [22] presented a spectral element model for FGM axial bars from the
governing equations of motion in the frequency domain using the variational method to
analyze functionally graded material bars with respect to axial or longitudinal motions; the
bars’ material properties vary in the radial direction according to the power law. The radial
contraction was employed by adopting the Mindlin–Herrmann rod theory, and the model
was verified by comparing it with finite element solutions.

Shokrollahi and Nejad [23] investigated the longitudinal free vibrations of non-uniform
rods with nonlinear governing equations using discrete singular convolution, employing
the regularized Shannon delta kernel.

Guo and Yang [24] proposed an iterative method that resulted in a series solution for
the free and steady-state forced longitudinal vibrations of non-uniform rods. The conver-
gence and linear independence of the proposed method were verified using convergence
tests and the nonzero value of the corresponding Wronskian determinant.

Shali et al. [25] analyzed the axial vibration of non-uniform rods with different end
conditions using the differential transform method.
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Šalinić et al. [26] proposed a non-iterative computational technique to study the free
vibrations of axially functionally graded tapered, stepped, and continuously segmented
rods and beams with elastically restrained ends with attached masses. The proposed
method was referred to as the symbolic–numeric method of initial parameters (SNMIPs)
that stemmed from the modification of the iterative numerical method of initial parameters
in differential forms known in the literature.

Celebi et al. [27] used the complementary function method in the spatial domain with
a Laplace transform in the time domain for the forced vibration of cantilever rods having
material properties and cross-sectional areas arbitrarily varying in the axial direction.

Pillutla et al. [28] studied the longitudinal vibrations of functionally graded rods with
variable cross-sectional areas and material properties using the pseudospectral method.

Jedrysiak [29] considered the vibrations of microstructured periodic slender beams,
and axial forces were considered to analyze the effect of the microstructure size of the
beams on their vibrations, applying the general tolerance modelling method and standard
modelling methods based on two various concepts—weakly slowly varying functions and
slowly varying functions.

Jedrysiak [30] considered slender elastic nonperiodic beams with the axially function-
ally graded structure on the macro-level along the x-axis and a nonperiodic structure on
the micro-level, applying the tolerance modelling method to derive the model equations of
the general tolerance model and standard tolerance model and describing dynamics and
stability for axially functionally graded beams with the microstructure.

The governing equation of axial rod vibrations is a differential equation with variable
coefficients. Analytical solutions are available only for limited cases of cross-sectional area
variations. Hence, alternative analysis techniques are employed for these situations, such
as the weighted residual method, Ritz method, finite difference method, and finite element
method. In the last two decades, some analytical approximation methods have gained
much popularity in the solution of linear/nonlinear ordinary/partial differential equations
and have been applied to various applied mechanics problems. Some of these analytical
approximation methods include the differential transform method (DTM) [31], variational
iteration method (VIM) [32], Adomian decomposition method (ADM) [33], homotopy
perturbation method (HPM) [34], homotopy analysis method (HAM) [35], and optimal
auxiliary functions method (OAFM) [36]. The application of these methods involves
conducting analytical integration; however, they may be difficult to integrate, especially if
expressions include singular and transcendental terms.

In this study, the difficulty in the analytical integration process is eliminated by divid-
ing the problem domain into a number of subdomains such that in each domain, variable
properties are assumed as constants that are computed at the center of the subdomain. This
assumption accelerates the analytical approximation process. Specifically, VIM and ADM
are used in view of the approach that is the subject of the present study.

2. Axial Vibration of Rods

Rod vibrations are a fundamental topic in textbooks on mechanical vibrations [35–37].
The rod shown in the following figure was considered.

In Figure 1, L is the length of the rod, x is the axial coordinate, w is the axial displace-
ment, and P is the force acting on an infinitesimal element. The governing equation for the
free axial vibration of the rod, as shown in Figure 1, is as follows:

∂

∂x

[
EA(x)

∂w(x, t)
∂x

]
= ρA(x)

∂2w(x, t)
∂t2 (1)

Applying the separation of variables techniques with w(x, t) = u(x)T(t), the govern-
ing equation becomes the following:

d
dx

[
EA(x)

du(x)
dx

]
+ ω2ρA(x)u(x) = 0 (2)
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If the cross-sectional area is constant, that is, A(x) = A, Equation (2) takes the follow-
ing form:

∂2u(x)
∂x2 +

(ω

c

)2
u(x) = 0 (3)

where c =
√

E/ρ. Since Equation (3) is a differential equation with constant coefficients, it
is much easier to solve than Equation (2).

If the bar is axially functionally graded, then the governing equation reads as follows:

∂

∂x

[
E(x)A(x)

∂w(x, t)
∂x

]
= ρ(x)A(x)

∂2w(x, t)
∂t2 (4)

Applying the separation of variables technique, Equation (4) becomes the follow-
ing [19]:

d
dx

[
E(x)A(x)

du(x)
dx

]
+ ω2ρ(x)A(x)u(x) = 0 (5)

If the axial stiffness and density are constant, Equation (5) takes the form given in
Equation (3). Equation (5) is now expanded to produce the following equation.

d2u(x)
dx2 +

1
E(x)A(x)

d
dx

[E(x)A(x)]
du(x)

dx
+ ω2 ρ(x)

E(x)
u(x) = 0 (6)

For homogeneous rods, Equation (6) reduces into a simpler form.

d2u(x)
dx2 +

1
A(x)

d
dx

[A(x)]
du(x)

dx
+
(ω

c

)2
u(x) = 0 (7)

The exact solutions of Equations (6) and (7) are available only for a limited number
of cases. This study aimed to provide an analytical-based numerical approach for solving
both equations for the computation of free axial vibration frequencies.

3. The Method

In this section, a brief explanation of the proposed technique is given.

3.1. ADM

ADM [33] is a powerful technique for solving linear/nonlinear ordinary/partial
differential equations and has attracted significant attention in the applied sciences.

Consider an equation of the following form.

Ly + Ry + Ny = f(x) (8)

where L is the linear operator of maximum order, N is the nonlinear operator, and R is
the operator for the remaining terms. We assume that L is a second-order derivative: i.e.,
L = d2/dx2. Then, the inverse operator of L is

L−1(·) =
x∫

0

t∫
0

(.)dτdt (9)
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If all terms on the left-hand side of the equation in Equation (4) are taken to the right-
hand side except for term Ly, then, by applying the inverse operator to both sides of the
equation, the following relation is obtained:

y(x) = y(0) + xy′(0) + g(x)− L−1Ry− L−1Ny (10)

where g(x) is obtained by integrating function f(x). The solution is defined as follows:

y(x) =
∞

∑
n=0

yn(x) (11)

Ny(x) =
∞

∑
n=0

An(x) (12)

In Equation (8), An(x) is the nth Adomian polynomial and is defined as follows:

Ak =
1
k!

∂

∂λk

[
N

(
∞

∑
n=0

ynλn

)]
λ=0

k = 0, 1, 2, . . . (13)

Inserting Equations (11) and (12) into Equation (10), the following successive relations
are obtained.

y0(x) = y(0) + xy′(0) + g(x) (14)

yk(x) = −L−1Ryk−1(x)− L−1Ak−1(x) k ≥ 1 (15)

Finally, the solution can be defined in terms of an infinite series as follows:

y(x) = lim
n→∞

n

∑
k=0

yk(x) (16)

After calculating the N terms, the solution to Equation (16) with these terms is called
an Nth-order solution.

3.2. VIM

VIM is an analytical technique used to solve linear/nonlinear ordinary/partial differ-
ential equations [32]. This method rapidly converges to accurate results.

We consider the following differential equation:

Ly + Ny = f(x) (17)

where L is a linear operator, N is a nonlinear operator, and f(x) is a known non-homogeneous
term. VIM proposes a correction function for the solution to Equation (17):

yn(x) = yn−1(x) +
x∫

0

λ(τ)
[
Lyn−1(τ) + Nỹn−1(τ)− f(τ)

]
n ≥ 1 (18)

where l is a generalized Lagrange multiplier based on variational theory. In addition, yn(x)
is the nth-order approximation for y(x), and ỹn(x) is a limited variation of the nth-order
approximation: that is, δỹn(τ) = 0. Considering the limited variation, if a variation is
applied to Equation (18), the following relation is obtained.

δyn(x) = δyn−1(x) + δ

 x∫
0

λ(τ)Lyn−1(τ)

 (19)
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Expanding the parenthesis, the following equation can be written.

δyn(x) = δyn−1(x) +
[

λ(τ)
∫ τ

0
Lδyn−1(ξ)dξ

]τ=x

τ=0
−
∫ x

0
λ′(τ)

(∫ τ

0
Lδyn−1(ξ)dξ

)
dτ (20)

By applying stationary boundary conditions to Equation (20), the optimal value of the
Lagrange multiplier is obtained. Once the Lagrange multiplier has been determined, the
solution to Equation (17) can be calculated using the following successive approximations:

yn(x) = yn−1(x) +
x∫

0

λ(τ)
[
Lyn−1(τ) + Nyn−1(τ)− f(τ)

]
n ≥ 1 (21)

The initial approximation y0(x) is predefined and is chosen generally as the solution
for the linear operator.

3.3. Subdomain-Based Numerical Solution Approach

The rod considered in this study was divided into subdomains, as shown in the
figure below.

The governing equation in Equation (6) can be rearranged in the following form:

d2u(x)
dx2 +

S′(x)
S(x)

du(x)
dx

+ ω2 m(x)
S(x)

u(x) = 0 (22)

where S(x) = E(x)A(x) and m(x) = ρ(x)A(x). The governing equation given in the ith
domain is shown in Figure 2, which can be written as follows:

d2u(x)
dx2 +

S′(x̃i)

S(x̃i)

du(x)
dx

+ ω2 m(x̃i)

S(x̃i)
u(x) = 0 (23)

where x̃i is in the interval of the ith subdomain and may be performed in different ways. In
this study, x̃i was assumed to be the axial coordinate of the center of the ith subdomain.
Once S′(x)/S(x) and m(x)/S(x) are calculated at x̃i, they are assumed to be constant
throughout the subdomain, which leads to a differential equation with constant coefficients.
This type of arrangement simplifies the process described in Equations (15) and (21): for
a sufficiently fine division of the problem domain, the central properties represent the
sufficient properties of the related subdomain.
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In addition to Equation (23), two continuity conditions should be satisfied between
the two subdomains. We consider the subdomains shown in Figure 2. Between subdomain
i and subdomain i − 1 at node i, the continuity conditions are as follows:

ui−1
2 = ui

1 (24)

(
u′
)i−1

2 =
(
u′
)i

1 (25)
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Finally, boundary conditions were applied for different end conditions. The boundary
conditions for a fixed and free end are given as follows [35–37]:

u(x)|at fixed end = 0 (26)

du(x)
dx

∣∣∣∣
at free end

= 0 (27)

With respect to the initial approximation for the solution of Equation (23), each subdo-
main is described by the following equation, which satisfies the requirements for the initial
approximation of VIM and ADM:

ui
0(ξ) = Ai + Biξ (28)

where ξ is the local coordinate. The Nth-order solution is sought within each subdomain
according to Equations (15) and (21) based on ADM and VIM, respectively. A second-order
solution for subdomain i via ADM with the initial approximation given in Equation (28)
reads as follows:

u2
i (ξ) = Ai

(
1− βi

ξ2

2
+ αiβi

ξ3

6
+ β2

i
ξ4

24

)
+ Bi

(
ξ − αi

ξ2

2
+ α2

i
ξ3

6
− βi

ξ3

6
+ αiβi

ξ4

12
+ β2

i
ξ5

120

)
(29)

where αi = S′(x̃i)/S(x̃i) and βi = m(x̃i)/S(x̃i). Then, the derivative of the second-order
axial displacement with respect to the local coordinate would be as follows:

du2
i (ξ)

dξ
= Ai

(
−βiξ + αiβi

ξ2

2
+ β2

i
ξ3

6

)
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2
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i
ξ4

24

)
(30)

Continuity conditions given in Equations (24) and (25) can be written with the second-
order displacement in Equation (29) as follows:
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)
= Ai (31)
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24

)
= Bi (32)

where Li−1 = xi− xi−1 is the length of the domain i− 1 (see Figure 2). Hence, second-order
solutions in subdomains lead to the following relation in matrix form, which is obtained
for node i.

 −
(

1− βi−1
L2

i−1
2 + αi−1βi−1

L3
i−1
6 + β2

i−1
L4

i−1
24

)
−
(

ξ − αi−1
L2

i−1
2 + α2

i−1
L3

i−1
6 − βi−1

L3
i−1
6 + αi−1βi−1

L4
i−1
12 + β2

i−1
L5

i−1
120

)
1 0

−
(
−βi−1Li−1 + αi−1βi−1

L2
i−1
2 + β2

i−1
L3

i−1
6

)
−
(

1− αi−1Li−1 + α2
i−1

L2
i−1
2 − βi−1

L2
i−1
2 + αi−1βi−1

L3
i−1
3 + β2

i−1
L4

i−1
24

)
0 1




Ai−1

Bi−1

Ai

Bi
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0
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(33)

The fourth-order solution provides additional terms to the multiples of Ai and Bi
given in the parentheses in Equation (29). In this study, second- and fourth-order solutions
are used in each subdomain.

After applying all the required continuity and boundary conditions at each node, the
following equation in the matrix form is obtained:

[K(ω)]{Λ} = {0} (34)

In Equation (34), [K] is the coefficient matrix, which is a function of free vibration
frequency w. {Λ} is a vector composed of coefficients Ai’s and Bi’s. A non-trivial solution
to Equation (34) leads to the desired free vibration frequencies.
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Below, the proposed approach is applied to a number of case studies available in
the literature.

4. Numerical Results

In this section, the proposed technique is applied to available problems in the literature.

4.1. Case 1

Eisenberger [2] calculated the free axial vibration frequencies of a variable cross-section
fixed–free rod with two different area functions. Both ADM and VIM are employed in
the solution, and the results are compared below with different numbers of subdomains
and solution orders within each subdomain. In the table, n represents the number of
subdomains, and m represents the order of the solution within each subdomain.

From Tables 1 and 2, it can be observed that ADM and VIM provide the same answers
for each frequency with assumed values of n and m. Hence, from now on, the results of
this study will be given as a single value for each of the cases considered. From Table 2,
the second-order solution for the first frequency appears to be adequate, whereas for other
frequencies, the fourth-order solution is required. The improvement of the solution with
the number of subdomains is investigated below for both cases. Hence, the fourth-order
solution was used in the solutions. Tables 3 and 4 show that with a fine mesh, the results
obtained using centroidal properties within each subdomain are in perfect agreement with
the results in [2]. In conclusion, the proposed approach provides perfect results with the
advantage of computation ease.

Table 1. Comparison of results via ADM and VIM for A(x) = 2− x.

n = 10 [2]
First Five

Frequencies
m = 2 m = 4

ADM VIM ADM VIM

1.79466 1.79466 1.79410 1.79410 1.79401

4.80205 4.80205 4.80211 4.80211 4.80206

7.91027 7.91027 7.90899 7.90899 7.90896

11.05688 11.05688 11.03511 11.03511 11.03509

14.25171 14.25171 14.16801 14.16801 14.16799

Table 2. Comparison of results via ADM and VIM for A(x) = 3− 4x + 2x2.

n = 10 [2]
First Five

Frequencies
m = 2 m = 4

ADM VIM ADM VIM

1.97035 1.97035 1.97011 1.97011 1.97090

4.82192 4.82192 4.82058 4.82058 4.82076

7.91805 7.91805 7.91813 7.91813 7.91820

11.05315 11.05315 11.04139 11.04139 11.04144

14.23085 14.23085 14.17282 14.17282 14.17284
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Table 3. Comparison of results with A(x) = 2− x for a different number of subdomains.

This Study [2]
First Five

Frequenciesn = 10 n = 20 n = 50

1.79410 1.79403 1.79401 1.79401

4.80211 4.80207 4.80206 4.80206

7.90899 7.90897 7.90896 7.90896

11.03511 11.03510 11.03510 11.03509

14.16801 14.16799 14.16799 14.16799

Table 4. Comparison of results with A(x) = 3− 4x + 2x2 for a different number of subdomains.

n = 10 [2]
First Five

Frequencies
m = 2 m = 4

ADM VIM ADM VIM

1.97078 1.97088 1.97090 1.97090 1.97078

4.82071 4.82075 4.82076 4.82076 4.82071

7.91818 7.91820 7.91820 7.91820 7.91818

11.04143 11.04144 11.04144 11.04144 11.04143

14.17283 14.17284 14.17284 14.17284 14.17283

4.2. Case 2

Kumar and Sujith [5] considered specific cross-sectional area functions to determine
the exact longitudinal vibration frequencies of non-uniform rods. However, numerical
extraction from analytical expressions was computed incorrectly, and the results for various
cases were corrected by other researchers [38,39]. The proposed approach was imple-
mented with fourth-order solutions within each subdomain. The results are given in the
tables below.

Tables 5–7 show very good agreement between the results of this study and those
in [5,39]. Even for the largest mode with n = 20, the maximum relative error is less
than 0.00002. Hence, the proposed approach yields excellent results using the centroidal
properties of each subdivision.

Table 5. Comparison of results for the fixed–fixed rod with A(x) = (ax + b)4, b = 1.

Mode

a = 1 a = 2

This
Study
n = 20

This
Study
n = 100

[40]
This

Study
n = 20

This
Study
n = 100

[40]

1 3.286029 3.286007 3.285998 3.474486 3.474339 3.474339

2 6.360710 6.360678 6.360671 6.480282 6.480034 6.480028

3 9.477253 9.477196 9.477180 9.561781 9.561370 9.561367

4 12.606002 12.605890 12.605802 12.671048 12.670362 12.670323

5 15.739881 15.739656 15.739648 15.792900 15.791752 15.791747

6 18.876445 18.876002 18.874533 18.921558 18.919655 18.919130
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Table 6. Comparison of results for the fixed–free rod with A(x) = (ax + b)4, b = 1.

Mode

a = 1 a = 2

This
Study
n = 20

This
Study
n = 100

[40]
This

Study
n = 20

This
Study
n = 100

[40]

1 0.824911 0.824969 0.824971 0.526525 0.526686 0.526694

2 4.600469 4.600454 4.600454 4.689503 4.689332 4.689329

3 7.789132 7.789097 7.789096 7.849000 7.848697 7.848695

4 10.949734 10.949659 10.949659 10.994129 10.993612 10.993610

5 14.101746 14.101592 14.101591 14.137111 14.136237 14.136235

6 17.250022 17.249709 17.249708 17.279715 17.278249 17.278247

Table 7. Comparison of results for the free–free rod with A(x) = (ax + b)4, b = 1.

Mode

a = 1 a = 2

This
Study
n = 20

This
Study
n = 100

[40]
This

Study
n = 20

This
Study
n = 100

[40]

1 3.555887 3.555792 3.555788 4.041829 4.041340 4.041322

2 6.513149 6.513070 6.513068 6.857766 6.857191 6.857173

3 9.581360 9.581272 9.581270 9.830658 9.830000 9.829986

4 12.684744 12.684610 12.684608 12.877428 12.876563 12.876551

5 15.803120 15.802878 15.802877 15.959733 15.958463 15.958453

6 18.929253 18.928799 18.928798 19.061341 19.059368 19.059359

Different variations in the cross-sectional area were also considered in the same
study [5].

In Tables 8–10, the results of this study agree very well with the analytical results [5,41].
The maximum relative error for the square sine function with n = 20 is less than 0.00003.
Consequently, the proposed approach worked very well in this case.

Table 8. Comparison of results for fixed–fixed rod with A(x) = A0sin2(ax + b), b = 1.

Mode

a = 1 a = 2

This
Study
n = 20

This
Study
n = 100

[40]
This

Study
n = 20

This
Study
n = 100

[40]

1 2.978151 2.978187 2.978189 2.422827 2.422601 2.422727

2 6.203079 6.203097 6.203097 5.955421 5.956256 5.956376

3 9.371565 9.371576 9.371576 9.210152 9.210008 9.210127

4 12.526513 12.526518 12.526519 12.407305 12.406080 12.406195

5 15.676103 15.676100 15.676100 15.582357 15.580012 15.580119

6 18.823033 18.823011 18.823011 18.746557 18.743054 18.743152
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Table 9. Comparison of results for fixed–free rod with A(x) = A0sin2(ax + b), b = 1.

Mode

a = 1 a = 2

This
Study
n = 20

This
Study
n = 100

[40]
This

Study
n = 20

This
Study
n = 100

[40]

1 1.517623 1.517637 1.517638 2.149426 2.148593 2.148560

2 4.702142 4.702145 4.702145 5.539852 5.535922 5.535762

3 7.848310 7.848311 7.848311 8.639936 8.633093 8.632812

4 10.991621 10.991621 10.991620 11.703833 11.695014 11.694640

5 14.134128 14.134123 14.134120 14.767991 14.758288 14.757860

6 17.276297 17.276824 17.276280 17.840719 17.831054 17.830600

Table 10. Comparison of results for free–free rod with A(x) = A0sin2(ax + b), b = 1.

Mode

a = 1 a = 2

This
Study
n = 20

This
Study
n = 100

[40]
This

Study
n = 20

This
Study
n = 100

[40]

1 3.309109 3.309071 3.309070 4.212406 4.209714 4.209604

2 6.375233 6.37509 6.375209 7.265756 7.260092 7.259860

3 9.487380 9.487363 9.487363 10.291902 10.283836 10.283498

4 12.613663 12.613649 12.613648 13.327822 13.318388 13.317980

5 15.745930 15.745914 15.745913 16.379162 16.369366 16.368917

6 18.881271 18.881240 18.881240 19.445177 19.435801 19.435335

4.3. Case 3

Guo and Yang [16] obtained a series solution for a fixed–fixed rod using an exponential
area function. The proposed method was applied to the case, and the first five frequencies
for fixed–free and free–free rods were also computed for the researchers for further studies
on the subject.

As shown in Table 11, the results of this study are in perfect agreement with those
in [9]. Guo et al. [9] only considered a fixed–fixed rod. As a contribution, we computed the
first five frequencies of the fixed–free and free–free rods for the same area function using
100 subdomains in the solution region. Table 12 presents the results below.

Table 11. Comparison of results for the fixed–fixed rod with A(x) = A0ecx2/L2
, L = 1.

Mode

c = 0.5 c = 1 c = 2

This
Study
n = 100

Kummer
Function

[16]

This
Study
n = 100

Kummer
Function

[16]

This
Study
n = 100

Kummer
Function

[16]

1 3.231130281 3.231130281 3.339335867 3.339335867 3.603139793 3.603139793

2 6.329186675 6.329186675 6.387440255 6.387440254 6.539562685 6.539562675

3 9.455600357 9.455600357 9.494964059 9.494964058 9.598980448 9.598980427

4 12.58952819 12.58952819 12.61919022 12.61919022 12.69788674 12.69788671
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Table 12. First five frequencies of fixed–free and free–free rods with A(x) = A0ecx2/L2
, L = 1.

Mode

c = 0.5 c = 1 c = 2

Fixed–
Free Free–Free Fixed–

Free Free–Free Fixed–
Free Free–Free

1 1.414214 3.072491 1.263693 3.025089 0.985886 2.997101

2 4.667369 6.249688 4.638712 6.228916 4.631731 6.226225

3 7.827282 9.402573 7.810922 9.389054 7.809608 9.388313

4 10.976564 12.549750 10.965036 12.539695 10.964576 12.539391

5 14.122401 15.694679 14.113484 15.686666 14.113271 15.686512

4.4. Case 4

Yardimoglu and Aydin [17] obtained exact solutions for the longitudinal natural
vibration frequencies of rods with variable cross-sections. Yardimoglu considered the area
function as a power of sine function, that is, sinn(ax + b), and calculated the frequencies
of vibrations with different a, b, and n values for different end conditions. Nine different
cases were considered [17]. Although the results of all cases in the paper agree very well
with the proposed technique, only three of them are provided for comparison purposes.
Below, the comparisons were chosen for the fixed values of b = 1 and a = π− 2b, and
100 subdomains were used in the analysis.

As shown in Tables 13–15, the largest relative error was less than 2 × 10−6. The results
obtained using the proposed technique agree very well with the analytical solutions [17].
Hence, the applied computational procedure was highly effective in this case.

Table 13. Comparison of results for the fixed–fixed rod with A(x) = A0sinn(ax + b).

Mode
n = 1 n = 2 n = 3 n = 4

This Study [17] This Study [17] This Study [17] This Study [17]

1 3.033656 3.033658 2.926834 2.926836 2.821242 2.821246 2.716998 2.717003

2 6.228474 6.228475 6.178606 6.178607 6.133694 6.133696 6.093837 6.093840

3 9.388171 9.388171 9.355383 9.355384 9.326455 9.326456 9.301423 9.301424

4 12.538877 12.538877 12.514409 12.514409 12.492984 12.492985 12.474620 12.474621

5 15.685953 15.685954 15.666425 15.666425 15.649387 15.649387 15.634848 15.634849

6 18.831208 18.831208 18.814954 18.814955 18.800802 18.800803 18.788757 18.788757

Table 14. Comparison of results for the fixed–free rod with A(x) = A0sinn(ax + b).

Mode
n = 1 n = 2 n = 3 n = 4

This Study [17] This Study [17] This Study [17] This Study [17]

1 1.568123 1.568123 1.560154 1.560155 1.547041 1.547041 1.529022 1.529023

2 4.715830 4.715830 4.726103 4.726102 4.743064 4.743064 4.766485 4.766484

3 7.856372 7.856372 7.863537 7.863537 7.875459 7.875459 7.892109 7.892108

4 10.997350 10.997350 11.002678 11.002678 11.011552 11.011552 11.023968 11.023967

5 14.138571 14.138571 14.142783 14.142783 14.149801 14.149801 14.159624 14.159624

6 17.279918 17.279918 17.283392 17.283392 17.289183 17.289183 17.297288 17.297288
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Table 15. Comparison of results for the free–free rod with A(x) = A0sinn(ax + b).

Mode
n = 1 n = 2 n = 3 n = 4

This Study [17] This Study [17] This Study [17] This Study [17]

1 3.250524 3.250523 3.360331 3.360328 3.470895 3.470891 3.582098 3.582093

2 6.342611 6.342610 6.406607 6.406605 6.475018 6.475015 6.547679 6.547675

3 9.465160 9.465160 9.509270 9.509269 9.557058 9.557056 9.608469 9.608466

4 12.596871 12.596870 12.630356 12.630355 12.666807 12.666805 12.706199 12.706197

5 15.732444 15.732444 15.759386 15.759385 15.788776 15.788777 15.820607 15.820605

6 18.869994 18.869993 18.892515 18.892514 18.917112 18.917113 18.943782 18.943781

4.5. Case 5

Shahba et al. [18], Shahba and Rajasekaran [19], and Pillutla et al. [28] studied the
longitudinal free vibration of axially functionally graded rods using various computational
approaches. They considered a tapered bar with a rectangular cross-section for which
its breath taper ratio is cb and height taper ratio is ch, and its cross-section is given by
A(x) = (1− cbx)(1− chx), where x = x/L. The modulus of elasticity and mass density
vary as E = E0(1 + x) and ρ = ρ0

(
1 + x + x2). Numerical experiments showed that

20 subdomains were adequate for the first three frequencies. However, to determine the
first six vibration frequencies, 100 subdomains were used in the calculations. In [18,19,28],
the first three vibration frequencies of fixed–fixed and fixed–free rods were considered.

The efficiency of the proposed method can be observed in Tables 16 and 17. Due to
the accurate results from the presented approach, additional information is presented in
Tables 18 and 19 for the researchers for further studies on the subject.

In this study, additional computations are conducted for further research. These
additional results are given in Tables 18 and 19 below.

Table 16. Comparison of results for fixed–fixed functionally graded rods.

ch cb

ω1 ω2 ω3

[19] [28] This
Study [19] [28] This

Study [19] [28] This
Study

0.0

0.0 2.8760 - 2.875963 5.7627 - 5.762720 8.6453 - 8.645279

0.2 2.8631 - 2.863124 5.7562 - 5.756197 8.6409 - 8.640920

0.4 2.8415 - 2.841461 5.7453 - 5.745320 8.6337 - 8.633663

0.6 2.8023 - 2.802335 5.7251 - 5.725108 8.6201 - 8.620077

0.8 2.7192 - 2.719200 5.6767 - 5.676634 8.5860 - 8.586022

0.2

0.2 2.8539 2.853926 2.853922 5.7515 5.751501 5.751493 8.6378 8.637841 8.637772

0.4 2.8369 2.836936 2.836933 5.7430 5.742957 5.742966 8.6321 8.632147 8.632078

0.6 2.8042 2.804223 2.804218 5.7260 5.726023 5.726014 8.6207 8.620747 8.620682

0.8 2.7311 2.731119 2.731107 5.6829 5.682885 5.682900 8.5903 8.590337 8.590280

0.4

0.4 2.8260 2.825973 2.825970 5.7375 5.737498 5.737489 8.6284 8.628504 8.628435

0.6 2.8016 2.801561 2.801557 5.7249 5.724929 5.724920 8.6200 8.620056 8.619992

0.8 2.7415 2.741519 2.741508 5.6892 5.689170 5.689156 8.5947 8.594748 8.594692

0.6
0.6 2.7886 2.788644 2.788640 5.7188 5.718775 5.718765 8.6160 8.615999 8.615940

0.8 2.7468 2.746813 2.746803 5.6942 5.694204 5.694192 8.5986 8.598631 8.598578

0.8 0.8 2.7340 2.734041 2.734030 5.6901 5.690056 5.690056 8.5965 8.596521 8.596473
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Table 17. Comparison of results for fixed–free functionally graded rods.

ch cb

ω1 ω2 ω3

[19] [28] This
Study [19] [28] This

Study [19] [28] This
Study

0.0

0.0 1.1901 - 1.190121 4.2549 - 4.254908 7.1650 - 7.165005

0.2 1.2503 - 1.250273 4.2683 - 4.268343 7.1728 - 7.172861

0.4 1.3293 - 1.329260 4.2903 - 4.290291 7.1859 - 7.185878

0.6 1.4400 - 1.440031 4.3333 - 4.333294 7.2123 - 7.212325

0.8 1.6129 - 1.612889 4.4444 - 4.444389 7.2891 - 7.289126

0.2

0.2 1.3119 1.311936 1.311941 4.2841 4.284133 4.284152 7.1821 7.181803 7.182161

0.4 1.3928 1.392789 1.392794 4.3090 4.309044 4.309063 7.1970 7.196715 7.197021

0.6 1.5059 1.505925 1.505931 4.3559 4.355943 4.355962 7.2260 7.225773 7.225995

0.8 1.6818 1.681840 1.681836 4.4726 4.472646 4.472622 7.3068 7.306703 7.306799

0.4

0.4 1.4759 1.475871 1.475877 4.3377 4.337722 4.337740 7.2143 7.214022 7.214275

0.6 1.5917 1.591695 1.591701 4.3897 4.389690 4.389708 7.2466 7.246450 7.246626

0.8 1.7706 1.770668 1.770663 4.5138 4.513827 4.513801 7.3329 7.332918 7.332981

0.6
0.6 1.7104 1.710443 1.710450 4.4487 4.448671 4.448690 7.2839 7.283791 7.283910

0.8 1.8918 1.891820 1.891814 4.5832 4.583282 4.583249 7.3787 7.378728 7.378747

0.8 0.8 2.0723 2.072303 2.072286 4.7328 4.732920 4.732813 7.4888 7.488952 7.488819

Table 18. Additional non-dimensional frequencies for the functionally graded rod.

ch cb
Fixed–Fixed Rod Fixed–Free Rod

ω4 ω5 ω6 ω4 ω5 ω6

0.0

0.0 11.527389 14.409395 17.291364 10.058501 12.946776 15.832722

0.2 11.524117 14.406776 17.289181 10.064076 12.951100 15.836256

0.4 11.518673 14.402421 17.285552 10.073349 12.958304 15.842147

0.6 11.508451 14.394231 17.278720 10.092388 12.973163 15.854326

0.8 11.482303 14.373052 17.260943 10.150175 13.019219 15.892511

0.2

0.2 11.521753 14.404884 17.287604 10.070687 12.956231 15.840450

0.4 11.517481 14.401466 17.284756 10.081286 12.964471 15.847190

0.6 11.508906 14.394595 17.279024 10.102171 12.980778 15.860559

0.8 11.485529 14.375646 17.263112 10.162984 13.029246 15.900742

0.4

0.4 11.514750 14.399282 17.282936 10.093623 12.974071 15.855046

0.6 11.508399 14.394194 17.278692 10.116990 12.992331 15.870023

0.8 11.488913 14.378385 17.265409 10.182042 13.044192 15.913024

0.6
0.6 11.505375 14.391780 17.276683 10.144039 13.013508 15.887408

0.8 11.492002 14.380928 17.267564 10.215716 13.070717 15.934868

0.8 0.8 11.490668 14.379970 17.266821 10.300149 13.138517 15.991278
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Table 19. Non-dimensional frequencies for the free–free functionally graded rod.

ch cb ω1 ω2 ω3 ω4 ω5 ω6

0.0

0.0 2.946681 5.794961 8.666278 11.543029 14.421883 17.301774

0.2 2.934015 5.788683 8.662112 11.539910 14.419390 17.299698

0.4 2.933673 5.788820 8.662252 11.540028 14.419489 17.299782

0.6 2.962114 5.805445 8.673717 11.548734 14.426494 17.305639

0.8 3.068501 5.880639 8.729109 11.592045 14.461882 17.335486

0.2

0.2 2.924899 5.784214 8.659156 11.537699 14.417624 17.298227

0.4 2.929150 5.786684 8.660854 11.538987 14.418659 17.299092

0.6 2.963729 5.806550 8.674503 11.549336 14.426982 17.306047

0.8 3.078513 5.886890 8.733501 11.595402 14.464592 17.337756

0.4

0.4 2.939281 5.792205 8.664600 11.541814 14.420927 17.300985

0.6 2.981602 5.816379 8.681183 11.554380 14.431030 17.309426

0.8 3.106649 5.903695 8.745184 11.604301 14.471763 17.343756

0.6
0.6 3.033852 5.846773 8.702104 11.570253 14.443796 17.320096

0.8 3.171214 5.944370 8.773819 11.626209 14.489453 17.358572

0.8 0.8 3.320973 6.058919 8.859947 11.693961 14.544927 17.405400

4.6. Case 6

Shahba et al. [20] and Pillutla et al. [28] studied the longitudinal free vibration of axially
functionally graded rods with a cross-section given by A(x) = (1− cx), where x = x/L.
The modulus of elasticity and mass density varied according to E = E0ex and ρ = ρ0ex. As
in the previous case, the numerical experiments showed that 20 subdomains were adequate
for comparison. However, 100 subdomains were used to accurately determine the first six
vibration frequencies. The results are summarized in the tables below.

As shown in Table 20, the results obtained from this study are in very good agreement
with [28], even with 20 subdomains. However, for further research, additional computations
were conducted, and the results shown in Tables 21–23 were obtained according to different
combinations of boundary conditions.

Table 20. Comparison of results for functionally graded rod.

c Mode

Fixed–Fixed Rod Fixed–Free Rod

[20] [28] This Study
n = 20 [20] [28] This Study

n = 20

0.1

1 3.1757 3.172409 3.172409 1.2988 1.2985 1.298593

2 6.3247 6.298648 6.298648 4.6478 4.637424 4.637424

3 9.5228 9.435093 9.435095 7.8592 7.809505 7.809506

0.3

1 3.1514 3.148153 3.148153 1.3722 1.371958 1.371958

2 6.3123 6.286365 6.286365 4.6656 4.655118 4.655118

3 9.5144 9.426885 9.426885 7.8698 7.819942 7.819942

0.5

1 3.1120 3.108831 3.108818 1.4710 1.470676 1.470698

2 6.2916 6.265918 6.265911 4.6983 4.687528 4.687538

3 9.5005 9.413135 9.413131 7.8899 7.83957 7.839577

0.8

1 2.9780 2.975221 2.974925 1.7168 1.716251 1.716528

2 6.2113 6.186568 6.186339 4.8486 4.836778 4.837135

3 9.4427 9.357079 9.356909 7.9958 7.9433464 7.943773
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Table 21. Non-dimensional frequencies for fixed–fixed rod.

c ω1 ω2 ω3 ω4 ω5 ω6

0.1 3.172409 6.298648 9.435093 12.574109 15.714154 18.854715

0.3 3.148154 6.286366 9.426885 12.567948 15.709223 18.850605

0.5 3.108831 6.265918 9.413135 12.557602 15.700935 18.843693

0.7 3.037652 6.225862 9.385513 12.536596 15.684013 18.829536

0.9 2.865805 6.107338 9.294870 12.463441 15.622847 18.777080

Table 22. Non-dimensional frequencies for fixed–free rod.

c ω1 ω2 ω3 ω4 ω5 ω6

0.1 1.298593 4.637424 7.809505 10.963902 14.112563 17.258642

0.3 1.371958 4.655118 7.819942 10.971323 14.118324 17.263351

0.5 1.470678 4.687529 7.839571 10.985386 14.129277 17.272319

0.7 1.614399 4.760055 7.886977 11.020261 14.156765 17.294968

0.9 1.853356 4.987153 8.076173 11.177288 14.289295 17.408893

Table 23. Non-dimensional frequencies for free–free rod.

C ω1 ω2 ω3 ω4 ω5 ω6

0.1 3.174157 6.299530 9.435682 12.574551 15.714508 18.855010

0.3 3.168121 6.296532 9.433687 12.573055 15.713312 18.854014

0.5 3.182758 6.304872 9.439404 12.577387 15.716794 18.856923

0.7 3.246929 6.346320 9.468966 12.600161 15.735255 18.872421

0.9 3.458060 6.538647 9.630470 12.736129 15.851494 18.973406

5. Conclusions

In this study, the axial free vibration of non-uniform, homogeneous, and functionally
graded rods is considered. The governing equation of the problem is a variable coefficient
differential equation, for which the analytical solutions are strictly limited. Analytical
approximate solution methods are available for these types of problems. Although these
methods are efficient, the analytical integration process becomes cumbersome or sometimes
impossible for higher-order solutions to achieve better convergence. This study aims to
propose a subdomain-based numerical solution approach to eliminate difficulties in the
integration process while benefitting from the analytical formulation. Several case stud-
ies were considered, including polynomial, sinusoidal, and exponential variations of the
cross-sectional area, for which the proposed technique led to excellent results. Functionally
graded rods with variable cross-sectional areas and variable material properties were also
considered. The proposed method was also very effective and yielded very good results.
Numerical studies showed that 20 subdomains were sufficient for the first three vibration
frequencies, whereas it was also sufficient for the first six vibration frequencies if the varia-
tion functions for the cross-sectional areas were not too complex. However, 100 subdomains
were preferred for most comparative studies. Because the presented technique provided
excellent results, additional computations were conducted for researchers who will aim to
consider the problem in future research using different solution methods. In conclusion,
the proposed approach is very effective in solving the vibration problems of homogeneous
and functionally graded rods with variable cross-sectional areas.
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