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Abstract: There is a constant demand for higher equipment parameters, such as the pressure of a
sealing medium and shaft rotation speed. However, as the parameters increase, it becomes more
difficult to ensure hermetization efficiency. The rotor of a multi-stage machine rotates in non-contact
seals. Seals’ parameters have a great influence on vibration characteristics. Non-contact seals are
considered to be hydrostatodynamic supports that can effectively dampen rotor oscillations. The
force coefficients of gap seals are determined by geometric and operational parameters. A purposeful
choice of these parameters can influence the vibration state of the rotor. It is shown for the first time
that the initially dynamically flexible rotor, in combination with properly designed seals, can become
dynamically rigid. Analytical dependencies for the computation of the dynamic characteristics are
obtained. The resulting equations make it possible to calculate the radial-angular vibrations of the
rotor of a centrifugal machine in the seals and construct the amplitude–frequency characteristics. By
purposefully changing the parameters of non-contact seals, an initially flexible rotor can be made
rigid, and its vibration resistance increases. Due to this, the environmental safety of critical pumping
equipment increases.

Keywords: gap seals; hydromechanical system; vibrations; frequency characteristics; stability

1. Introduction

Centrifugal pumps as a type of rotary machine are applied for transporting fluids in
air conditioning [1,2] and refrigeration [3,4] systems for building and district heat and cold
supply [5,6]. They are widely used in thermal and power energetics [7,8] for circulating hot
water in cogeneration circuits [9,10] to remove the heat from combustion engines for their
air cooling such as gas engines (GEs) [11,12], gas turbines (GTs) [13,14] and internal com-
bustion engines (ICEs) [15,16], as well as in waste heat recovery circuits [17,18] to convert
the heat released from primary engines in waste heat recovery chillers [19,20]. Centrifugal
pumps feed exhaust gas boilers [21,22] in heat utilization systems [23,24] and facilitate
the circulation of coolant in engine cooling systems for cooling inlets [25,26] and charged
air [27,28] in ICEs and intercooling in GTs [29,30]. High-pressure pumps are used for feed-
ing thermopressors for cooling charged air [31,32] in ICEs and intercooling in GTs [33,34].
They are also used for circulating coolants such as chilled water [35,36] in water-cooled heat
exchangers, which are subject to stress and deformation during operation [37,38], as well
as in cooling towers and radiators [39,40] or liquid refrigerant in the refrigeration circuits
of heat exchangers [41,42] and multicomponent liquid media [43–45].
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Vibration and environmental safety factors are of considerable importance for rotary
machines subjected to dynamic loads during hard-loaded operation of railways [46,47] and
especially in ship power plants [48–50].

The demand for centrifugal machines with high parameters, such as compaction
pressure and rotor speed, is constantly growing [51]. Therefore, the task of ensuring their
tightness and vibration reliability has become very important [52]. The rotor seals of
high-speed centrifugal machines are developing into complex systems that determine the
reliability of the units [53,54].

When creating sealing systems for non-standard operating conditions, it is necessary
to take into account their influence on the vibration characteristics of equipment [55,56].

Increased demands are placed on the sealing units of energy pumps [57]. To ensure the
required service life, seals with guaranteed controlled tightness are created for lubrication
and cooling [58,59].

Rotary machines, the main unit of which is the rotor, i.e., a rotating shaft with certain
working parts attached to it, constitute a very wide class of machines. During operation,
the rotor is affected by harmonic disturbances, causing forced oscillations of the rotor [60].
As a rule, the vibration state of the rotor determines the technical level of such machines.
Therefore, the problems of rotor dynamics are of great practical importance for a large
number of design types of rotary machines [61–67]. Seal parameters have a great influence
on vibration characteristics [68,69].

Among rotary machines in all industries, multi-stage high-pressure centrifugal pumps
and compressors are widely used. They are characterized by a steady tendency to increase
operating parameters such as feed, pressure, and rotation speed, that is, to concentrate
increasingly higher power in individual units. The pressure developed by centrifugal
machines is proportional to the square of the rotor speed, so increasing the speed is the
most rational way to achieve high pressure. As a result, high-pressure centrifugal machines
tend to have high speed, and for such machines, the problems of rotor dynamics are
especially relevant.

Energy conversion in non-contact seals must be considered to determine radial stiffness
that effectively reduces rotor vibration. In this case, non-contact seals play the role of
additional dynamic supports of the rotor [70,71].

The rotor of the multi-stage machine rotates in non-contact seals. Hydraulic resistance
arises due to the friction of a viscous fluid against the walls of the channels. The sealed
medium acts on the walls of the non-contact seal channels, one of which belongs to the
vibrating rotating rotor. This effect is especially evident when there are large differences
in sealed pressure. Accordingly, positional, dissipative, gyroscopic, and inertial radial
pressure forces and their moments act on the walls of the channels belonging to the rotor.
The dynamics of the rotor are determined by these forces and moments, which, in turn,
depend on the nature of the rotor’s movement. Thus, the rotor and non-contact seals
represent a closed hydromechanical system. When solving the problem of calculating the
rotor dynamics of a centrifugal machine, it is necessary to take into account the influence of
non-contact seals, which can change the critical frequencies of the rotor and influence the
amplitude of its forced oscillations [72–75].

Operation experience shows that a significant part of the failures of centrifugal pumps
and compressors is associated with the fatigue failure of individual components and parts.
With increasing parameters, the danger of fatigue failure increases, since the overall level
of specific energy intensity increases and, accordingly, the intensity at which additional
alternating stresses caused by vibrations are superimposed also increases [76–80].

Increased vibrations are accompanied by work near critical frequencies, the calculation
of which, due to the lack of reliable data on the rigidity of supports and many random
factors, cannot guarantee reliable detuning from resonant modes [81].

The need for thermal power engineering for feed, main circulation, and other pumps
of increasingly higher parameters prompted a detailed study of the hydrodynamics of
slotted seals and their influence on the vibration state of rotors of centrifugal machines [82].
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Clearance seals act as hydrostatic dynamic bearings, the radial stiffness of which
is proportional to the throttled pressure drop. Typically, the stiffness of seals is either
comparable to or superior to that of plain bearings. Due to this, seals act as additional
intermediate supports [83].

The geometric and design parameters of seals determine their power characteristics.
The analysis of the influence of clearance seals on the dynamics of the rotor makes it
possible to select their design in such a way that the level of rotor vibration does not exceed
acceptable limits throughout the entire operating range.

Therefore, assessing the influence of the geometric and operating parameters of seals
on critical frequencies, the amplitudes of forced vibrations, and the stability of rotor motion
is very important for increasing the vibration reliability of centrifugal machines.

2. Materials and Methods
2.1. Model of the Gap Seal

Figure 1 shows a model of the gap seal [81] which is an annular throttle formed by
an inner cylinder (shaft) with a small taper angle ϑA and an outer cylinder (sleeve) with a
taper angle ϑB; the total taper angle of the channel is ϑ0 = ϑB − ϑA, and the taper parameter
of the channel is θ0 = ϑ0l/2H, |θ0| ≤ 1.
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Figure 1. Model of the gap seal.

Shaft and bushing rotate around their own axes with the frequencies of their own
rotation ω1, ω2. The axes themselves rotate around the fixed center O with precession
frequencies Ω1, Ω2 and also perform radial and angular oscillations.

Thus, when developing gap seals, it is necessary to consider not only their direct
purpose to reduce volumetric losses but also their equally important function, which has to
provide the necessary vibration characteristics of the rotor.

The flow regime is characterized by the constants C, n of the generalized Blasius
formula for the friction drag coefficient λ = CRe−n. Local resistances are determined
by the relative coefficients of hydraulic losses [82]. For laminar flows, the coefficient of
local resistance was determined in [83] for slotted seals with annular grooves. The results
showed that, in this case, the local resistances were close to zero.

Under the action of a sealable pressure drop, a liquid with a high (up to 70 m/s) axial
velocity enters the annular gap formed by short (l < 2R0) rotating cylinders. Due to the
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viscosity, the circumferential velocity of the particles adjacent to the rotating walls gradually
spreads to the inner layers. The time during which the volume of liquid that enters the
channel is in the gap T = l/w0. By the end of this period, near the exit from the channel,
the liquid acquires the maximum average circumferential velocity. At the entrance to the
channel, the velocity is close to zero. Thus, the average circumferential speed and the swirl
ratio vary along the length of the channel.

2.2. Radial Forces and Moments in Gap Seals

To further assess the influence of gap seals on the dynamics of the rotor, we determined
the values of individual components of hydrodynamic forces and moments that arise in
the gaps of gap seals. The derivation of these equations and the physical meaning of the
quantities included in them are described in more detail in [84].
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Additional moments from elastic forces are as follows:

∆M3x = −2lc∆F3y = −2a31Hm
l2
c
l
θx, ∆M3y = −2lc∆F3x = −2a31Hm

l2
c
l
θy,

where the doubled force coefficients are determined as follows:

a11 = 2kg, a21 = 2
(
kd + kgKiθ0

)
, a41 = kgκω, α2 = 2

15 kgκωθ0, α4 = 4
5 kdθ0;

a31 = 2kp(θ0 + Nχm), a51 = kdκω, α3 = 2
5 kdκωθ0, α5 = 2kp(1 + 2∆χ).

The method for calculating additional moments and radial forces acting on the rotor
in seals is given in [85].

In [86,87], the authors suggested considering non-contact seals as automatic control
systems. Using this approach, an algorithm for constructing the dynamic characteristics of
the rotor in non-contact seals was proposed.

3. Results
3.1. Model of the Hydromechanical System with “Rotor-Slotted Seals”

The model of the hydromechanical system with “rotor-slotted seals” is shown in
Figure 2.

As can be seen from the presented model of the hydromechanical system, there are
feedbacks between the parameters of the sealing channels and the parameters that affect
the nature of the rotor oscillations.

The constructed model shows that slot seals not only reduce the loss of the sealed
medium but also affect the vibration characteristics of the rotor of a centrifugal machine.
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Figure 2. The model of the hydromechanical system with rotor-slotted seals.

3.2. Joint Radial–Angular Oscillations of the Rotor in Gap Seals

Radial forces and moments in gap seals, the formulas for which are proposed in
Section 2, are included in the rotor oscillation equations as coefficients [88].

Typical rotor models are reviewed in [81]. In a typical design, the disk rotates in the
plane of the curved axis of the shaft and moves in the radial direction. The gyroscopic
moment of the disk arises due to the inertial resistance to rotation. The weightless elastic
shaft rotates in rigid supports, and the entire mass of the rotor is concentrated at the disk
center of mass.

The rotor is statically and dynamically unbalanced: The center of mass is displaced
relative to the geometric center by an amount of eccentricity, which represents static
unbalance. The main central axes of inertia of the disk, due to skewed landing or other
technological errors, deviate from the main axes of the shaft section (the main axes of shaft
rigidity) at angles that characterize the dynamic imbalance of the rotor. The imbalance
parameters are considered to yield small values.

The rotor–seal system under consideration is an eighth-order oscillatory system with
four generalized coordinates: ux, uy, θx, θy. If the system oscillates about a stable equi-
librium position, then the roots of the characteristic equation are four pairs of complex
conjugate numbers.

For isotropic systems, in which the force coefficients and external loads are identical
in all directions in the plane perpendicular to the axis of rotation, all points of this axis
move along circular trajectories. In this case, we can move on to complex variables and
disequilibria. Let us first note that operations with an imaginary unit have a peculiarity
due to the equivalence of +i and −i, as can be seen from the relation (±i)2 = −1. The rotor
under the influence of gyroscopic forces and moments can perform both direct and reverse
precession. In order not to lose the ability to detect additional movements when moving
to complex variables, it is necessary to multiply the equations by equivalent ones ±i. The
system of equations describing the forced joint radial–angular oscillations of the rotor at a
constant pressure drop across the seals takes the following form [88]:
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(1)

Using standard programs, you can immediately find a numerical solution to these
equations. However, the traditional approach used here allows us to consider the analyt-
ical expressions of amplitudes and phases (the coefficients of the system’s own operator
and the operators of external influences) to determine how various forces and moments
influence them.
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By substituting the solution of Equation (1) in the form

u = uaei(ωt+ϕu) = ũeiωt, θ = θaei(ωt+ϕϑ) = θ̃eiωt,

we obtain a system of algebraic equations for the complex amplitudes A and Г as follows:[
−a1ω

2 + a3 + a4ω
2 + i(a2 − a5)ω
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2 + i(b2 − b5)ω
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(2)

After a series of transformations, Equation (2) takes the following form:

(U11 + iV11)ũ + (U12 + iV12)θ̃ = Aω2,

(U21 + iV21)ũ + (U22 + iV22)θ̃ = Γω2.
(3)

Here, U11 + iV11, U22 + iV22 are the own operators of the independent radial and
angular oscillations correspondingly. Cross-sectional operators U12 + iV12, U21 + iV21
characterize the influence of angular oscillations on radial and the effect of radial on angular,
i.e., the interconnection of these oscillations, with ϖ = ω/Ωu0—dimensionless frequency.

3.3. Frequency Responses and Dynamic Stability

From the system of non-homogenous algebraic Equation (3), after a series of transfor-
mations, we obtain the amplitudes and phases expressed in terms of external disturbances
as follows:
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(4)

Using Formula (4), the amplitude–frequency and phase characteristics are calculated.
The stability is determined using the Routh–Hurwitz criterion for a system of fourth

order [88] as follows:

a2(a2a3 + a4a5)− a1a2
5 > 0,

which reduces to the following form:

ω2
u <

a2
21Ω2

u0

a1a2
5 − a2

21a31 − a21a4a5
(5)

From inequality (5), it is clear that the circulation force (coefficient a5) destabilizes,
and damping a21, gyroscopic force a4, and bending rigidity of the shaft Ωu0 stabilize the
rotor in the seals. A detailed explanation of the physical processes occurring in gap seals is
presented in [55].

4. Discussion

Frequency diagrams of the dependences of natural frequencies on rotational speed are
shown in Figure 3 for constant, speed-independent pressure drops. ∆po = (1.5; 3, 98; 13.3) MPa.

The pressure throttled at the slot seals of centrifugal machines is proportional to the
square of the rotor rotation speed. This affects the type of frequency characteristics, since
the compacted pressure ceases to be an independent external influence but is related to the
rotational speed by an additional relationship ∆p0 = Bω2.
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Since many coefficients of Equation (1) depend on the pressure drop, they also depend
on the rotation speed, and this is reflected in the shape of the frequency characteristics—the
dependences of natural frequencies on the rotor speed.

Therefore, the external influence is only the rotation speed, and the rotor in the seals
acquires greater dynamic rigidity (Figure 4). In turn, in each of the figures, the dependences
of natural frequencies on the parameter of the annular gap taper of slotted seals in the
range of −0.3 ≤ θ0 ≤ 0.3 and the rotational speed are plotted. The results of the analysis of
frequency diagrams are presented below.
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In the cylindrical θ0 = 0 and confusor θ0 = 0.3 gaps, there is an intensive increase
in natural frequencies (except for the first) with increasing rotation frequency. Because of
this, three critical frequencies, which are determined by the points of the intersection of
frequency diagrams with straight lines s̄ = ω̄, exist only for the rotor in slotted seals with a
diffuser shape of the annular gap. In seals with cylindrical and confusor gaps, only the first
critical rotation speed occurs.

Figure 4 also shows graphs of the real parts of the roots of the characteristic equation
for the generalized constant B. From the graphs of the real parts, one can assess the stability:
If among the roots, there are roots with a positive real part, then the rotor is unstable at
the corresponding rotation frequencies. In particular, the rotor in seals with a diffuser
gap θ0 = −0.3 is unstable at all frequencies. The rotor in confusor seals remains stable
throughout the entire range of rotation speeds under consideration. Thus, the destabilizing
effect of slotted seals with a diffuser gap and the pronounced stabilizing effect of confusor
channels are confirmed.

An increase in the confusor (θ0 > 0) and pressure drop (independent of rotational
speed) increases the first two natural frequencies s1, s2, which differ little from one another
and are close to the partial frequencies su1, su2 of independent radial oscillations. Only
at high-pressure drops ∆p0 > 5MPa and rotational frequencies ω > 4 is the difference
between these natural frequencies noticeable. The two highest natural frequencies s3, s4
are practically independent of the pressure drop and taper and are close to the partial
frequencies sϑ1, sϑ2 of independent angular oscillations. With an increase in the number of
revolutions, the second and third natural frequencies approach each other.

Critical frequencies are located on the lines of the intersection of the plane s(ω, θ0) = ω

with surfaces s1−4(ω, θ0).
There is no fourth critical speed for the examples under consideration: the gyroscopic

moment causes the self-tightening of the rotor.
Numerical calculations were carried out for the rotor model with a disc between the

seals. The gap seals with three taper parameters were considered (Figure 5).
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A comparison of the results of the calculations of frequency characteristics according 
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5. Gap Seals for Energy Pumps 
The turbo-feed pump (Figure 7) was designed to pump (1350 m3/h) water at a tem-

perature of 165 °C under a pressure of 35 MPa into steam boilers of steam turbine blocks 
of thermal power plants with a capacity of 800 MW [83].  

The pump was driven by an 18 MW steam turbine with a rotor speed of 5500 rpm. 
End seals were composed of a 1—six-slot type with a supply of cold locking condensate 
with 2—slotted stepped front seals of impellers, and 3—smooth rear seals. In the system 
of the automatic balancing of axial forces acting on the rotor (in the hydraulic heel), radial 
(4) and axial (5) slotted seals were used. 
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Figure 5. Amplitude–frequency characteristics as a response to statistic unbalance: (a) ∆p0 =

1.5 MPa = const; (b) ∆p0 = 4 MPa = const; (c) ∆p0 = 13.3 MPa = const. 1—θ0 = −0.3; 2—θ0 = 0;
3—θ0 = 0.3.

A comparison of the results of the calculations of frequency characteristics accord-
ing to the obtained expressions with the data of experimental studies (Figure 6) shows
that the calculation errors do not exceed 5%, which suggests the possibility of using the
obtained formulas.
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5. Gap Seals for Energy Pumps

The turbo-feed pump (Figure 7) was designed to pump (1350 m3/h) water at a tem-
perature of 165 ◦C under a pressure of 35 MPa into steam boilers of steam turbine blocks of
thermal power plants with a capacity of 800 MW [83].

The pump was driven by an 18 MW steam turbine with a rotor speed of 5500 rpm.
End seals were composed of a 1, 6—slot type with a supply of cold locking condensate
with 2—slotted stepped front seals of impellers, and 3—smooth rear seals. In the system of
the automatic balancing of axial forces acting on the rotor (in the hydraulic heel), radial (4)
and axial (5) slotted seals were used.

In the example of the considered pump design, it is clearly seen that the slotted seals
are located quite tightly along the entire length of the rotor. Therefore, they significantly
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affect the vibration state of the rotor and the pump as a whole. Moreover, each stage of the
pump develops a pressure of 4 to 6 MPa, and a pressure of more than 20 MPa is throttled
on the hydraulic heel.
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6. Conclusions

To analyze the vibration state of rotary machines, we proposed to consider the rotor–
non-contact seal system as an automatic control system. By changing the geometric param-
eters of the seals, it is possible to improve the dynamic characteristics of rotary machines
and ensure their vibration resistance.

It is shown for the first time that the initially dynamically flexible rotor, in combination
with properly designed seals, can become dynamically rigid.

Hydromechanical models of a slotted seal and a rotor in slotted seals were created.
Based on the study of these models, analytical dependences were obtained that describe
the radial–angular oscillations of the rotor in seals.

This is especially important for centrifugal machines with high pressure and as a result
high shaft rotation speed.

Studies have shown that through the purposeful selection of seal parameters, it is
possible to reduce the amplitude of forced oscillations of the rotor by 3–4 times. Thus, the
results of the studies show directions for increasing the vibration resistance of centrifugal
machines and their environmental safety.
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Abbreviations

Symbols and Units
a the eccentricity of the mass center m
aij parameters of the gap seals -
bi coefficients of total radial moments
E the isothermal volumetric module of the sealed medium elasticity Pa, N/m2

F hydrodynamic forces arising in the sealing gap N
H mean radial clearance of gap seal m
M hydrodynamic moments arising in the sealing gap Nm
p(z, φ) gap pressure Pa, N/m2

pn nominal discharge pressure Pa, N/m2

u, ũ
radial component of amplitude and complex amplitude of
forced vibrations

Ui, Vi real and imaginary parts of differential operators
w gap fluid flow rate m/s
x, y radial vibrations of the rotor m

αi
coefficients of hydrodynamic forces depending on the angular
oscillations of the rotor

βi
coefficients of hydrodynamic moments depending on the radial
oscillations of the rotor

θ, θ̃
angular component of the amplitude and complex amplitude
of forced oscillations

θ0, θ0* taper parameter of the annular channel and its critical value
ϑ2 mean radial taper rad
ϑx, ϑy rotor angular oscillations rad
ω rotor speed s−1

Ωu0 the bending stiffness of a shaft N/m
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