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Abstract: High-Static-Low-Dynamic Stiffness (HSLDS) mechanisms exploit nonlinear kinematics
to improve the effectiveness of isolators, preserving controlled static deflections while maintaining
low natural frequencies. Although extensively studied under harmonic base excitation, there are
still few applications considering real seismic signals and little experimental evidence of real-world
performance. This study experimentally demonstrates the beneficial effects of HSLDS isolators
over linear ones in reducing the vibrations transmitted to the suspended mass under near-fault
earthquakes. A tripod mechanism isolator is presented, and a lumped parameter model is formulated
considering a piecewise nonlinear–linear stiffness, with dissipation taken into account through
viscous and dry friction forces. Experimental shake table tests are conducted considering harmonic
base motion to evaluate the isolator transmissibility in the vertical direction. Excellent agreement is
observed when comparing the model to the experimental measurements. Finally, the behavior of the
isolator is investigated under earthquake inputs, and results are presented using vertical acceleration
time histories and spectra, demonstrating the vibration reduction provided by the nonlinear isolator.

Keywords: high-static-low-dynamic stiffness; vibration isolators; experiments; transmissibility;
earthquakes

1. Introduction

Each year, over a million seismic events and the resulting large number of fatalities
pose a challenge to the human population [1]. The development of new building tech-
nologies and early warning and prevention systems can counter the disastrous effects of
earthquakes. In this framework, exploiting the inherent nonlinearities of seismic isola-
tion systems represents a possible approach to developing high-performance devices for
preventing buildings from undergoing disastrous damage during seismic events.

Vibration isolation systems can be classified as active or passive based on the presence
or absence of integrated actuators for real-time operation. However, during seismic events,
sudden power supply outages may occur, making active vibration control systems unreli-
able. Passive vibration isolators, functioning without external power or control, provide a
cost-effective, robust, and reliable means of isolating buildings from ground motion [2].

Concerning the transmissibility of a linear suspension under harmonic base excitation,
a standard mass-spring system allows for vibration isolation (i.e., absolute transmissibility
amplitude T < 1) when the forcing frequency exceeds

√
2km−1, where k and m denote

the stiffness and mass of the system, respectively [3]. Thus, a low stiffness is desired
to increase the working frequency range, but it results in larger static deflection, which
may be impractical in some applications. To circumvent this issue, quasi-zero stiffness
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(QZS) mechanisms, also known as zero spring rate mechanisms (ZSRMs) or High-Static-
Low-Dynamic Stiffness mechanisms (HSLDS), can extend the working frequency range
by leveraging kinematic nonlinearities. While effective, their performance is sensitive to
mistuning [4], wherein any deviation in geometry or static loading from the structure (or
payload) can alter the dynamic characteristics of the system, and it is worthwhile to note
that the use of nonlinear isolators, which rely on the negative stiffness concept, is limited
to applications where the mass of the payload is small, as these systems require a force
preload of the same order of the payload weight [5].

In the analysis presented herein, only the mitigation of ground vibrations in the
vertical directions is addressed. Studies in which HSLDS systems have been used to
mitigate horizontal vibrations can be found in [6,7].

The HSLDS isolator considered here is based on an oscillating mass supported by a
vertical linear spring in parallel with one or more horizontal linear springs. In dynamic
conditions, the horizontal springs contribute to the equivalent dynamic vertical stiffness for
small amplitude motions by reducing the stiffness and introducing hardening nonlinearities.
The former effect increases the isolator working range, while the latter leads to jump-
up/jump-down phenomena close to the saddle-node bifurcation points and reduces the
isolation region since the resonance peak moves toward higher frequencies [8].

One of the early works on the subject was presented by Molyneux [9], where the ar-
rangement of inclined springs was proposed to reduce the equivalent stiffness of a system.
Many potential applications were suggested for road vehicle suspensions, torsional cou-
plings, and vibration sensors. Woodard et al. [10] focused on the transition from linear to
nonlinear behavior of a ZSRM mechanism. Considering the system around the equilibrium
position, the authors demonstrated that increasing the cable preload decreases overall ver-
tical stiffness, reducing the system’s natural frequencies. Platus et al. [7] presented a series
of isolators with multiple degrees of freedom capable of suppressing both vertical and hori-
zontal oscillations. Comprehensive theoretical studies on the static analysis and nonlinear
dynamics of QZS mechanisms are provided in Refs. [11–15], where force-displacement
expressions and nonlinear equations of motion are derived, solved, and discussed for
various configurations, parameters, and different forcing functions.

It is well established that an HSLDS system can be frequently modeled by the Duffing
equation, where damping terms are added to simulate different dissipation mechanisms.
Cheng et al. [16,17] and Shahraeeni et al. [18] considered a QZS system with linear viscous
dampers. The resulting nonlinear damping has been approximated by terms like

.
xxn, i.e.,

velocity times the n-th power of the displacement, in agreement with the lumped-mass
system consisting of two angled dashpots considered in Ref. [19]. Den Hartog [20] and
Ravindra and Mallik [21] addressed the role of dry friction on the dynamics of oscillators
under base excitation, considering linear or nonlinear cubic stiffness terms. Donmez
et al. [22] proposed the introduction of a dry friction element inside the isolator to reduce
the transmissibility for frequencies around the resonance region. Liu and Yu [23] presented
a QZS system with an oscillating mass supported by a vertical spring and surrounded by
four lateral springs. Despite poor agreement between analytical and experimental results,
attributed to a stiffness increment induced by the bending stiffness of the lateral springs
not being considered in the theoretical model, experiments have shown a transmissibility
reduction compared with the linear oscillator, confirming the effectiveness of the QZS
system and the need to go beyond the classical model to predict QZS isolator performance.

The number of studies on QZS/HSLDS systems is increasing, reflecting growing
interest in the topic [24]. Further theoretical and experimental studies can be found in
the literature, proposing active stiffness control strategies [25], nonlinear absorbers [26],
non-conventional springs [27], piecewise restoring forces [28], magnets [29,30], bio-inspired
isolators [31], and X-shaped mechanisms [32,33] to avoid instabilities and expand the QZS
working range.

In a recent study [34], theoretical and experimental results for a small-scale two-
dimensional HSLDS isolator subjected to amplitude-scaled actual vertical earthquake
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signals were presented, demonstrating the isolator’s effectiveness in reducing acceleration
transmission under near-fault earthquakes. Based on these results, the present study
investigated the behavior of a tunable HSLDS isolator for sensitive equipment under
vertical base excitation. The design of a three-dimensional mechanism is proposed, and
the fundamental components of the prototype under analysis are described. A theoretical
model is formulated, incorporating piecewise restoring forces and Coulomb dry friction.
The experimental analysis aims to evaluate the ground motion reduction achievable using
such a device. To conduct the experiments, a high-power electrodynamic shaking table was
utilized. The isolator’s transmissibility was evaluated through harmonic base excitation
tests, and a direct comparison with a linear suspension was made under replicated near-
fault earthquakes, demonstrating the beneficial effects of the HSLDS isolator.

2. Description of the Real Isolator and Theoretical Dynamic Model

Figure 1a,b show the isolator, which consists of a tripod mechanism. A vertically
translating payload of mass m rests on a vertical spring of stiffness kv; three oscillating rods
of length L connect the payload to three pushrods through spherical joints. Each pushrod
compresses a horizontal spring of stiffness kh. The rods are angularly spaced at 120 degrees
from each other, and the spring preload can be adjusted by varying displacements δv and
δh for the vertical and horizontal springs, respectively.
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Figure 1. Tripod isolator with HSLDS characteristics: (a) isometric and (b) lateral views.

Figure 2 shows the lumped parameter model employed to determine the static char-
acteristics of the isolator, where the cumulative effect of the three horizontal springs
functioning in parallel is modeled as a single horizontal spring with equivalent stiffness
3 × kh, y denotes the payload displacement, θ is the actual angle between the rod and the
horizontal line, and F is the generic external static force.
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The static behavior of the nonlinear isolator is governed by the equation,

F − Fs(y) = 0 (1)

where Fs(y) is the equivalent restoring force in the vertical direction. The horizontal springs
are assumed to be purely compressive springs, i.e., they are unable to handle tractive forces.
When the relative displacement y reaches a critical value ycr, the pushrod detaches from
the spring, directly influencing the restoring force, which can be expressed as a piecewise
function. Thus, by introducing the following nondimensional parameters

ŷ = y
L , r = kh

kv
,

δ̂v = δv
L , δ̂h = δh

L .
(2)

the nondimensional restoring force of the mechanism can be formulated as,

Fs(y)
kv L

= F̂s(ŷ) =

ŷ − ŷ0 − δ̂v − 3 r
[
δ̂h −

(√
1 − ŷ2

0 −
√

1 − ŷ2
)]

ŷ√
1−ŷ2

|ŷ| ≤ |ŷcr|

ŷ − ŷ0 − δ̂v |ŷ| > |ŷcr|
(3)

where ŷ(0) = ŷ0 is the initial position of the payload. The critical displacement ŷcr, which
is dependent on δ̂h, is found by considering the null deflection of the horizontal spring,

δ̂h −
√

1 − ŷ2
0 +

√
1 − ŷ2 = 0 → ŷcr =

√
1 −

(√
1 − ŷ2

0 − δ̂h

)2
(4)

It is important to note that F̂s(ŷ) is defined without considering the detachment of
the payload from the vertical spring, as this condition is not relevant for describing the
experimental observation shown in the results section.

Figure 3 shows how the preload of the horizontal springs affects the restoring force
F̂s(ŷ): the system can be tuned to function as an HSLDS mechanism for small δ̂h values or a
QZS system for large δ̂h values. Specifically, by differentiating Equation (3) with respect to
the displacement ŷ, the equivalent vertical stiffness reads,

k̂s(ŷ) =
d

dŷ
F̂s =

1 − 3 r

[
δ̂h−

√
1−ŷ2

0+
3
√
(1−ŷ2)

2

3
√
(1−ŷ2)

2

]
|ŷ| ≤ |ŷcr|

1 |ŷ| > |ŷcr|
(5)

Assuming ŷ0 = 0, the minimum stiffness of the mechanism is obtained by evaluating
k̂s(ŷ) for ŷ = 0, giving

k̂s,min = k̂s(0) = 1 − 3 r δ̂h (6)

From Equation (6), depending on the value of δ̂h, it is possible to observe that, in the
neighborhood of the static equilibrium configuration, the system behaves in the following
three ways:

• if k̂s,min < 0, the system presents a negative stiffness nonlinear spring;
• if k̂s,min = 0, the isolator works as a QZS mechanism;
• if 0 < k̂s,min < 1, the isolator works as an HSLDS mechanism.

In order to study the dynamics of the isolator under base motion, the model depicted
in Figure 4 is considered. The coordinate x represents the absolute displacement of the
payload, xb is the base displacement, and z denotes the relative displacement of the payload.
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Assuming that the system, under the action of the weight, is at rest in its static
equilibrium position with the oscillating rods in a horizontal position, z(0) = 0, the
restoring force F̂s(ẑ) is given by,

F̂s(ẑ) =

{
ẑ − δ̂v − 3 r

(
δ̂h − 1 +

√
1 − ẑ2

)
ẑ√

1−ẑ2 |ẑ| ≤ |ẑcr|
ẑ − δ̂v |z| > |ẑcr|

(7)

where ẑ = z/L is the nondimensional relative displacement of the payload. The critical
value ẑcr is determined as,

ẑcr =

√
1 −

(
1 − δ̂h

)2
(8)

Following the approach adopted in Ref. [34] to account for different dissipation mech-
anisms, a dissipation function F̂d(z, ẑ′) is considered in the model and is assumed to be a
combination of viscous and dry friction forces, i.e.,

F̂d
(
z, ẑ′

)
= 2 ζ ẑ′ + sign

(
ẑ′
)

f̂c (9)

where ζ and f̂c = fc(kv L)−1 denote the viscous damping ratio and the normalized
Coulomb friction force, respectively.

The governing equation of the 1-DoF lumped parameter system can now be written as,

ẑ′′ + F̂d
(
z, ẑ′

)
+ F̂s(ẑ) + F̂g = −x̂′′

b (10)

where (·)′ denotes derivatives with respect to the normalized time τ = ωnt, ωn =
√

kv/m is
the natural frequency of the linear oscillator, and F̂g = mg(kv L)−1 is the normalized weight.
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In Equation (7), to satisfy the condition for static equilibrium, the vertical spring

preload must be δ̂v = F̂g, and by defining the auxiliary restoring force
∼
Fs(z) = F̂s(z) + F̂g,

the equation of motion for the tripod, Equation (10), can be rearranged to a simpler form,

ẑ′′ + F̂d
(
z, ẑ′

)
+

∼
Fs(z) = −x̂′′

b (11)

Equation (11) is computationally stiff and potentially expensive to solve numerically
due to the presence of discontinuous functions. Thus, a smoothing approach is used
to simplify the analysis [35]: the piecewise restoring function F̂s(z) is substituted by a
continuous Sigmoid-like function γ(β, ẑ), while the dry friction term is approximated by
the hyperbolic tangent σ(α, ẑ′), where

γ(β, ẑ) = 1
1+e−β(ẑ+ẑcr) −

1
1+e−β(ẑ−ẑcr)

σ(α, ẑ′) = eαẑ′−e−αẑ′

eαẑ′+e−αẑ′
(12)

where α and β are parameters for controlling the smoothing functions.
Figure 5 shows the smoothing functions (12) for different values of α and β; see that

for smoothing parameters of about 1000, both functions well approximate the step behavior
while preserving the continuity conditions.
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At this point, with the use of Equation (12), the equation of motion of the isolator can
be rewritten in the state space as{

ẑ′ = u
u′ = −2 ζu − σ(α, u) f̂c − ẑ + 3 r

(
δ̂h − 1 +

√
1 − ẑ2

)
ẑ√

1−ẑ2 γ(β, ẑ)− x̂′′
b

(13)

where (ẑ, u) are the state variables. Equation (13) is suitable for standard numerical inte-
gration. To this end, the Matlab solver ode23s for stiff ordinary differential equations [36]
was used, assuming α = β = 1000.

3. Experimental Setup and Shake Table Test

Experiments were conducted on a tripod isolator with payload mass m = 20 kg,
oscillating rod length L = 0.155 m, vertical spring stiffness kv = 1848 Nm−1, and horizontal
spring stiffness kh = 3747 Nm−1.

Figure 6a displays a schematic of the experimental setup: two piezoelectric accelerom-
eters were used to measure the base and payload vibrations in the vertical direction; the
seismic base motion was applied through a Dongling ET-40-370 shaker (40 kN peak force,
100 g maximum acceleration, 500 kg max static payload) controlled by a closed-loop algo-
rithm, and signals were acquired using the LMS Scadas hardware with Testlab software.
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Using the base and payload measurements, the absolute acceleration transmissibility
was evaluated through the following expression,
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where RMS stands for root mean square.

3.1. Harmonic Excitation Tests

Stepped sine tests were carried out to evaluate the transmissibility T of the isolator.
Using the Siemens SCADAS Mobile system and the Siemens Testlab control software (Sine
Control module), the shaker base motion was controlled in terms of vertical acceleration
amplitude

∣∣ ..
xb
∣∣ and forcing frequency fΩ, as shown in Figure 7. To assess the isolator’s

nonlinear characteristics, fΩ was swept in the range of 0.5–10 Hz, both forward and
backward. A variable frequency step ∆ f Ω was chosen to span the resonance region with
suitable frequency resolution, and for each frequency step, 120 periods of excitation were
recorded with a sampling frequency of 400 Hz.
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Controlling the shaking table at very low frequencies was demanding and critical due
to the strict limitations on the maximum allowed displacement of the table (i.e., 51 mm,
peak-to-peak). To address this limitation and ensure satisfactory control, the reference
acceleration amplitude of the shaker base (black dotted line in Figure 7) was linearly varied
at each step, with details about its slope provided in Table 1.

Table 1. Harmonic excitation test. Frequency step resolution and acceleration slope variations for
each frequency range.

Frequency range fΩ [Hz] 0.5–1.05 1.05–2 2–5 5–10
Frequency step ∆ f Ω [Hz] 0.050 0.025 0.5 1

Slope of reference acceleration [m s−2 Hz−1] 0.39 0.39 1.10 2.37

The investigated test cases are detailed in Table 2 and, more specifically, the following
observations can be made:

• Each test is defined by a specific horizontal spring preload δh;
• Before each experimental test, the isolator’s static equilibrium position, characterized

by having horizontal rods, z(0) = 0, was imposed by adjusting the vertical spring
preload δv. According to Equation (5), this angle was selected to provide the minimum
stiffness around the static equilibrium position;

• To study the behavior of the isolator under HSLDS conditions for all the investigated
cases, the displacement δh was kept below the QZS threshold given by Equation (6),
L(3 r)−1 = 25 mm;

• Cases where δh > 12 mm were excluded because payload oscillations with amplitudes
exceeding the maximum allowed stroke were observed, causing the premature end of
the test;

• The natural frequency of the system can be obtained by the linearization of the restoring
force, Equation (7), using the Taylor series. Considering Case 1 as a reference, a
reduction in natural frequency of 22% and 27% was achieved for Case 2 and Case 3,
respectively.

Table 2. Parameters of the HSLDS isolator for the three investigated cases.

Parameter Case 1 Case 2 Case 3

Horizontal spring preload δh [mm] 0 10 12
Total preload 3 khδh [N] 0 112.4 134.9
Natural frequency [Hz] 1.53 1.19 1.11

Figure 8a shows the transmissibility for a null preload. In this case, only the linear
vertical spring contributes to the restoring force. In fact, the isolator behaves like a linear
oscillator, except for the presence of dry friction, resulting in stiction at low frequencies
when inertia is insufficient to overcome the friction force, as shown in the detailed view.
By increasing the preload on the horizontal springs to 112.4 N, Figure 8b, a hardening
nonlinearity is introduced. The tangent stiffness around the equilibrium position is reduced,
leading to a lower natural frequency of the system. Additionally, the preload affects stick-
slip thresholds: the greater the preload, the less relevant the role of dry friction becomes.
Considering Figure 8c, where 3khδh = 134.9 N, the stiction phenomenon disappears, and at
low frequencies, the transmissibility curves obtained in the case of forward and backward
sweeps are perfectly overlapped, except in the multiple-valued jump up/down region. In
all the investigated cases, the transmissibility obtained using the lumped parameter model
shows excellent agreement with the experimental measurements and is able to capture
the stiffness variation due to the loss of contact between the pushrods and the horizontal
springs. Regarding the hysteretic phenomenon at low frequencies, the dry friction model
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considered in Equation (9) is not able to fit the experimental results for a narrow region in
the case of null preload.
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Figure 8. Magnitude of the transmissibility for different values of the horizontal springs preload:
(a) 0 N, (b) 112.4 N, and (c) 134.9 N. Detailed views show the evolution of the stiction phenomena
among the test cases. (— forward and — backward sweep, ••• numerical solution).

Values of the damping ratio and the dry friction force adopted in the numerical model
to fit the experimental data are given in Table 3. Variations in the damping coefficient
must be sought in the different lubrication conditions between different tests and in the
limitations of the linear viscous model considered herein. In fact, the motion of the hori-
zontal links can lead to nonlinear dissipation terms [18]. On the other hand, the decrease
in dry friction force is attributed to the load acting perpendicular to the linear guides.
These guides are preloaded; consequently, as the payload oscillates, the forces exerted
by the horizontal springs have a direct impact on the overall load normal to the linear
ball bearings.

Table 3. Viscous damping ratio and dry friction force values obtained from the fits of the experimental
transmissibility curves.

Parameter Case 1 Case 2 Case 3

Viscous damping ratio ζ 0.015 0.008 0.020
Dry friction force fc [N] 3.44 3.44 0.86

3.2. Earthquake Experimental Results

The experimental response of the tripod isolator to simulated earthquakes is pre-
sented in this section. The near-fault earthquake signals were obtained from the PEER
database [37], and the experiments were conducted by controlling the shaker base using
the Siemens SCADAS Mobile system and the Siemens Testlab control software (Single
Axis Waveform Replication module) with the built-in online adaptive closed-loop control
strategy. Two different test sets were carried out:

(i) Amplitude-scaled tests: the acceleration amplitude of the input signals was reduced
to cope with the shaker limits (i.e., shaker base overtravel);

(ii) Time-scaled tests: the input signals were compressed in time to shift the earthquake en-
ergy content to higher frequencies in order to account for the limited suspended mass.

Focusing on the amplitude scale tests, time histories and spectra of the test accelera-
tion signals are given in Figure 9a–f. Earthquake vibrations carry energy content at low
frequencies; therefore, to reduce the noise components and prevent signal phase shifting,
the acquired data were filtered using a fifth-order Butterworth low-pass digital filter with a
cut-off frequency of 30 Hz.
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tween [3.7–7.7 s], characterized by a harmonic component of the earthquake at 1.64 Hz, 
Figure 9b, hence close to the natural frequency of the system, which is 1.53 Hz according 
to Table 2. Conversely, for the Bam earthquake, with an amplitude scaling factor of 30%, 
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attributed to the narrow frequency content of the ground motion, Figure 9d, localized at 
three frequencies: 0.95 Hz, 4.99 Hz, and 8.27 Hz. Despite the relatively small amplitude of 
the harmonic (0.036 m/s2) at 0.95 Hz compared with the others, it was close enough to the 
HSDLS isolator resonance frequency (1.11 Hz) to induce strong payload oscillations. In 
Figure 9e, the linear and the HSLDS systems were compared under the Northridge earth-
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from the resonance frequency of the linear system. 
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Figure 9. Amplitude-scaled tests. Acceleration time histories and spectra: (a,b) Christchurch, 70%;
(c,d) Bam, 30%; and (e,f) Northridge, 90%. (— ground acceleration, — linear spring, and — HSLDS
isolator).

Considering the Christchurch earthquake with an amplitude scaled by 70%, Figure 9a,b,
the ground motion was particularly strong between [1–7 s], with a broadband spec-
trum governed by a peak at 8.24 Hz. Both the linear and the nonlinear (HSLDS Case
3, 3khδh = 134.9 N) isolators were able to mitigate ground vibrations, Figure 9a, yet the
HSLDS eliminated the resonance-like phenomenon exhibited by the linear system between
[3.7–7.7 s], characterized by a harmonic component of the earthquake at 1.64 Hz, Figure 9b,
hence close to the natural frequency of the system, which is 1.53 Hz according to Table 2.
Conversely, for the Bam earthquake, with an amplitude scaling factor of 30%, the resonance
of the HSLDS occurred in the range [2.5–6 s], Figure 9c. This behavior is attributed to the
narrow frequency content of the ground motion, Figure 9d, localized at three frequencies:
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0.95 Hz, 4.99 Hz, and 8.27 Hz. Despite the relatively small amplitude of the harmonic
(0.036 m/s2) at 0.95 Hz compared with the others, it was close enough to the HSDLS isola-
tor resonance frequency (1.11 Hz) to induce strong payload oscillations. In Figure 9e, the
linear and the HSLDS systems were compared under the Northridge earthquake, with an
amplitude scaling factor of 90%. In this case, the HSLDS isolator reduction was higher than
the linear system except between [6.5–9.3 s], where a sudden large amplitude oscillation of
the HSDLS occurred. From the analysis of the frequency spectrum, Figure 9f, Northridge
ground motion showed a double peak at 0.86 Hz and 1.15 Hz, causing the resonance of
the HSDLS isolator. However, the frequency peaks were far enough from the resonance
frequency of the linear system.

The results of the present section are summarized in the bar chart in Figure 10, where
the peak acceleration and the RMS value provide a clear view of the performance of
the linear and HSLDS isolators. Both systems were able to reduce ground vibrations
in all the investigated cases, with the linear spring offering a higher reduction than the
HSDLS isolator. However, for the Bam and Northridge cases, the HSDSL performance was
conditioned by the activation of resonance-like phenomena.
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Figure 10. Amplitude-scaled test. Vertical acceleration: (a) maximum amplitude and (b) RMS.
(— ground acceleration, — linear spring, and — HSLDS isolator).

Even though seismic isolators for actual buildings are designed to support large
payloads and lead to very low resonance frequencies, the isolator under investigation was
downsized for testing on a shake table having a limited payload of 300 kg. The limited
value of the oscillating mass prevented the achievement of resonance frequencies below
1 Hz. Therefore, in order to perform realistic experiments on the downsized system, the
original earthquake signals, having spectral energy at frequencies of about 1 Hz, were
rescaled with respect to the time variable as tscaled = ξt, where ξ > 1 is the time-scaling
factor. This scaling moves the signal spectral energy toward a higher frequency range
that is more suitable for the downsized system. To determine a reasonable value for
ξ, the following assumptions were considered: (i) small civil structures typically have
resonance frequencies fR of about 3–10 Hz [38–40], and (ii) the linear system in question
had a resonance frequency near fS = 1.5 Hz. Consequently, the time histories were scaled
by a factor ε = fR f−1

S = 2.
Time histories and spectra of the time-scaled earthquake tests are presented in Figure 11a–f.

It is important to note that, in these cases, the amplitude of the ground acceleration signals
remained unaltered (i.e., 100%). Similar to the amplitude-scaled earthquake tests, a fifth-
order Butterworth low-pass digital filter was used to reduce data noise. A larger cut-off
frequency (100 Hz) was considered to account for the effect of time scaling, broadening the
input signal energy content.
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Figure 11c shows the isolators� response to the Bam earthquake. The beneficial effects 
of the isolator are evident when the stiffness nonlinearity is retained. The payload�s max-
imum acceleration amplitude measured with the HSLDS isolator (1.88 m/s2) is lower than 
the value observed for the payload carried by the linear spring (4.29 m/s2). Moreover, in 
the latter case, periodic payload oscillations were activated from Bam low-frequency com-
ponents at 1.43 Hz and 1.88 Hz, see Figure 11d. 

The experimental response acceleration time histories and spectra considering the 
Northridge earthquake ground motion are shown in Figure 11e,f, respectively. Despite 
the time-scaling procedure, the input signal has a broad energy distribution up to 20 Hz, 
and the low-frequency components induced an increasing payload response between [0–
4.4 s]. Yet, the HSLDS isolator showed a higher isolation degree than the simple linear 
spring, reducing the ground motion by 88% RMS, while an 81% RMS reduction was ob-
served in the linear spring case. 
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In Figure 11a, both isolators behave similarly under the Christchurch earthquake,
offering effective ground vibration reduction. Focusing on the acceleration RMS, an 81%
reduction was achieved using the linear spring, while the HSDLS isolator demonstrated
an 88% reduction. According to the spectrum, Figure 11b, the frequency content of the
time-scaled Christchurch earthquake shifts to a higher frequency band, with a spectrum
peak at 14.3 Hz, which is approximately one order of magnitude higher than the resonance
frequencies of both the isolator configurations; thus, both the systems were working in the
isolation regime.

Figure 11c shows the isolators’ response to the Bam earthquake. The beneficial effects
of the isolator are evident when the stiffness nonlinearity is retained. The payload’s
maximum acceleration amplitude measured with the HSLDS isolator (1.88 m/s2) is lower
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than the value observed for the payload carried by the linear spring (4.29 m/s2). Moreover,
in the latter case, periodic payload oscillations were activated from Bam low-frequency
components at 1.43 Hz and 1.88 Hz, see Figure 11d.

The experimental response acceleration time histories and spectra considering the
Northridge earthquake ground motion are shown in Figure 11e,f, respectively. Despite the
time-scaling procedure, the input signal has a broad energy distribution up to 20 Hz, and
the low-frequency components induced an increasing payload response between [0–4.4 s].
Yet, the HSLDS isolator showed a higher isolation degree than the simple linear spring,
reducing the ground motion by 88% RMS, while an 81% RMS reduction was observed in
the linear spring case.

By shifting the frequency content of the tested earthquakes to a higher frequency, the
time-scaling procedure allowed both isolators to work under optimal conditions. From
the comparison, it is evident that the HSLDS isolator consistently performed better than a
linear system for all the tested signals, as shown in the bar charts given in Figure 12.
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4. Concluding Remarks

In this study, the behavior of a nonlinear isolator under vertical base motion has been
investigated. A three-dimensional tripod mechanism with tunable HSLDS characteristics
was considered. A theoretical formulation incorporating a piecewise restoring force to
approximate the behavior of compression springs was developed. Harmonic base motion
experimental tests were conducted on a shaking table to assess the acceleration transmissi-
bility, where different values of horizontal springs preload were used to tune the HSLDS
characteristics. Additionally, ground vibration mitigation was evaluated under real-life
seismic inputs. The concluding remarks of the work are summarized as follows:

The tunability of the proposed mechanism allows for adaptation to a wide range of
loading conditions, making it a versatile solution for various applications.

(1) The numerically determined and experimental transmissibility exhibited noticeable
agreement, underlining the importance of considering a piecewise nonlinear–linear
restoring force to replicate the experimental observation;

(2) Harmonic excitation tests showed the limited capability of the Coulomb model to
predict stiction phenomena, pointing out the need for refined friction and hysteresis
models [41,42];

(3) Near-fault excitation tests revealed the beneficial effects of the HSLDS isolator in miti-
gating transmitted ground vibration to the payload. Results showed that a nonlinear
isolator attained a higher vibration reduction than a linear spring isolator in four out
of six investigated earthquakes;

(4) Experimental results align with existing literature [34], reinforcing the concept of the
HSLDS mechanism as an effective means to prevent damage to sensitive objects;



Vibration 2024, 7 842

(5) Insights into passive isolation systems are provided, revealing their susceptibility
to resonance and emphasizing the importance of careful tuning to meet the safety
requirements of suspended payloads.
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