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Abstract: This work investigates the conditions for net flow generation by a straight tube with a
cross-sectional area harmonically varying in time that connects two tanks—a problem that is mainly
found in the design of impedance pumps. By assuming a quasi-one-dimensional flow and applying
continuity and momentum equations, a first-order differential equation with respect to the flow rate
is derived and presented for the first time, including a nonlinear term that is responsible for net
flow rate generation. Namely, the net flow rate is found to be nonzero (as is the nonlinear term) if
the cross-sectional areas of the two tanks are unequal and one of them is smaller than that of the
straight tube. In this case, the flow is directed from the smaller to the larger tank and the net flow
rate increases with the frequency of the tube’s cross-sectional area variation. In contrast, when the
tanks’ cross-sections are equal, the net flow is generated only if a valve is installed, e.g., at one end
of the tube, due to the large asymmetries imposed in the hydraulic losses with respect to the tube
mid-length. Compared with constant valve opening, the net flow rate is augmented significantly if
the valve opening is time-dependent. By employing the same equation, the flow rate of an intra-aortic
counter-pulsating balloon pump is also examined, in which the valve (representing the aortic valve)
opens during the shrinkage of the tube, and it is shown that the net flow rate increases with the
frequency and amplitude of the tube’s cross-sectional area. Conclusively, the harmonic oscillation in
time of a tube’s wall can cause unidirectional flow only if asymmetric losses are present with respect
to its mid-length.

Keywords: impedance pump; net flow rate; nonlinear flow model; time-dependent cross-sectional area;
local losses; intra-aortic balloon pump

1. Introduction

Although the majority of pumps (e.g., centrifugal or axial flow pumps) essentially
consist of a number of rotating blades—the kinetic energy of which is transferred to the
conveyed fluid—there are also some other types of pumps that add energy to fluids by
means of the moving walls of flexible conduits or membranes. In the second category of
pumps, there are two main types: peristaltic and impedance pumps. In peristaltic pumps,
a flexible tube is pressed by a rotating roller so that a moving stenosis is formed, traveling
along the tube. As a result, the cross-sectional area of the tube is a well-defined function
of axial distance and time. In contrast, an impedance pump consists mainly of a flexible
tube, a part of which is periodically compressed and decompressed by a pincher with a
given amplitude and frequency. Especially in micro-scale applications, impedance pumps
cause the motion of fluid with a membrane that oscillates over a cavity by an external
energy source, e.g., piezoelectric actuators, electromagnetic forcing, etc. [1]. Compared
with peristaltic pumps, the net flow rate of impedance pumps is harder to predict since this
is mainly affected by the reflection of longitudinal pressure waves at sites of the hydraulic
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loop, where there is an abrupt change in the tube’s material, like at the connection of a soft
tube with a stiff one. As a result, the time-dependent streamwise pressure distribution is
quite complex, which, in turn, deforms the tube walls and accordingly influences the pump
flow rate. In contrast to peristaltic pumps, in which the flow rate is a linear function of the
frequency of the rollers, in impedance pumps, the flow rate is a nonlinear function of the
pincher frequency [2]. More specifically, the net flow rate maximizes at various pinching
frequencies as a result of a resonance phenomenon, namely, when these frequencies coincide
with the natural frequencies of the hydraulic installation. Moreover, it is interesting to note
that with the increase in pinching frequency, the sign of the net flow rate also changes,
alternating from positive to negative. The above natural frequencies mainly depend on
(a) the tube material properties (e.g., Young’s modulus, Poisson’s ratio, and wall thickness),
which affect the speed of the traveling pressure disturbances, and (b) the length of the
tube. It is thus the complex interaction between the fluid and the deformable tube wall that
makes the problem difficult to solve. The above has been examined in multiple publications
in the open literature in the last seventy years, some of which are mentioned here [3–12].
Nevertheless, there are still open questions that need to be answered regarding a more
efficient design for this type of pump.

In micro impedance pumps, the whole flexible area moves in a predetermined way
over a cavity. In order to increase the net flow rate, taper-type tube segments are normally
introduced at the connection of the cavity with the microchannels so that the flow is turned
into a unidirectional flow despite the harmonic motion in time of the membrane [13].
Essentially, the taper-tube segments cause an asymmetry to the hydraulic losses with
respect to the membrane location so that although the fluid goes back and forth (induced
by the membrane motion), its displacement is nonzero during each period. In [14], various
configurations of piezoelectric impedance pumps are presented, and in [15], several flow
rectifiers applied in micropumps—as active and passive valves—are discussed. In a recent
effort by this group, a time-dependent passive valve was introduced in a valveless pump
circuit, enhancing the net flow rate several times, especially at small amplitudes of the
pump’s pincher [16].

Another interesting impedance type of pump used in hemodynamics is the so-called
intra-aortic balloon pump, which is a type of mechanical support for the failing heart that
was introduced in clinical practice in the 1960s [17]. It consists of a balloon of cylindrical
shape inserted into the human descending aorta, which inflates during diastole and deflates
during systole, affecting the aortic pressure waveform and the blood flow rate. In other
words, the cross-section of the free passage of blood in the descending aorta varies in
time, as it is increased during systole and decreased during diastole. The basic parameters
involved in this pump are the volume of the balloon and the timing of its inflation–deflation with
respect to the aortic valve opening–closing. Numerical flow simulations of this pump, including
the arterial system, have been presented in the literature based on lumped flow models with
electrical circuit analogies, including resistance, inductance, and capacitance elements [18–20].

In the present numerical work, a quasi-one-dimensional flow model is employed
in the study of a pumping system that consists of a straight tube of a predetermined
cross-sectional area harmonically varying in time with or without a valve at one of its
two ends, of a constant or time-varying opening. The tube is connected to two tanks
of arbitrary cross-sections. The aim of this work is the investigation of the conditions
for net flow rate generation in impedance pumps. Based on continuity and momentum
equations, a first-order nonlinear differential equation of the flow rate is derived, which
is presented and solved here for the first time, which is one of the novel features of this
work. Most importantly, it is shown that its nonlinear term is responsible for net flow rate
generation, being nonzero only if asymmetries in the hydraulic losses exist with respect
to the mid-length of the tube. These losses are due to either abrupt changes in the fluid
conduit cross-sectional area or, more importantly, the presence of a valve. Practically, the
examined hydraulic system resembles an impedance pump in which the tube’s walls or
a membrane are oscillating in a known, deterministic way, not being affected by the fluid
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forces. In other words, the procedure followed does not take into account the case where
the shape of the tube changes due to its interaction with the fluid, which occurs in some
impedance pumps. Moreover, the case of a valve of a time-dependent opening installed in
the system, besides its potential application in impedance pumps, is also examined in the
context of an intra-aortic balloon pump for various heart rates and inflated diameters of
the balloon, assuming that the valve plays the role of the aortic valve. The findings of this
work could be used in the design of impedance pumps and intra-aortic balloon pumps.

2. Materials and Methods

This work numerically examines the flow between two open tanks, 1 and 2, connected
by a straight tube of length L, with a cross-sectional area A(t) harmonically varying in time
with a cyclic frequency ω, including, in the general case, a time-dependent constriction at
the right end of the tube A02(t) (Figure 1).

Vibration 2024, 7, FOR PEER REVIEW  3 
 

 

sectional area or, more importantly, the presence of a valve. Practically, the examined hy-
draulic system resembles an impedance pump in which the tube’s walls or a membrane 
are oscillating in a known, deterministic way, not being affected by the fluid forces. In 
other words, the procedure followed does not take into account the case where the shape 
of the tube changes due to its interaction with the fluid, which occurs in some impedance 
pumps. Moreover, the case of a valve of a time-dependent opening installed in the system, 
besides its potential application in impedance pumps, is also examined in the context of 
an intra-aortic balloon pump for various heart rates and inflated diameters of the balloon, 
assuming that the valve plays the role of the aortic valve. The findings of this work could 
be used in the design of impedance pumps and intra-aortic balloon pumps. 

2. Materials and Methods 
This work numerically examines the flow between two open tanks, 1 and 2, con-

nected by a straight tube of length L, with a cross-sectional area A(t) harmonically varying 
in time with a cyclic frequency ω, including, in the general case, a time-dependent con-
striction at the right end of the tube A02(t) (Figure 1). 

 
Figure 1. Hydraulic installation. 

The cross-sectional areas of the tanks are denoted as A1 and A2, and their elevations 
are h1 and h2, respectively. The general expression of the continuity equation is: 𝜕𝜌𝜕𝑡 + 𝑑𝑖𝑣(𝜌𝜐⃗)  =  0 (1) 

where ρ is the fluid density and 𝜐⃗ is the fluid velocity vector. By employing a quasi-one-
dimensional flow model (taking into account the radial displacement of the tube wall) and 
assuming that the flow is incompressible, after some manipulation, the above equation is 
written as follows: 𝜕𝐴𝜕𝑡 + 𝜕(𝐴𝜐௫)𝜕𝑥  =  0  (2) 

where υx is the axial (average in space) fluid velocity in a tube’s cross-section. 
By assuming that the flow is laminar, the momentum equation along an arbitrary 

direction s is given by: 𝜌 𝜕𝜐௦𝜕𝑡 + 𝜌2 𝜕(𝜐௦ଶ)𝜕𝑠 + 𝜕𝑝𝜕𝑠 + 𝜌𝑔 𝑑ℎ𝑑𝑠 + 8𝜋𝜌𝜈 𝜐௦𝛢 =  0  (3) 

where υs is the fluid velocity along s, p is the static pressure, h is the elevation, and ν is the 
fluid’s kinematic viscosity. In Equation (3), the fluid inertia is counterbalanced by the pres-
sure, gravity, and viscosity forces. In particular, the last term of (3) is the known viscous 

Figure 1. Hydraulic installation.

The cross-sectional areas of the tanks are denoted as A1 and A2, and their elevations
are h1 and h2, respectively. The general expression of the continuity equation is:

∂ρ

∂t
+ div(ρ

→
υ ) = 0 (1)

where ρ is the fluid density and
→
υ is the fluid velocity vector. By employing a quasi-one-

dimensional flow model (taking into account the radial displacement of the tube wall) and
assuming that the flow is incompressible, after some manipulation, the above equation is
written as follows:

∂A
∂t

+
∂(Aυx)

∂x
= 0 (2)

where υx is the axial (average in space) fluid velocity in a tube’s cross-section.
By assuming that the flow is laminar, the momentum equation along an arbitrary

direction s is given by:

ρ
∂υs
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+

ρ

2
∂
(
υ2

s
)

∂s
+

∂p
∂s

+ ρg
dh
ds

+ 8πρν
υs

A
= 0 (3)

where υs is the fluid velocity along s, p is the static pressure, h is the elevation, and ν is the
fluid’s kinematic viscosity. In Equation (3), the fluid inertia is counterbalanced by the pressure,
gravity, and viscosity forces. In particular, the last term of (3) is the known viscous term of the
Poiseuille flow. More details about the derivation of Equation (3) can be found in [21].

In case a tube’s cross-sectional area changes stepwise, like at the junctions of the tube
with the tanks, the hydraulic losses depend on the ratio of the two areas and the direction
of the flow. Namely, if the flow is directed from a smaller to a larger cross-section (‘case 1’),
the losses are higher (due to flow separation) than in the opposite direction (‘case 2’). Based
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mainly on experimental observations, the hydraulic losses are expressed as a function of the
dynamic pressure at the smaller cross-sectional area multiplied by a coefficient. The loss
coefficient at tank 1’s tube junction is designated by the Greek letter ‘ξ’, whereas, at tank 2’s
tube junction, it is by the Greek letter ‘ζ’. Each of the two coefficients has an index numbered ‘1’
if the flow is from smaller to larger cross-sections and has ‘2’ when the flow is in the opposite
direction. Moreover, the expressions of the coefficients depend on whether the flow is directed
from the tube to the tank or vice versa. The coefficients ξ1 and ξ2 are given by the following
expressions (4)–(7) in which the cross-sectional area of tank 1 has been nondimensionalized
by the tube time-averaged cross-sectional area A0, namely Ã1 = A1/A0 [22]:

(a) If A1 > A0 and the flow direction is from the tube to tank 1 (‘case 1’), the coefficient
of the hydraulic losses ξ1 is:

ξ1 =

(
1 − 1

Ã1

)2
(4)

(b) If A1 > A0 and the flow direction is from tank 1 to the tube, namely towards a
reduced area (‘case 2’), the coefficient of the hydraulic losses ξ2 is:

ξ2 = 0.587 +
0.395√

Ã1

− 4.538
Ã1

+
14.243√

Ã3
1

− 19.222
Ã2

1

+
8.54√

Ã5
1

(5)

(c) If A1 < A0 and the flow direction is from tank 1 to the tube (‘case 1’), the coefficient of the
hydraulic losses ξ1 is:

ξ1 = (1 − Ã1)
2 (6)

(d) If A1 < A0 and the flow direction is from the tube to tank 1 (‘case 2’), the coefficient of the
hydraulic losses ξ2 is:

ξ2 = 0.587 + 0.395
√

Ã1 − 4.538Ã1 + 14.243
√

Ã3
1 − 19.222A2

1 + 8.54
√

Ã5
1 (7)

Similarly, the hydraulic coefficient at the junction of the tube with tank 2, denoted by ‘ζ’ with an
index of 1 or 2, is expressed in the same way as the coefficient ξ, in which Ã2 is used instead of Ã1.

A spatial integration of the momentum and continuity equations, taking into account the
hydraulic losses at the two tank-tube junctions, ends up with the following first-order nonlinear
differential equation with respect to the flow rate Q at tank 1’s tube junction:

B(t)
.

Q + C(t)Q + D(t)Q2 + E(t) = 0 (8)

where the coefficients B(t), C(t), D(t), and E(t) are:

B(t) =
h1
A1

+
h2
A2

+
L

A(t)
, (9)

C(t) = 8πν

(
h1

A2
1
+

h2

A2
2
+

L

[A(t)]2

)
−
(
±ζ1,2

A2
02

+
1

A2
2

)
dV(L, t)

dt
+

∂

∂t

(
L

A(t)

)
, (10)

D(t) =
1
2

(
1

A2
2
− 1

A2
1
± ξ1,2

A2
01

± ζ1,2

A2
02

)
, (11)

E(t) = g(h2 − h1)−
h2
A2

d2V(L, t)
dt2 +

1
2

(
±ζ1,2

A2
02

+
1

A2
2

)[
dV(L, t)

dt

]2
− 8πν

h2

A2
2

dV(L, t)
dt

− L
A(t)

d2V(L, t)
dt2 − ∂

∂t

(
L

A(t)

)
dV(L, t)

dt
− 8πν

L

[A(t)]2
dV(L, t)

dt
,

(12)

In the above expressions, A01 and A02 refer to the cross-sectional areas at the tube-tank junctions,
and V(L,t) is the time-dependent volume of the tube. In the expressions (10) to (12), the positive
sign in the coefficients ξi and ζi is used when the flow direction is from tank 1 to tank 2. Briefly,
Equation (8) was derived according to the following procedure: a spatial integration of the momentum
Equation (3) was applied in three cases, namely between the free surface of tank 1 and its junction
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with the tube, between the free surface of tank 2 and its junction at the other end of the tube, and
finally, between the two ends of the tube. Moreover, based on spatial integration of the continuity
equation, an expression of the fluid speed along the tube was derived, which is a function of the tube’s
cross-sectional area and the flow rate at one end of the tube. More details regarding the derivation of
the above expressions are in [23].

In order to generalize the results, the following non-dimensional numbers are used,

t̃ = tω, Ãi = Ai/A0, Q̃ = Q/(A0ωL) and W = R0
√

ω/ν, (13)

where Ai refers to A01, A02, and Ab; R0 is the tube’s internal radius corresponding to the tube’s
undeformed cross-sectional area A0; and ω is the cyclic frequency of the tube’s oscillating area A
varying with an amplitude Ab, namely

Ã = 1 + Ãbcost̃ (14)

The non-dimensional number W in (13) is the known Womersley number. If the tank elevations
are h1 = h2 = 0, the coefficients B(t) to E(t) are simplified and are given in non-dimensional form
in (15), in which V(L,t) being the total tube internal volume has been replaced by the product A(t)·L:

B̃
(
t̃
)
=

1
Ã

,

C̃
(
t̃
)
=

8
W2

1
Ã2

−
(
±ζ1,2

Ã2
02

+
1

Ã2
2

+
1

Ã2

)
dÃ
dt̃

,

D̃(t̃) =
1
2

(
1

Ã2
2

− 1
Ã2

1

± ξ1,2

Ã2
01

± ζ1,2

Ã2
02

)
,

Ẽ
(
t̃
)
= − 1

2Ã
d2 Ã

dt̃2 +
1
2

(
±ζ1,2

Ã2
02

+
1

Ã2
2

+
1

Ã2

)(
dÃ
dt̃

)2

− 8
W2

1
2Ã2

dÃ
dt̃

, (15)

The nonlinear differential Equation (8), in its non-dimensional form, is solved numerically
with respect to Q̃ by using a Runge–Kutta of fourth order, as it is explained in Appendix A, with
a non-dimensional time interval of 10−3 to secure a small truncation error (of the order of 10−12).
It has to be noted that due to the complex coefficients of Equation (8), which is the known Riccati
differential equation, no analytical solution is available. By knowing Q̃

(
t̃
)
, the net flow rate was

calculated based on three periods of oscillation after the solution reached a steady state. Since the
hydraulic loss coefficients at the tank-tube junctions ξ1,2 and ζ1,2 take relatively low values, namely
between 0 and 1, it was decided to include a gate valve in the hydraulic circuit, installed at the
tank 2-tube junction, aiming to enhance the asymmetries in the hydraulic installation by increasing
the flow resistance at one of the tube ends. Moreover, by including the gate valve, it was also possible
to simulate the operation of an intra-aortic balloon pump by assuming that the valve plays the role
of the aortic valve. According to Figure 2, the loss coefficient ζ of a gate valve takes a value as high
as 400 when its opening h is 6.6% of the tube diameter d or 8.4% of the tube cross-sectional area [24].

Due to the induced flow asymmetries, the gate valve can further increase the net flow rate, as
it is shown below in the Section 3. In order to estimate the valve’s hydraulic losses, the spatially
average fluid velocity at the gate opening is calculated based on the local flow rate and its area A02,
which is given by:

A02 =

[
π − 2

(
cos−1µ − µ

√
1 − µ2

)]
d2

4
, 0 < µ < 1 (16)

where µ = h/d (see Figure 2). The derivation of (16) was based on simple geometrical formulas by
computing the area between two equal circles (note that the gate valve seat area equals the pipe area)
of diameter d, the centers of which are at a distance h apart (see Figure 2).

Another option was also examined, namely when the gate valve opening varies in time, which
could be used in an impedance pump to control its flow rate or to simulate the opening–closing of
the aortic valve in the study of an intra-aortic balloon pump. In this case, the following expression
of A02 was arbitrarily used:

Ã02 = Ã02,min +
(

1 − Ã02,min

)
cos40

[
sin4(t̃/2

)]
, (17)
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where Ã02,min is the minimum dimensionless area of the gate valve opening. Expression (17) was
devised based on the fact that the aortic valve opens and closes in an almost stepwise manner. By
knowing the area A02 at each time instant from Equation (17), the ratio µ was calculated from (16), and
consequently, the hydraulic loss coefficient ζ of the valve was determined from the graph of Figure 2.
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In the next paragraph, the net flow rate is examined in the following three cases: (a) Two tanks
at zero height are connected by a straight horizontal tube of uniformly oscillating walls, with no
valve present. In this case, the net flow rate is calculated for various ratios of the tanks’ cross-sectional
areas Ã1/Ã2 for a certain Womersley number, as well as for a range of Womersley numbers and
given ratios Ã1/Ã2. (b) Aside from the oscillating tube, the influence of a gate valve is also studied,
where it is installed at tube one’s end, the opening of which is either constant or time-dependent. The
time-dependent opening of the valve is shown to be far more efficient in net flow rate generation
compared with the constant opening. (c) The flow rate of an intra-aortic balloon pump is examined
for various heart rates and balloon-inflated diameters (by varying the Ab parameter), considering
that the valve plays the role of a leaky aortic valve.

3. Results and Discussion
3.1. No Valve Is Used

If the gate valve is absent and the two tanks have equal cross-sectional areas (A1 = A2), the
coefficient D(t) of the nonlinear term of Equation (8) becomes zero, as well as the net flow rate. Since
the tube area varies harmonically in time and there are no flow asymmetries with respect to the
mid-length of the tube, the fluid moves back and forth without being transferred from one tank
to the other. However, when A1 differs from A2, the hydraulic loss coefficients ξ1,2 and ζ1,2 are
different, inducing flow asymmetries so that the flow becomes, on average, unidirectional, directed
from the smaller to the larger tank. Figure 3 shows the net flow rate as a function of the ratio of the
cross-sectional areas of the tanks Ã1/Ã2 for various values of Ã2, by keeping constant the frequency
of the tube oscillation (W = 5) with a 10% tube area amplitude (Ãb = 0.1). It is known that for small W
values (e.g., W < 1), the flow in a tube is quasi-steady. However, by progressively increasing W,
the unsteadiness of the flow becomes dominant, changing the parabolic velocity profile to a flatter
one [25]. In the present case, the spatial change in the velocity in each cross-section is not taken
into account since the flow is assumed to be one-dimensional, and a spatially average velocity is
considered in each tube cross-section.
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for various heart rates and balloon-inflated diameters (by varying the Ab parameter), con-
sidering that the valve plays the role of a leaky aortic valve. 
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All curves in Figure 3 go through the point Ã1/Ã2 = 1 and zero net flow rate, which is the case
of no flow asymmetries in the system. In contrast, the net flow rate increases exponentially when one
of the two tanks’ cross-sectional areas takes smaller values than that of the tube; for example, in the
case A1 = 0.326 A0 for which the non-dimensional net flow rate takes a value of 0.028 (see Figure 3,
Ã2 = 1 and Ã1/Ã2 = 0.326). However, when both tanks have larger cross-sections than that of the
tube, the net flow rate is again zero. This finding could be applied to impedance micro pumps, in
which the size of the cavity where the membrane oscillates has to be larger than at least one of the
micro-tubes that is connected to the cavity.

When the frequency of the tube walls’ oscillation increases, the net flow rate also increases.
Figure 4 shows the variations in the net flow rate with the Womersley number when one or both
tanks have smaller cross-sections than the tube’s cross-section. Moreover, the net flow rate takes
nonzero values when the Womersley number exceeds 0.5, and it increases exponentially for W > 5.
Since W is inversely proportionate to the square root of the fluid kinematic viscosity, the net flow
rate of water will be higher than that of blood and much higher than of air. The opposite signs of the
two curves of Figure 4 denote opposite flow directions, with the positive to be directed from tank 1 to
tank 2. Therefore, like in Figure 3, the flow is directed from the smaller to the larger tank.
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3.2. A Gate Valve Is Used
3.2.1. Constant Valve Opening

When the gate valve is introduced at the connection of the tube with tank 2, the pumping effect
of the oscillating tube is enhanced, so if the tanks have equal cross-sectional areas, a net flow rate
is established. As it is shown in Figure 5 for equal tanks, Ãb = 0.1 and W = 5, the flow is directed
towards tank 2 and maximizes when the gate valve loss coefficient is ζ = 6.5, corresponding to a valve
opening of 37.6% of the mean tube cross-section. Consequently, in an impedance pump, the use
of a valve in the hydraulic system could boost the net flow rate when the opening of the valve is
suitable. In practice, instead of valves, taper tubes are used as flow rectifiers, with hydraulic losses
strongly dependent on their geometry (width-taper angle) and Reynolds number. According to [26], the
performance of such devices drops or even vanishes at Re below 50, which seems to be remedied by
using taper tubes with flexible covers so that, in this case, they work efficiently, even for Re < 10 [27].
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3.2.2. Time-Dependent Valve Opening
In this paragraph, the opening of the valve is considered time-dependent. The valve can be part

of the hydraulic loop of an impedance pump as a means to control its flow rate, or in the case of an
intra-aortic balloon pump, it can simulate the operation of an aortic valve. Among several scenarios
regarding the timing between the valve opening and the tube cross-sectional area variation, the case
of the balloon pump was followed. Namely, the opening of the valve coincides with an increase in the
tube cross-sectional area since, at the same time, the balloon shrinks. Figure 6 shows the variations in
the tube cross-sectional area Ã

(
t̃
)

along with that of the valve opening Ã02, following Equation (17),
with A02,min being equal to 8.4 % of A0 (corresponding to ζ ≈ 400) and Ãb = 0.1.
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By varying the minimum area of the valve and keeping the frequency of the tube and valve
oscillation constant (W = 5), the graph in Figure 7 was obtained for equal tank cross-sections. It is
clear from Figure 7 that the net flow rate is about 10 times larger compared to the case where the
valve opening is constant, and the maximum value of the net flow rate occurs for Ã02,min = 25.3%.
Moreover, it is interesting to note that the maximization of the net flow rate does not require that the
valve closes completely. A similar phenomenon is detected in [16], in which an unsteady stenosis
increased the net flow rate by 19 times.
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By increasing the frequency of the straight tube pulsation and its cross-sectional area ampli-
tude Ãb, the non-dimensional net flow rate increases up to a Womersley value of 5 and then it remains
constant (see Figure 8). The fact that the non-dimensional net flow rate is independent of W when
W takes high values is attributed to the W−2 terms in Equation (8), which tend toward zero when W
goes to infinity. Therefore, the net flow rate Q at high frequencies increases linearly with the frequency,

according to the definition of the non-dimensional flow rate Q̃ = Q/(A0ωL), namely, Q = A0ωLQ̃.
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3.2.3. Intra-Aortic Balloon Pump
For the case of the aortic balloon pump, the following assumptions were made: blood is the

flowing medium of hematocrit 40 so that its kinematic viscosity is 4.0072 cSt [28]; the heart rate varies
from 70 to 120 beats/min, or the cyclic frequency ω changes from 7.3 up to 12.5 rad/s; the aorta
internal diameter is 20 mm; the two tanks have the same diameter as that of the aorta; the length of
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the balloon is 0.26 m, based on [29]; Ab varies from 6 to 24.5% of A0; and the minimum opening of
the valve is 8.4% of A0. It should be noted that in balloon pumps, the inflated balloon’s diameter
normally does not exceed 80% of the descending thoracic aorta diameter [30], or the Ab maximum
value is close to 30% of A0. Moreover, the present model simulates cases of leaky aortic valve leaflets,
where the area of the valve that remains open, according to [31], is 25% of the cross-sectional area of
the left ventricular outflow tract (for mild cases).

Figure 9 shows the net flow rate iso-contours as a function of both the inflation of the balloon—which
is related to Ab—and the heart rate. According to Figure 9, the generated net flow rate takes a
maximum value close to 1 L/min for a frequency of 2 Hz and Ab = 24% of A0. Nevertheless, it has
to be remembered that in real applications, the arterial tree plays a significant role in the pump’s
performance, such as its compliance, which has been shown to reduce the balloon efficiency when
this increases [32]. Of course, the procedure, although relatively simplistic, is able to reproduce the
basic features of the pump.
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4. Conclusions
This work numerically examines, by employing a quasi-one-dimensional flow model, the

conditions for which the net flow rate is generated by the harmonic variations in time of the cross-
sectional area of a tube connecting two tanks. A first-order nonlinear differential equation of the
flow rate was derived, showing that its nonlinear term is responsible for the net flow rate generation,
being associated with asymmetries in the hydraulic losses with respect to the mid-length of the tube.
The net flow rate is nonzero if the tank cross-sectional areas are not equal; it takes higher values if
at least one of the tanks has a smaller area than that of the tube, is directed from the smaller to the
larger tank, and increases with the frequency of the tube oscillation. When the tanks’ cross-sections
are equal, the net flow is null. In this case, if a valve is installed, the flow becomes unidirectional, and
it is further increased if the valve opening is time-dependent, maximizing for a particular minimum
valve opening. By simulating the operation of an intra-aortic balloon pump so that the valve opening
coincides with the shrinkage of the tube, the net flow rate increases with the heart rate and the
inflation of the balloon.
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Appendix A

Numerical Method for Solving the Nonlinear Ordinary Differential Equation

To solve the ordinary differential Equation (8), a FORTRAN program implementing the classical
fourth-order Runge–Kutta method is used as a single-step time marching scheme. In this method, the
time derivative of the unknown dimensionless flow rate function is isolated as follows:

dQ̃
dt̃

=
.

Q̃ = −
C̃
(
t̃
)
·Q̃ + D̃

(
t̃
)
·Q̃2 + Ẽ

(
t̃
)

B̃
(
t̃
) (A1)

Next, the following coefficients of each order are calculated for each dimensionless time interval ∆̃t [33].

k1 =
.
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Each of the ki values above represents the time slope of the unknown function Q̃ at dimensionless time t̃.
Finally, the next value of Q̃ in the time sequence is found using the following Equation (A6),

which represents a weighted average of the ki slopes:

Q̃i+1 − Q̃i

∆t̃
=

1
6
(k1 + 2k2 + 2k3 + k4) →

Q̃i+1 = Q̃i +

[
1
6
(k1 + 2k2 + 2k3 + k4)

]
·∆t̃

(A6)
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