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Abstract: In this paper, a nonlinear vibration system with friction and linear and nonlinear springs is
modeled and analyzed. The analysis examined how the combination of nonlinear variables affects
the displacement of the system using the slowly varying amplitude and phase (SVAP) method. The
break-loose frequency at which relative motion begins was obtained as a function of the friction ratio,
and it was found that the displacement transmissibility differed depending on the change in design
parameters. The displacement transmissibility response showed a unique phenomenon in which
bifurcation occurred in the front resonant branch before the maximum response point when the linear
damping coefficient was small and the friction coefficient was large, and the displacement transfer
curve was separated at a specific parameter value. This phenomenon can be divided into three
parameter zones considering the bifurcation pattern and stability of the displacement transmissibility
curve. In addition, a 3-D spatial zone of dimensionless parameters was presented, which can predict
stability during the design process, along with the drawing method and procedure. This can be
conveniently utilized in the process of setting the parameters of the isolators considering the stability
of the response during the design. In the analysis and design process of vibration isolators with
friction damping, this study has important implications for practical applications.

Keywords: nonlinear vibration isolator (NVI); the slowly varying amplitude and phase (SVAP);
displacement transmissibility (DTR); trajectories of limit point bifurcation (TLPB); tracking diagram
(TD)

1. Introduction

The need for vibration isolation to protect devices from vibration due to earthquakes
or environmental disturbances is greatly increasing with the development and precision
of high-tech industries. Structural vibrations are widely present in aerospace, machinery,
optics, submarines, architectural engineering, etc., and can sometimes affect the precision,
safety, and reliability of objects, leading to unexpected results. Therefore, research on
vibration isolation devices with nonlinearity to enhance precision in device protection
is being conducted in various fields [1–5]. In addition, to enhance vibration isolation,
the designed isolators consist of various types with springs with restoring forces and
dampers that dissipate energy, with these elements frequently exhibiting nonlinear char-
acteristics [6–13]. Vibration isolation is primarily achieved using materials such as rubber
mounts, metal springs, air springs, and wire-mesh/cable systems [14]. Exhibiting minimal
damping and a significantly high transmissibility at resonance, metal springs are used
alongside viscous dampers to enhance vibration isolation performance. Generating friction
due to contact between wires under load, wire-mesh vibration isolation systems exhibit
significant behavior, leading to the presence of both static and dynamic nonlinearities in
stiffness [13]. In addition, dampers utilizing piston friction in cylinder-type air springs
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and friction in magnetic springs are also employed [15]. Friction dampers, being easy
to install and maintain, generate friction without being significantly influenced by load
magnitude or inherent frequency, allowing for various designs based on surface shape
or material [16]. The isolator, composed of these elements, can be briefly illustrated as a
nonlinear system consisting of mass, a spring with nonlinear characteristics, and viscous
and friction dampers, as shown in Figure 1.

Figure 1. Base excited nonlinear vibration system including friction damping.

The analysis methods for nonlinear vibration systems apply approximate techniques
such as the harmonic balance method (HBM) [17–19], the averaging method [18–20], the
multiple scale method [21], etc. With the study of these methods, research on the character-
istics of nonlinear systems with friction and quasi-zero stiffness as vibration isolation is
actively being conducted [22,23]. Brfennan et al. [24] analyzed the jump-up and jump-down
phenomena through the theoretical framework of a damped Duffing oscillator. In their anal-
ysis of the isolator, Carrella et al. [25] transformed the force–displacement characteristics
into those of a hardening Duffing oscillator and applied the approximate harmonic balance
method to derive analytical expressions for force and displacement transmissibility. Addi-
tionally, Barquist et al. [26] presented analytical calculations of the response of a Duffing
oscillator to low-frequency variations in resonant frequency and damping. Liu et al. [27],
proposing a mechanical model for a Duffing-type isolator subjected to excitation, aimed
to establish criteria for jump avoidance under both base and forced excitation conditions.
Murata et al. [28] analyzed the motion of diaphragm air springs using the Helmholtz–
Duffing equation, also investigating the effects of jump phenomena and hysteresis through
bifurcation studies, which highlighted the relationship between excitation frequency and
amplitude that causes discontinuous changes in motion amplitude. Kovacic et al. [29]
studied the nonlinear characteristics of a system with quasi-zero stiffness, which operates
without linear stiffness terms and exhibits hardening behavior, focusing on the response of
an asymmetric Duffing oscillator at its first resonance. Shi et al. [30] derived the frequency
response relationships of nonlinear systems using averaging methods and elliptic func-
tions. In their study on friction damping, Mario et al. [31] analytically examined a linear
oscillator with dry friction, obtaining displacement transmissibility under base excitation
and exploring the characteristics of friction damping. Wang et al. [32] conducted a study on
the vibrations, stability, and bifurcation mechanisms of nonlinear systems associated with
dry friction dampers for supercritical transmission shafts. However, they did not clarify
the interrelationships among the variables for design implementation, and the absence of
linear stiffness has been shown to pose challenges in analyzing the system’s characteristics.

Uzdin et al. [33] conducted a study on a seismic isolation system, which comprises
support elements connected in series with elastic and friction components, modeling the
friction element as a dry friction damper. The analysis revealed that, to avoid hazardous
resonant vibrations, the friction force and damping must exceed 10% of the structural
weight, which he proposed as a critical design parameter. Benacchio et al. [34] investigated
the effects of the nonlinear parameter of dry friction on the dynamic behavior of oscillators.
The equations of motion were formulated according to the Mathieu–Duffing equation, using
the harmonic balance method and variable amplitude method to obtain solutions. The study
demonstrated that an isolator incorporating dry friction exhibits bifurcations of isolated
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periodic solutions. Zucca and Ferhatoglu [35,36] argued that non-uniqueness in simulating
friction damping can lead to convergence problems in numerical methods that directly
compute periodic limit states. Thus, he interpreted the condition of ignoring the non-
uniqueness of residual traction by setting the time average of the slip displacement to zero.
Ferhatoglu et al. [37] focused on the first-order resonance with clear mode separation based
on nonlinear modes. First, the boundaries of nonlinear modal properties, especially modal
frequency that depend on amplitude, damping ratio, and displacement, are calculated
and interpreted as closed-form expressions governing the amplitude–frequency curve
for harmonic excitation. Starossek [38] considered a hardening model of the Duffing
equation combining Coulomb and viscous damping, observing abnormal jumps in a system
subjected to base excitation. Ravindra and Mallik [39] considered the equations of a system
with a hardening-type third-order nonlinear spring that combines Coulomb and viscous
damping, observing abnormal jumps due to base excitation. This provided a relationship
between the frequency and amplitude of excitation, leading to a discontinuous change in
the amplitude of motion. Yu and Zang [40] replaced dry friction with viscous damping
to obtain the displacement transmission rate of systems with dry friction. However, an
analysis of non-resonance with nonlinear stiffness has not been implemented. Huang
et al. [41] introduced mass and stiffness as new parameters to improve the diversity of the
equations of motion that include nonlinear damping, analyzing them using the averaging
method. Yu et al. [42] approximated the equations of a system with dry friction and
third-order stiffness to derive the transfer function, further investigating the effects of each
parameter on non-resonance, and then validated the theory through empirical experiments.
However, they did not approach the dimensional analysis of the equations, introducing
parameters of different dimensions, which complicates the overall variable relationship
analysis. Additionally, there was no three-dimensional analysis of the dimensionless
coefficients of viscous damping, friction damping, and nonlinear spring constants for
implementation in design.

Therefore, in this study, in order to examine the change in the stability of the response
according to the elements that make up the system, the following was conducted. First, a
mathematical model is derived for a single-degree-of-freedom base excitation vibration
model characterized by nonlinear properties, including stiffness with first- and third-order
terms, along with dry friction. To examine the general relationships between the variables
in the mathematical model, dimensionless parameters are introduced, and the response
characteristics are derived using the SVAP method. The analysis is conducted through
numerical methods based on theoretical governing equations. The discussion of the results
aims to investigate the bifurcation phenomena in the solutions according to the nonlinear
values of friction and stiffness in the transmissibility characteristics, as well as to study
stability. Additionally, to utilize this information as design criteria while considering system
stability, the interrelationships among viscous damping, stiffness nonlinearity, and friction
damping will be examined, and the system’s transmissibility and stability will be analyzed.

2. Equation of Motion for Base Exited System

The single-degree-of-freedom vibration system model with friction damping, viscous
damping, and nonlinear stiffness is shown in Figure 1. In this vibration system, c denotes
the viscous damping coefficient, Ff represents the friction force generated by the friction
damper, which is modeled using the Coulomb friction model, k1 is the stiffness coefficient,
and k3 is the coefficient of cubic nonlinear stiffness. When the base is excited with the
displacement y, mass m moves with the displacement x, and Z represents the relative
displacement of the two displacements.

To investigate the isolation characteristics of the vibrating system shown in Figure 1,
the transmissibility is investigated when the base is harmonically excited with Yocosωt. The
equation of motion for the vibration isolator in Figure 1 is expressed as follows:

m
d2Z
dt2 + c

dZ
dt

+ k1Z + k3Z3 + Ff sgn
(

dZ
dt

)
= mΩ2Yocos(ωt) (1)
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To express Equation (1) in dimensionless form, one defines the following non-
dimensional parameters:

z = Z
Yo

, ωn =
√

k1
m , τ = ωnt, Ω = Ω

ωn
,

ζ = c
2mωn

, µ = k3Y2
o

k1
, η =

Ff
2k1Yo

.
(2)

Using these dimensionless parameters (2), Equation (1) is rewritten as the following
non-dimensional equation:

..
z + 2ζ

.
z + z + µz3 + 2η sgn

( .
z
)
= Ω2cos(Ωτ) (3)

where z is the dimensionless relative displacement, ωn is the natural frequency, ζ is the
damping ratio, µ is the coefficient of cubic nonlinearity, η is the friction ratio, Ω is the
excitation frequency ratio, τ is the dimensionless time, the “dots” denote derivatives with
respect to τ, i.e.,

.
z = dz/dτ and

..
z = d2z/dτ2.

3. Response Analysis of Nonlinear Isolation System for Base Excited

To solve the nonlinear Equation (3), the SVAP method [18,19] is used. This method
serves as a first approximation of the averaging method and is also referred to as the
method of first-order averaging. The important feature of this approach is that it not only
determines the steady-state periodic solution but also allows for the determination of the
system’s transient behavior as a limit cycle periodic solution.

The steady-state solution of Equation (3) and its time derivative form are given by
Equations (4) and (5), respectively.

z = u(τ)cos(Ωτ + ϕ(τ)) (4)

.
z = −u(τ)Ωcos(Ωτ + ϕ(τ)) (5)

where u and ϕ are functions of τ. To determine these solutions, they must satisfy certain
condition. The condition can be obtained by differentiating Equation (4) with respect to τ
and comparing it with Equation (5), as follows:

.
u cos(Ωτ + ϕ)−

.
ϕu sin(Ωτ + ϕ) = 0 (6)

Differentiating Equation (5) with respect to time, and then substituting it along with
Equations (4) and (5) into Equation (3) and simplifying, yields the following equations:

.
u sin(Ωτ + ϕ) +

.
ϕu cos(Ωτ + ϕ) =

(
−uΩ + u

Ω + 3µ
4Ω u3

)
cos(Ωτ + ϕ)

+ µ
4Ω u3 cos(3Ωτ + 3ϕ)− 2ζu sin(Ωτ + ϕ) + 2 η

Ω sgn
( .
u
)
− Ω cos Ωτ

(7)

Solving Equations (6) and (7) simultaneously for
.
u and

.
ϕ and subsequently carrying

out averaging over the period, T = 2π/Ω, according to the SVAP method, yields the
following first-order differential equation:

.
u = − 1

2Ω

(
2ζΩu +

8
π

η + Ω2sin(ϕ)

)
(8)

.
ϕ =

1
2Ωu

(
(1 − Ω2 )u +

3
4

µu3 − Ω2 cos(ϕ)
)

(9)

The averaged Equations (8) and (9) form an autonomous system, as time τ is not
explicitly present in the right-hand side. These steady-state responses, denoted as us and
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ϕs, are expressed as the following nonlinear algebraic equations by substituting
.
u =

.
ϕ = 0,

u = us and ϕ = ϕs into Equations (8) and (9).

2ζΩus +
8
π

η + Ω2 sin(ϕs) = 0 (10)

(
1 − Ω2

)
us +

3
4

µu3
s − Ω2 cos(ϕs) = 0 (11)

By eliminating ϕs from Equations (10) and (11), the sixth-order equation for the
stationary response us can be obtained as follows.

a6u6
s + a4u4

s + a2u2
s + a1us + a0 = 0 (12)

where
a6 =

( 3
4 µ
)2

, a4 = 3
2 µ
(
1 − Ω2), a2 = Ω4 + 2

(
2ζ2 − 1

)
Ω2 + 1,

a1 = 32
π ζηΩ, a0 =

( 8
π η
)2 − Ω4.

(13)

Using the solution of Equation (12), the phase ϕs have the form

ϕs = tan−1

(
−2ζΩus − 8

π η

(1 − Ω2)us +
3
4 µu3

s

)
. (14)

In the case where us = 0 in Equation (12), there is no relative displacement. Therefore,
the constant term a0 in Equation (12) must be zero, i.e.,

8
π

η − Ω2
c = 0 (15)

In Equation (15), Ωc represents the critical frequency at which relative motion occurs
and means the sticking to sliding transition frequency. This is commonly referred to as the
starting frequency of motion [13], also known as the onset frequency of slip or the break-
loose frequency [33]. If the applied frequency is less than Ωc, relative motion remains in a
locked state, and if the applied frequency exceeds Ωc, relative motion will occur. Figure 2
illustrates the relationship described by Equation (15), showing the slip and sticking regions
in the Ω − η plane and the threshold line. In Figure 2, the friction ratio corresponding
to the resonant frequency, Ω = Ωn = 1, is π/8. Therefore, if η > π/8 ≃ 0.393, relative
displacement does not occur even at the resonant frequency.

Figure 2. Sticking and slip regions in Ω − η plane and the separating threshold line.

The stability of the solutions obtained from Equations (10) and (11) can be obtained
from the eigenvalue analysis of the Jacobian matrices of Equations (8) and (9). If the real
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value of the eigenvalue is positive, it is unstable, and if it is negative, the solution is stable.
The Jacobian matrix for stability analysis is as follows.

J(us, ϕs) =

[
−ζ −Ω

2 cos(ϕs)
1

4Ωu2
s

(
3µu3

s + 2Ω2 cos (ϕ s)
)

Ω
2us

sin(ϕs)

]
(16)

The vibration transmission characteristics can be identified through the displacement
transmissibility of absolute displacement, which can be expressed as the ratio of the absolute
displacement amplitude of the mass and the base excitation amplitude, and the absolute
displacement response of the mass is represented as the sum of the relative displacement
response and the base excitation displacement as follows:

x = usY0 cos(Ωτ + ϕs) + Y0 cos(Ωτ). (17)

Therefore, the absolute displacement transmissibility Tr and the phase ψ of the absolute
displacement due to the base excitation are as follows:

Tr =
|x|
Y0

=
√

1 + 2us cos (ϕ s) + u2
s (18)

ψ = tan−1 −us sin(ϕs)

1 + us cos(ϕs)
(19)

4. Results and Discussion

The displacement responses for the dimensionless parameters (ζ, η, µ) defined in
Equation (2) are obtained from Equations (12) and (14). Based on these results, the absolute
displacement transmissibility (DTR) can be obtained using Equation (18). The stability
of these solutions is assessed using Equation (16). In this study, the DTR characteristics
according to changes in friction damping, viscous damping, and nonlinear stiffness will
be examined.

4.1. System with Zero Nonlinear Spring Coefficient ( µ = 0)

In the case where the coefficient of nonlinear stiffness k3 in the equation of motion
Equation (1) is zero, the DTR can be obtained by numerical analysis, and the result can
be obtained, as shown in Figure 3. As shown in Figure 3a,b, as the excitation frequency
ratio increases, the frequency at which DTR begins to become greater than one increases
as the friction ratio η increases. This is because the break-loose frequency increases as the
friction ratio increases, so there is no relative motion until the excitation frequency reaches
the break-loose frequency, maintaining Tr = 1. Also, all DTR curves always pass the point
of Tr = 1 when Ω =

√
2. Since this is a case that satisfies us = −2 cosϕs in Equation (18),

by substituting this into Equation (11), confirms that Ω =
√

2. When η < π/8 (Ωc < 1),
resonance occurs at Ω = 1. For instance, as shown in Figure 3a, when η = 0 or η = 0.2
(η < π/8) with ζ = 0, the DTR becomes infinite at Ω = 1 in both cases. However, in
Figure 3b, where ζ ̸= 0, the DTR is finite due to the effect of viscous damping. When
η > π/8 (Ωc > 1), the DTR rapidly decreases, and when η ≥ π/4 (Ωc ≥

√
2), the DTR

becomes less than or equal to one at all excitation frequencies ( Ω ≥
√

2
)

, resulting in
vibration isolation.



Vibration 2024, 7 1216

Figure 3. Absolute displacement transmissibility of linear spring system (µ = 0). (a) Transmissibility
curve due to frequency ratio at ζ = 0.00 for η = 0, 0.2, 0.4, 0.5, 1.0, (b) Transmissibility curve due to
frequency ratio at ζ = 0.03 for η = 0, 0.2, 0.4, 0.5, 1.0.

4.2. System with Positive Nonlinear Spring Coefficient ( µ > 0)

For the system where the linear and nonlinear spring constants are non-zero, the TRs
of the equation of motion (1) were numerically analyzed with respect to changes in the
damping ratio ζ and friction ratio η. The results are shown in Figure 4. Depending on the
frequency ratio, the system has either one or three solutions for the DTR. The stability of
these solutions is evaluated using Equation (16), and unstable solutions are represented by
dashed lines. A limit point (LP) bifurcation occurs when the system transitions from one
solution to three, or from three solutions to one, and this LP bifurcation is marked with
circular symbols. When the excitation frequency is lower than the break-loose frequency, no
relative motion occurs due to the friction damper, and the DTR remains at one. As shown
in Figure 4a, when the friction ratio η increases, the break-loose frequency also increases.
With a further increase in the break-loose frequency, the front resonant branch of the DTR
curve bifurcates into one unstable solution and two stable solutions, forming a concave
shape. As the values continue to rise, the front resonant branch and rear resonant branch
meet at a single point, indicating that the solution possesses multiple roots. Subsequently,
the DTR curve separates into a host branch and a sub-branch. The results of this numerical
analysis are presented in Figure 4. In Figure 4a–c, examining the cases where η is 0.6 and
1, it can be seen that as the damping ratio ζ increases, the separation of the DTR curve
also occurs. From the perspective of the damping ratio, considering η = 0.6, it is noted
that as ζ increases to 0, 0.04, and 0.06, the DTR curve separates into the host branch and
sub-branch. In Figure 4d, when the damping ratio is large (e.g., ζ = 0.2), it is noted that
even as the friction ratio increases, the front resonant branch maintains stable solutions
without bifurcation, while the rear resonant branch shows bifurcation or stable solutions
depending on the value of the damping ratio.

In the analysis of Figure 4, DTR can be classified into three types based on the system
design parameters, as shown in Figure 5. These types include Type I, where the front
resonant branch of the DTR curve undergoes bifurcation; Type II, where the TR curve
separates into a host branch and a sub-branch; and Type III, where there is no bifurcation
in the front resonant branch of the DTR curve.

Type I, illustrated in Figure 5a, features a concave or narrow-waist shape due to the LP
bifurcation points A and B, where the corresponding frequencies satisfy ΩA > ΩB. This
type also exhibits abnormal jump characteristics. When the excitation frequency is swept
upward from point S, it follows the S-A path and jumps up at point A, moving along the
upper resonant branch to point E. Conversely, when sweeping the frequency downward
from point F, it follows the F-C path, jumps up at point C, and subsequently moves along
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the upper resonant branch to point B before jumping down and reaching point S. This
results in a double jump phenomenon.

Figure 4. Absolute displacement transmissibility of a nonlinear system with respect to friction and
frequency ratio for a spring stiffness ratio of µ = 0.2. The dashed lines denote the unstable branch
regions, and the circle markers indicate the locations of the LP bifurcations. (a) Transmissibility
curve due to frequency ratio at ζ = 0.00, (b) Transmissibility curve due to frequency ratio at ζ = 0.04,
(c) Transmissibility curve due to frequency ratio at ζ = 0.08, (d) Transmissibility curve due to frequency
ratio at ζ = 0.2 for η = 0, 0.2, 0.4, 0.6, 1.0.

Type II, depicted in Figure 5b, exhibits DTR characteristics that are separated into
a host branch and a sub-branch. In the case of a downward sweep from point E of the
sub-branch, a jump down occurs at point D along the upper sub-branch, although this is
a very specific scenario and has a low probability of occurrence in practical engineering.
Upward or downward sweeps from points S or F lie on the stable host branch along the
S-F path. However, the separated sub-branch has a large transmissibility characteristic,
and due to its distinct properties, it may not be identified in analyses using the shooting
method [43]. Therefore, caution should be exercised during the analysis.

Type III, shown in Figure 5c, is characterized by the absence of bifurcation in the front
resonant branch of the DTR curve. If the viscous damping is significant, the rear resonant
branch also exhibits stable solutions.
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Consequently, it is essential to investigate the relationships among the design parame-
ters: the damping ratio ζ, the friction ratio η, and the coefficient of cubic nonlinearity µ, as
bifurcation phenomena related to instability arise based on these relationships. Understand-
ing these relationships is critical for the vibration isolation design of nonlinear systems.

Figure 5. Cont.
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Figure 5. Three types of displacement transmissibility responses that occur depending on system
design parameters; the dotted line is an unstable region; and the end point of the dotted line is the
LP Bifurcation point. (a) Type I with a concave or narrow-waist shape due to the LP bifurcation
points (ζ = 0.02, µ = 0.2, η = 0.6), (b) Type II separated into a host branch and a sub-branch
(ζ = 0.08, µ = 0.2, η = 0.6), (c) Type III without bifurcation in front resonant branch curve
(ζ = 0.2, µ = 0.2, η = 0.2).

The LP bifurcations of the DTR curves vary according to the design parameters:
friction ratio, damping ratio, and coefficient of cubic nonlinearity. By tracking the changes
in these bifurcations, one can understand the characteristics of the DTR curve. First, fixing
ζ= 0.02 and η = 0.2, and calculating the bifurcation points of the DTR curves for several
friction ratio values, the results shown in Figure 6a are obtained. In this figure, points A
and C merge into point D (η = 0.6565) as η increases. Beyond this point, the bifurcations
disappear. Meanwhile, point B follows a path from point E to point F as η increases.
Figure 6b shows the trajectory of the bifurcation points in the Ω − η plane, obtained by
incrementally changing the friction ratio η. The points corresponding to the bifurcations in
Figure 6a are marked with the same labels in Figure 6b. The kink point on the trajectory
curve is labeled as Kp, the intersection with the horizontal line is labeled as Rp, and the
critical point is denoted as Cp. As seen in Figure 6b, bifurcation points A and C move closer
together as η increases and eventually converge at the critical point Cp, which corresponds
to point D (η = ηD). Conversely, as η decreases, bifurcation points B and A approach each
other, forming a kink point Kp, and the unstable region disappears.

Thus, when ηKp < η < ηCp , the DTR curve exhibits a Type I form with two bifurcations,
leading to unstable solutions on the front resonant branch. When η > ηCp , the DTR curve
separates into a host branch and a sub-branch with one bifurcation, forming a Type II shape.
Finally, when η < ηKp

, the DTR curve has no unstable solutions on the front resonant
branch, resulting in a Type III shape. Consequently, by using the trajectory curve as shown
in Figure 6b, the frequency response characteristics can be effectively identified according
to the variation in η.

The following analyzes the changes in bifurcation points with respect to the damping
ratio ζ. DTR curves for various ζ values were calculated, and the bifurcation points of each
DTR curve were tracked and plotted on the Ω − η plane, as shown in Figure 7. First, for
ζ = 0, the kink point Kp is located at the coordinates (Ω, η) = (1, 0.393) on the boundary line
between stick and slip, which can be verified by the break-loose frequency relation (15).
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The critical point Cp is located at the coordinates (1.492, 0.695). As ζ increases to 0.02 and
0.08, the range of friction ratios between Kp and Cp on the trajectory curve, i.e., from ηKp to
ηCp , decreases. Consequently, as viscous damping increases, the range of friction ratios for
which the DTR curve takes the form of Type I diminishes. Additionally, since the friction
ratio at the critical point Cp, ηCp , decreases, the range of friction ratios forming the Type II
curve increases. When ζ = 0.15, Cp and Rp disappear, leaving only Kp. At this point, Kp
is located at the coordinates (1.4417, 0.3835). If η > ηKp = 0.3835, the DTR curve exhibits
Type II characteristics, and if η < ηKp , it exhibits Type III characteristics. Similarly, when
ζ = 0.2, only Kp exists at the coordinates (1.4977, 0.2405), and since η is always less than
ηKp , the DTR curve shows Type III characteristics.

Figure 6. Transition of TR curves and the trajectory of LP bifurcations in the Ω− η plane, with µ = 0.2
and ζ = 0.02. (a) Transmissibility curve due to frequency ratio for η = 0.7, 0.6565, 0.6, 0.5, 0.4, 0.5, 1.0
and Limit Point, (b) Trajectory of Limit Points due to friction ratio at the left figure.

By tracking the changes in the bifurcation points Cp, Kp, and Rp along the bifurcation
path in Figure 7 and reconstructing them on the ζ − η plane using their ζ and η values, the
tracking diagram shown in Figure 8 is obtained. In Figure 8, the Rp line partially overlaps
with the Kp line, and the Cp line decreases as ζ increases, eventually merging with the Kp
and Rp lines and vanishing at ζ ≃ 0.13. These two lines divide the ζ − η plane into three
regions. Analyzing the DTR curve characteristics in the three regions of Figure 8, in Zone I,
where ηKp < η < ηCp , the DTR curve exhibits Type I characteristics with bifurcations in
both the front and rear resonant branches. Zone III, where η < ηKp shows no bifurcation in
the front resonant branch but bifurcation in the rear resonant branch, displaying Type II
and Type III characteristics. In Zone II, where η > ηCp and η > ηKp , the DTR curve splits
into host and sub-branches, with the host branch having no bifurcation, corresponding to
Type II and Type III characteristics. Zone II can be considered a parameter region where
the system’s response is stable.

The tracking diagram in Figure 8, obtained by tracing significant points such as Kp
and Cp along the bifurcation curves, provides valuable information for selecting design
parameters, η and ζ, to stabilize the system, offering highly useful guidance for the de-
sign process.
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Figure 7. Trajectories of LP Bifurcations according to various damping ratios ζ for µ = 0.2 in the
Ω − η plane. The dashed line means the boundary between stick and slip.

Figure 8. Tracking diagram of Cp, Kp, and Rp points in ζ − η plane with µ = 0.2 and regions
delineated by them. (Sky blue is zone I, white is zone II, coral is zone III).

The following analyzes the system’s response characteristics with changes in the value
of the coefficient of cubic nonlinearity µ, presenting the tracking diagram of Cp and Kp
at µ = 0.5 in Figure 9. As seen in Figure 9, this diagram resembles Figure 8 but shows
enlarged Zone I and Zone III. Notably, as the nonlinear stiffness increases, Zone I expands,
which requires careful consideration when selecting the design parameters for the system.
Figure 10 illustrates the effects of the nonlinear stiffness coefficient by adding cases for
µ = 0.5 and 1, represented in a three-dimensional ζ − η − µ space. As shown in Figure 10,
it consists of three distinct spatial regions, and the DTR characteristics in each region are
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extensions of the results already discussed in Figure 8. Therefore, the results of Figure 10
can be used as useful material for setting the design parameters for vibration isolation,
namely, the friction ratio, damping ratio, and the coefficient of cubic nonlinearity, according
to specific objectives.

Figure 9. Tracking diagram of Cp and Kp points in ζ − η plane with µ = 0.5 and regions delineated
by them. (Sky blue is zone I, white is zone II, coral is zone III).

Figure 10. Tracking diagram of Cp and Kp points in ζ − µ − η space and regions delineated by them.
(Zone I is a volume where the sky blue colored areas are connected in the nonlinear stiffness ratio µ

direction, zone II is a volume where the white-colored areas are connected, and zone III is a volume
where the coral-colored areas are connected).
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5. Conclusions

The response characteristics of the nonlinear isolation system with friction damping,
viscous damping, and nonlinear stiffness, attributed to the base excitation, were analyzed
using the SVAP method, and the results are as follows.

The break-loose frequency where the relative motion of the system occurs can be pre-
dicted by deriving the functional relationship of the friction damping ratio. In a nonlinear
system with friction damping, the break-loose frequency increases as the friction coefficient
increases, and the bifurcation phenomenon of the solution occurs in the front resonant
branch. On the other hand, when the friction and viscous damping ratio increases, the
bifurcation phenomenon of the solution disappears in the front resonant branch, and the
bifurcation of the solution also disappears in the rear resonant branch. These phenomena
can be classified into three types. The three types include configurations where unstable
points (saddle points) exist in certain intervals of the DTR curve due to variations in design
parameters, configurations with separated shapes of the DTR curve, and configurations
where no separation phenomenon occurs. By tracking the bifurcation and its trajectory
with respect to the design parameters, and following the key points Kp and Cp, the sys-
tem’s parameter space could be divided into three zones on the η − ζ plane, allowing the
specific type of DTR curve in each zone to be identified. Furthermore, by incorporating
the nonlinear stiffness µ, the analysis was extended into a three-dimensional space of ζ,
η, and µ, confirming that as µ increases, the number of unstable regions also increases.
The presentation of the three-dimensional space can serve as a valuable resource for easily
determining stability and can be utilized for selecting design parameters. In other words,
this is expected to serve as a resource for analyzing and selecting the interrelationships
of design parameters such as the friction ratio η, damping ratio ζ, and nonlinear stiffness
coefficient µ, which are key design variables in vibration isolation systems to ensure stabil-
ity. Furthermore, by presenting a methodology for analyzing the response characteristics
using the SVAP method, it is anticipated that this approach can be widely applied to
single-degree-of-freedom nonlinear vibration isolation systems with friction and 1st- and
3rd-order nonlinear springs. Future research may explore additional nonlinear effects or
integrate different damping mechanisms to expand upon this study.
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Nomenclature

m mass of system
c viscous damping coefficient
k1 stiffness coefficient
k3 coefficient of cubic nonlinear stiffness
Ff friction force
x displacement of mass
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y displacement of base
Z relative displacement of the mass with respect to the base
ω excitation frequency
Yo amplitude of base displacement
z dimensionless relative displacement
ωn natural frequency
τ dimensionless time
Ω frequency ratio
ζ damping ratio
η friction ratio
µ coefficient of cubic nonlinearity
u amplitude of relative displacement response
ϕ phase of relative displacement response
us steady-state amplitude of relative displacement response
ϕs steady-state phase of relative displacement response
Ωc break-loose frequency, starting frequency of motion, or critical frequency
Tr absolute displacement transmissibility (ADTR)
SVAP slowly varying amplitude and phase
DTR displacement transmissibility
LP Limit Point
Kp kink point
Cp critical point
Rp intersection point
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