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Abstract: Flywheels have been largely used in rotating machine engines to save inertial energy and
to limit speed fluctuations. A stress distribution problem is created due to the centrifugal forces
that are formed when the flywheel is spinning around, which leads to different levels of pressure
and decompression inside its structure. Lack of balance leads to high energy losses through various
mechanisms, which deteriorate both the flywheel’s expectancy and their ability to rotate at high
speeds. Deviation in the design of flywheels from their optimum performance can cause instability
issues and even a catastrophic failure during operation. This paper aims to analytically examine the
stress distribution of radial and tangential directions along the flywheel structure within a linear
elastic range. The eigenvalues and eigenvectors, which are representative of free vibrational features,
were extracted by applying finite element analysis (FEA). Natural frequencies and their corresponding
vibrating mode shapes and mass participation factors were identified. Furthermore, Kirchhoff–Love
plate theory was employed to model the transverse vibration of the system. A general solution for
the radial component of the equation of flywheel motion was derived with the help of the Bessel
function. The results show certain modes of vibration identified as particularly influential in specific
directions. Advanced time-frequency analysis techniques, including but not limited to continuous
wavelet transform (CWT) and Hilbert–Huang transform (HHT), were applied to extract transverse
vibration features of the flywheel system. It was also found that using CWT, low-frequency vibrations
contribute to the majority of the energy in the extracted signal spectrum, while HHT exposes the high-
frequency components of vibration that may cause significant structural damage if not addressed
in time.

Keywords: stress distribution; transverse vibration; Kirchhoff–Love plate theory; FEA; CWT; HHT

1. Introduction

The analysis of stress distribution and transverse vibration in flywheels is essential
for optimizing their performance in energy storage applications. Flywheels, functioning
as kinetic energy storage devices, must endure high rotational speeds and associated
stresses while maintaining structural integrity. The centrifugal forces generated during
rapid rotation induce stresses in the flywheel, which must be carefully managed to prevent
failure. The stress distribution within a flywheel, operating in the linear elastic range,
can be thoroughly understood by synthesizing findings from various studies. The stress
distributions in a semi-infinite elastic body, influenced by molecular interactions, can be
derived from Mindlin’s solution, which incorporates a molecular interaction force based
on the Lennard–Jones potential [1,2]. This method demonstrates that the stresses acting on
surfaces (σx, σz, and τzx) depend on the surface distance, where the states of σx and σz at
large distances are equal, and σzx becomes zero due to the absence of fluctuation [3–6]. In
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the context of flywheel operation, inertia is positively correlated with mean concentric lin-
ear velocity, and it has been established that this relationship can be employed as a method
for load measurement and prescribing individualized training regimens. This relationship
is of great importance, as it aids in determining the stress patterns of flywheels under
various loads, ensuring that the components remain within the linearly elastic range [7].
Additionally, the study of linear electro-magneto-elastic materials provides insight into the
field equations governing such materials and can be employed to investigate the effects of
electromagnetic interactions on flywheels [8–11]. Furthermore, it highlights the impact of
parabolic temperature distribution on the second-stage deformation of discs composed of
nonlinear functionally graded composites modeled using Sherby’s law. This underscores
the significance of temperature profiles in the distribution of stress and strain rates. For
flywheels operating at elevated temperatures, modeling using MATLAB proves particularly
suitable for simulating creep behavior and analyzing stress distribution in both radial and
tangential directions [12]. In automotive applications, particularly within the powertrain,
torsional vibrations are often a significant factor influencing rider comfort. A method of
multiple conditions and multiple index assessment has been developed to address these
vibrations across various operating modes, including ignition, idle, start, acceleration,
deceleration, and transitions between throttle positions. This method evaluates parameters
such as the speed amplitude, vibration dose value, peak-to-peak value, vibration isolation
rate, and speed fluctuation attenuation rate in dual-mass flywheels (DMFs), both before
and after optimization. The optimization process reveals an approximate 7% improvement
in the damping effectiveness of DMFs [13]. In spacecraft, the micro-vibration of flywheel
rotor systems (SFRSs) becomes a prominent issue. Several studies are being carried out
on modeling techniques, suppression methods, isolation, and ground simulation tests to
improve the performance of micro-vibration analysis and sensitivity studies [14]. Nonlinear
torsional, linear stiffness, and damping characteristics of DMFs have been observed with
an increase in the inertia of the primary flywheel. A decrease in the inertia of the secondary
flywheel can lower the resonant amplitude and frequency band and obscure other nonlinear
dynamic behaviors like quasi-periodic and chaotic vibrations [15]. In the same way, for
the three-dimensional vibration isolation in flexible beams, a new approach based on the
utilization of the planned motion flywheel assembly has also been developed. This method
uses the Lagrange equation and Euler–Bernoulli beam theory and also uses the phase-delay
method to control the flywheel’s motion. This enabled the beam to be stabilized during free
vibration and to minimize displacement in forced vibration, making it more feasible and
versatile compared to other conventional boundary control strategies [16–18]. A new effi-
cient algorithm with an application of stochastic resonance (SR) along with wavelet analysis
has proven useful in improving the use of noise and identifying the range of orders where
fault diagnosis is required under variable speed conditions [19,20]. The power spectral
density (PSD) method, along with the Welch method and fast Fourier transform (FFT), were
used to analyze the changes in angular velocities and energy variations in flywheel systems.
These combinations could clearly show the kinematic response originating from torque
pulses [21]. Gray cast-iron flywheels represent one of the most prevalent categories of
flywheels utilized in various engineering applications, and a multitude of comprehensive
studies have been conducted to meticulously examine the numerous faults and deficiencies
that are commonly associated with their performance and functionality. Manufacturing
irregularities, such as porosity and microstructural changes, have been identified as key
contributors to flywheel failure. To address these challenges and prevent further degra-
dation that could lead to failure, a comprehensive investigation utilizing time-frequency
analysis is essential [22]. The integration of time-frequency transformation and data anal-
ysis has been found successful in the acquisition of transient data and fault diagnosis of
rotating machinery [23]. In most of the flywheel systems, the misalignment and the rotor
rubbing are early faults that have been detected using time-frequency analyses such as the
smoothed pseudo-Wigner–Ville distributions (SPWVDs). These techniques detect specific
super-harmonic and sub-harmonic frequency components that characterize the particular
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faults [24–26]. There are mainly two methods, namely empirical mode decomposition
(EMD) and the normalized Hilbert transform (NHT), constituting the Hilbert–Huang trans-
form (HHT) in the extraction of features from the multi-component as well as modulated
signals. New developments in the HHT, for instance, have seen the development of a soft
SSC, which depicts mode-mixing difficulties and improves the modes of decompositions
and demodulations, which, in turn, increases the estimation of instantaneous amplitude
and frequency [27,28].

In the present work, stress distribution and modal analysis of the flywheel were carried
out to determine the effect of stress on the flywheel due to a sudden application of high
parametric variation in the speed that substantially increases the centrifugal load. The
flywheel is assumed to be homogeneous and isotropic, which is subjected to centrifugal
forces due to its rotational motion. Expressions for the governing equations of stress
distribution were generated using the assumption of equilibrium of forces and stress–strain
relationships. The radial and tangential stress distribution patterns on the flywheel part
were analyzed, demonstrating the existence of a proportional relationship between them.
FEA was applied to analyze the dynamic properties of the flywheel on the parameters of
natural frequencies, mode shapes, and mass participation factors. The procedure included
defining the geometry, generating the mesh, using the boundary and loading conditions,
solving it using an FEA solver, and post-processing. Material interactive properties and
meshing information are also presented, including highlights of the use of SolidWorks
and curvature-based meshing techniques. Furthermore, Kirchhoff–Love plate theory was
employed to establish the mathematical model governing the flywheel transverse vibration.
Bessel functions were used to provide the general solution for the radial component of the
equation of motion.

2. Mathematical Formulation of Stress Distribution of Flywheel

By applying the basic laws of solid mechanics and the law of centrifugal forces, the
flywheel is assumed to be homogeneous and isotropic, with uniform geometry, mass, and
density. The centrifugal force is the primary force that acts on the material of the flywheel
that moves through the inertia of the particles of the material when it moves around the
axis of rotation. The centrifugal force in a running flywheel causes the particles of the
material in question to be subjected to a radial acceleration away from the axis of rotation.
These forces set up stresses in the material, which cause deformation if the material is not
strong enough to hold such forces.

When examining a circular flywheel of uniform thickness, rotating at an increasing
angular velocity around an axis perpendicular to its plane and pivoting about its midpoint,
we can regard the thickness of the flywheel as sufficiently small and assume it is primarily
under in-plane stress (σZZ = 0). The radial equilibrium equation of the rotating flywheel
segment, shown in Figure 1, can be expressed in the following form:

dσrr(r)
dr

+
σθθ(r)− σrr(r)

r
+ ρr

(
ω(t)2 +

dω(t)
dt

)
= 0 (1)

where ρ stands for the material density of the flywheel, and ω represents the angular
velocity as simple harmonic motion (SHM) in the form of ω(t) = ωmaxsin(ωft).

In couple stress theory, the radial stress σrr and circumferential stress σθθ in a cylin-
drical coordinate system under elastic deformation are derived based on linear elasticity
theory. Assuming that both σrr and σθθ vary with r and that the disk remains within the
elastic limit, the stresses σrr and σθθ in terms of the radial displacement ur are as follows:

σrr(r) = 2µ

(
1

1 − ν

)(
dur(r)

dr
+ ν

ur(r)
r

)
(2)

σθθ(r) = 2µ

(
1

1 − ν

)(
ur(r)

r
+ ν

dur(r)
dr

)
(3)
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Figure 1. Rotating flywheel and its element. 
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Figure 1. Rotating flywheel and its element.

By considering the annular flywheel with an internal radius Ri and external radius Ro,
the boundary conditions are as follows:

Outer radius traction-free: σrr(Ro, t) = 0;
Inner radius clamped: ur(Ri, t) = 0.
After applying the boundary condition, the system of Equations (1)–(3) can be solved

numerically.
The approximations for the radial stress σrr and tangential stress σθθ are obtained

based on the dominant dynamic terms under the assumptions of high angular velocity.
Under dynamic conditions with high angular velocity, the radial displacement ur(r) is
dominated by the forcing term due to the angular velocity ω2. This forcing term appears as:

−ρr
(

ω2 +
dω

dt

)
≈ −ρrω2 (4)

where ω2 is much larger than dω/dt for steady angular velocity.
The displacement ur(r) is approximately proportional to r3 because of the ρr3ω2 term

from the inhomogeneous equation.

ur(r) ∝ −ρr3ω2

8
(5)

dur

dr
∝ −3ρr2ω2

8
(6)

When we simplify and approximate the dominant term, the radial and tangential
stresses can be expressed as:

σrr ≈ −ρr2ω2

8
(7)

σθθ ≈ ρr2ω2

4
(8)

Tresca’s yield criterion, also known as maximum shear stress theory, states that yield-
ing starts within the inner radius when the hoop stress is equal to the yield stress available
σθθ = σYY. This means that if we are to use the yield criterion based on the maximum strain
energy incorporated in the maximum shear stress theory, the angular velocity at the onset
of yielding is the same as with the von Mises criterion.
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σ2
Y =

1
2

[
(σrr − σθθ)

2 + σ2
θθ + σ2

rr

]
(9)

The stress is maximum at the inner radius r = Ri. After algebraic manipulation of
Equation (7), as well as (8) into (9), the angular velocity ωY at the initial yielding is given by

ωY =

√
8σY√
7ρR2

i

(10)

The parametric analysis of the stress distribution in the flywheel, considering radial
and tangential variations, is presented at three different rotational speeds.

The parametric analysis, specifically concerning the radial and the tangential stress
patterns of the flywheel element through a range of speeds, is presented in Figure 2.
Moreover, a clear dependence is revealed in the form of a similar trend between the radial
and tangential stresses versus the radius of the flywheel. Figure 2a shows that the radial
stress increases with the increase in the flywheel element radius, where it reaches a critical
value at radius r =

√
RiRo, were Ri = 12 mm and Ro = 140 mm, respectively. Moreover, the

study depicts the influence of speed on stress distribution. With the increase in flywheel
speed, the level of stress in the element also increases. Figure 2b shows complete tangential
stress distribution behavior along the flywheel system at different speeds for the max and
min stresses at radius r = Ri and r = Ro, respectively. The radial stress values are slightly
higher at the intermediate radius than the tangential stress, indicating that the radial forces
are typically more dominant in the stress field.
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Figure 2. Stress distributions: (a) radial variation; (b) tangential variation.

Figure 3a presents a correlation between the tangential and radial stress responses
and the rotational speed of the flywheel system, characterized by a parabolic relationship.
Both tangential and radial stresses increase proportionally with the rotational speed of
the flywheel. As the speed increases, so does the stress experienced by the flywheel
system in both tangential and radial directions. It is clearly evident that as the rotational
speed rises, the stress does not increase uniformly but at an exponential rate, indicating
that stress rises rapidly with an increase in speed. The displacement of the flywheel
increases proportionally along the inside-to-outside radius, as shown in Figure 3b. This
proportionality occurs at the inside radius of the flywheel with minimum displacement
until it reaches its maximum displacement at the outside radius of the flywheel. Figure 3b
indicates a proportional increase in displacement from the inside to the outside radius of
the flywheel. The displacement increases proportionally from the inside to the outside
radius of the flywheel, suggesting a consistent pattern of deformation across its radial
dimension. This means that as you move from the center towards the periphery of the
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flywheel, the amount of displacement experienced by the material also increases. The
minimum displacement occurs at the inside radius of the flywheel, gradually increasing
until it reaches its maximum at the outside radius. This pattern represents the distribution
of stresses in the flywheel at the area near the axis of the flywheel having minimum
deformation while the outer rim experiences maximum deformation.
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3. Finite Element Modal Analysis of Flywheel

Modal analysis is defined as the identification of natural frequencies, damping factors,
and mode shapes of the system and the use of these frequency parameters for establishing
a mathematical model for the dynamic behavior of the system. The structure of flywheels is
divided physically based on frequency and position. The fundamentals of modal analysis
are based on the principle that the vibratory response of a single degree of freedom, linear
time-invariant dynamic system can be represented as a sum of several simple harmonic
motions. They are inherent vibration modes of the dynamic system and are defined
exclusively by the physical parameters of the system and their spatial orientation. In each
mode, the modal parameters include integral values that define the mode, the natural
frequency, and the mode shape. The amplitude of the vibratory response is governed by
the characteristics of the exciting force and mode shapes, which, in turn, define the level of
various natural modes that are likely to contribute to the system’s vibration.

As illustrated in Figure 4, the procedural flow chart pertaining to the FEA simulation
is delineated below. This process begins with the input data, which traverses through a
series of critical steps in a sequential manner. Initially, it is imperative to delineate the
structural geometry of the flywheel alongside its material properties to furnish a realistic
representation of the entire system. Subsequently, a mesh generation procedure is executed,
which subdivides the intricate geometries into finite elements, thereby facilitating the
simulation process. The ensuing step involves the imposition of boundary conditions and
loads that emulate real-world scenarios, thereby permitting an evaluation of the structural
response in a systematic manner. Throughout the simulation, the FEA solver employs
these inputs to yield outputs, which include the natural frequency, mode shapes, and mass
participation factors. Post-processing encompasses the determination of the simulation
results; this phase involves the scrutiny and interpretation of the deformation modes that
may potentially lead to the failure of the flywheel.

In the present instance, SolidWorks was employed to conduct a comprehensive ex-
amination of the flywheel structure using finite element methodology, thereby facilitating
the simulation and forecasting of mechanical behaviors. Table 1 delineates the proper-
ties of the materials that have been incorporated into the finite element analysis for the
flywheel structure.
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Table 1. Material properties of the FEA model.

Material 1023 Carbon Steel
Model type Linear Elastic Isotropic
Failure criterion Max von Mises Stress
Yield strength 283 MPa
Mass density 7858 kg/m3

Young’s modulus 205 GPa
Poisson’s ratio 0.29
Volume 0.0002848 m3

External diameter 280 mm
Internal diameter 24 mm
Thickness 10 mm

Table 2 presents the specifications related to the meshing techniques employed in the
FEA of the flywheel structure. The utilization of the curved-type mesh methodology, which
incorporates the geometrical characteristics of the curvatures during the analytical process,
signifies the formulation of a mesh possessing smooth edges and precise representations.
Jacobian points were used as landmarks to gauge the measure of quality in each mesh using
linear tetrahedral elements. An elevation in the maximum element value may correspond
with a reduction in computational expenses; however, this correlation concurrently exerts a
detrimental effect on accuracy. Conversely, the merits of an enhanced spatial resolution,
facilitated by a smaller minimum element size, provide a superior depiction of intricate
details and local features, thereby ensuring an accurate representation of the geometric
attributes contained within the designated domain.

The vibrational characteristics of the rotational flywheel system are given in Table 3,
covering the modes of vibration, the natural frequency of vibration, and the mass participa-
tion factor in the X, Y, and Z directions. The table lists the four modes of vibration observed
in the flywheel system. Each mode represents a unique pattern of motion in which the fly-
wheel oscillates. For each mode of vibration, the table provides the corresponding natural
frequency that represents the frequency at which a system tends to vibrate when excited by
an external force without any additional input. The mass participation factor indicates the
contribution of each degree of freedom (the X, Y, and Z directions) to a particular mode
of vibration. It represents the extent to which the mass of the flywheel participates in
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the vibration along each direction. Despite the first two modes having divergent mass
participation factors, they engage with a similar frequency, indicating weakly coupled
modes of 90◦ of symmetry between them.

Table 2. Meshing information.

Mesh type Solid mesh
Mesher type Blended curvature-based mesh
High-quality mesh based on Jacobian points 16 points
Maximum element size 15.2875 mm
Minimum element size 0.764373 mm
Maximum aspect Ratio 53.254
% of elements with aspect ratio < 3 98.8
% of elements with aspect ratio > 10 0.0525
Quality of mesh High

Table 3. Mass participation (normalized).

Mode Number Frequency (Hz) X Direction Y Direction Z Direction

1 600.75 0.00025642 1.3076 × 10−6 0.020535
2 603.28 0.020639 4.7798 × 10−7 0.00025695
3 1204 5.7914 × 10−8 0.45224 2.3186 × 10−7

4 1477.1 2.3514 × 10−7 8.1952 × 10−9 7.4534 × 10−8

Σx = 2.090 × 10−2 Σy = 4.522 × 10−1 Σz = 2.079 × 10−2

The outcomes of the simulation results included in Figure 5 describe the first four
mode shapes acquired by the finite element modal analysis of the flywheel. The map’s
representation is given using colors, with red showing the higher intensity of vibration
deformation and blue showing a lesser intensity of the vibration deformation. Ideally, each
mode shape shows the distribution of the vibration amplitudes of the flywheel structure,
where the colors displayed in the maps can be used to differentiate between high and
low vibration deformation. The red-colored areas represent the areas where the vibration
amplitudes are slightly higher and may be of concern. Some of these regions may suffer
higher stress levels and are more likely to fall prone to resonance conditions; hence, this
may cause structural failure or damage.

The results presented in Figure 6a depict the waterfall response of the mass participa-
tion factor concerning frequency in the X direction. Notably, the graph illustrates a peak
mass participation factor of 0.020639 occurring at a resonance frequency of 603.28 Hz, after
which the participation factor decreases proportionally with an increase in frequency. This
trend suggests a dominant mass involvement in the X direction at the specified resonance
frequency, with diminishing influence as the frequency deviates. Similarly, Figure 6b
exhibits a proportional increment in the mass participation factor ranging from a mini-
mum to a higher level of 0.45224, observed in the Y direction at a resonance frequency of
1204 Hz. This indicates an increasing dominance of mass participation in the Y direction
as the frequency approaches this resonant frequency. In Figure 6c, the maximum peak of
mass participation quantified at 0.020535 is observed in the Z direction at a frequency of
600.75 Hz. This signifies a significant contribution of mass participation in the Z direction
at this specific resonance frequency.

Figure 7 shows the results of the mass participation factor in different directions and
modes of vibration. In the first mode of vibration, only 1.2% of the mass participates,
indicating that this mode does not contribute significantly to the overall vibration response
in the X direction. However, in the second mode of vibration, a substantial 98.8% of the
mass participates. This suggests that the second mode dominates the vibration behavior in
the X direction, indicating a higher likelihood of observing significant displacements or
responses in this mode. The results also show that 100% of the mass participation occurs in
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the third mode of vibration, indicating that the third mode is the critical mode controlling
the vibration responses in the Y direction, which shows a strong resonance in this mode.
In the Z direction, there is a different pattern of mass participation compared to the X and
Y directions. This is whereby the first mode has mass participation represented by 98.8%,
meaning a dominant representation in the Z direction. Thus, it can be inferred that the
structure or the system would be too sensitive to the vibrations applied in this directive
mode in the Z direction. In addition to the above, there is 1.2% of mass participation
associated with the second mode and a partial contribution to the mode mentioned above.
Interestingly, there is no evidence of mass participation in the fourth mode; this suggests
that the contribution of this mode has very little importance in the Z direction.

Vibration 2024, 7, FOR PEER REVIEW  9 
 

 

 

 
Figure 5. First four deformation modes of vibration. 

The results presented in Figure 6a depict the waterfall response of the mass partici-
pation factor concerning frequency in the X direction. Notably, the graph illustrates a peak 
mass participation factor of 0.020639 occurring at a resonance frequency of 603.28 Hz, after 
which the participation factor decreases proportionally with an increase in frequency. 
This trend suggests a dominant mass involvement in the X direction at the specified reso-
nance frequency, with diminishing influence as the frequency deviates. Similarly, Figure 
6b exhibits a proportional increment in the mass participation factor ranging from a min-
imum to a higher level of 0.45224, observed in the Y direction at a resonance frequency of 
1204 Hz. This indicates an increasing dominance of mass participation in the Y direction 
as the frequency approaches this resonant frequency. In Figure 6c, the maximum peak of 
mass participation quantified at 0.020535 is observed in the Z direction at a frequency of 
600.75 Hz. This signifies a significant contribution of mass participation in the Z direction 
at this specific resonance frequency. 

 
Figure 6. Waterfall response of mass participation factor. 

Figure 7 shows the results of the mass participation factor in different directions and 
modes of vibration. In the first mode of vibration, only 1.2% of the mass participates, in-
dicating that this mode does not contribute significantly to the overall vibration response 
in the X direction. However, in the second mode of vibration, a substantial 98.8% of the 
mass participates. This suggests that the second mode dominates the vibration behavior 

(c)(b)(a)

Figure 5. First four deformation modes of vibration.

Vibration 2024, 7, FOR PEER REVIEW  9 
 

 

 

 
Figure 5. First four deformation modes of vibration. 

The results presented in Figure 6a depict the waterfall response of the mass partici-
pation factor concerning frequency in the X direction. Notably, the graph illustrates a peak 
mass participation factor of 0.020639 occurring at a resonance frequency of 603.28 Hz, after 
which the participation factor decreases proportionally with an increase in frequency. 
This trend suggests a dominant mass involvement in the X direction at the specified reso-
nance frequency, with diminishing influence as the frequency deviates. Similarly, Figure 
6b exhibits a proportional increment in the mass participation factor ranging from a min-
imum to a higher level of 0.45224, observed in the Y direction at a resonance frequency of 
1204 Hz. This indicates an increasing dominance of mass participation in the Y direction 
as the frequency approaches this resonant frequency. In Figure 6c, the maximum peak of 
mass participation quantified at 0.020535 is observed in the Z direction at a frequency of 
600.75 Hz. This signifies a significant contribution of mass participation in the Z direction 
at this specific resonance frequency. 

 
Figure 6. Waterfall response of mass participation factor. 

Figure 7 shows the results of the mass participation factor in different directions and 
modes of vibration. In the first mode of vibration, only 1.2% of the mass participates, in-
dicating that this mode does not contribute significantly to the overall vibration response 
in the X direction. However, in the second mode of vibration, a substantial 98.8% of the 
mass participates. This suggests that the second mode dominates the vibration behavior 

(c)(b)(a)

Figure 6. Waterfall response of mass participation factor.



Vibration 2024, 7 1257

Vibration 2024, 7, FOR PEER REVIEW  10 
 

 

in the X direction, indicating a higher likelihood of observing significant displacements or 
responses in this mode. The results also show that 100% of the mass participation occurs 
in the third mode of vibration, indicating that the third mode is the critical mode control-
ling the vibration responses in the Y direction, which shows a strong resonance in this 
mode. In the Z direction, there is a different pattern of mass participation compared to the 
X and Y directions. This is whereby the first mode has mass participation represented by 
98.8%, meaning a dominant representation in the Z direction. Thus, it can be inferred that 
the structure or the system would be too sensitive to the vibrations applied in this directive 
mode in the Z direction. In addition to the above, there is 1.2% of mass participation asso-
ciated with the second mode and a partial contribution to the mode mentioned above. 
Interestingly, there is no evidence of mass participation in the fourth mode; this suggests 
that the contribution of this mode has very little importance in the Z direction. 

 1
 2
 3
 4

X-Direction

98.8%

1.2% 0%

100%

0%0%

 1
 2
 3
 4

Y-Direction

 1
 2
 3
 4

Z-Direction

98.8%

1.2%

 
Figure 7. Percentage of mass participation factor in the X, Y, and Z directions. 

4. Transverse Vibration Analysis of Flywheel 
In this section, Kirchhoff–Love plate theory is applied to model the dynamic motion 

governing the flywheel system, assuming the following fundamental assumptions to 
streamline the complex nature of flywheel behavior: 
• The cross-sections of the flywheel were originally plane and perpendicular to the 

mid-surface before deformation and remained plane and perpendicular to the de-
formed mid-surface after bending. 

• The deformations are small enough that the linear approximations of the strains and 
displacements are valid. 

• The flywheel material properties are the same in all directions, and its composition 
is uniformly distributed throughout. 

• The bending moments do not induce in-plane stresses, allowing decoupled analysis 
of the bending. 

• The rotating flywheel is subjected to a small perturbation in the linear elastic range. 
The equation governing the transverse vibration flywheel system can be expressed 

in the following form: 

( )
3 2

4
22

( )
12 1

ρ
ν

∂ ∂∇ + + =
∂ ∂−

Eh w ww h c F t
t t

 (11)

where h is the thickness of the flywheel, w is the transverse displacement, ∇ is the bi-
harmonic operator, c is the damping coefficient, and F(t) is the random external perturba-
tion force. 
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4. Transverse Vibration Analysis of Flywheel

In this section, Kirchhoff–Love plate theory is applied to model the dynamic motion
governing the flywheel system, assuming the following fundamental assumptions to
streamline the complex nature of flywheel behavior:

• The cross-sections of the flywheel were originally plane and perpendicular to the mid-
surface before deformation and remained plane and perpendicular to the deformed
mid-surface after bending.

• The deformations are small enough that the linear approximations of the strains and
displacements are valid.

• The flywheel material properties are the same in all directions, and its composition is
uniformly distributed throughout.

• The bending moments do not induce in-plane stresses, allowing decoupled analysis of
the bending.

• The rotating flywheel is subjected to a small perturbation in the linear elastic range.

The equation governing the transverse vibration flywheel system can be expressed in
the following form:

Eh3

12(1 − ν2)
∇4w + ρh

∂2w
∂t2 + c

∂w
∂t

= F(t) (11)

where h is the thickness of the flywheel, w is the transverse displacement, ∇ is the bihar-
monic operator, c is the damping coefficient, and F(t) is the random external perturba-
tion force.

∇4w =

(
∂4

∂r4 +
2
r

∂3

∂r3 − 1
r2

∂2

∂r2 +
1
r3

∂

∂r

)
w (12)

Applying the separation of variable method, it can be assumed that a solution occurs
in the following form:

w(r, θ, t) = W(r)Θ(θ)T(t) (13)

Substituting (14) into the governing Equation (12) and separating the variables, the
three separate ordinary differential equations can be expressed as:

d2T
dt2 + 2ζωn

dT
dt

+ ω2
nT =

F(t)
ρh

(14)

d2Θ
dθ2 + Ω2Θ = 0 (15)

Eh3

12(1 − ν2)
∇4W − ρhω2W = 0 (16)

By introducing a new variable k =

√
12ρω2(1 − ν2)

Eh2 , the general solution for the

radial part can be written using Bessel functions:
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W(r) = AJm(kr) + BYm(kr) + CIm(kr) + DKm(kr) (17)

where Jm and Ym are the Bessel functions of the first and the second kinds, and Im and Km
are the modified Bessel functions of the first and the second kinds. Therefore, the solutions
of (15) and (16) can be expressed as:

T(t) = [G cos(ωdt) + H sin(ωnt)]e−ζωnt + Γ (18)

Θ(θ) = E cos(Ωθ) + F sin(Ωθ) (19)

where

Γ =
1

ρh

t∫
0

e−ζωn(t−τ) sin(ωd(t − τ))F(τ)dτ (20)

The response to random external perturbation Γ is expressed as a convolution integral
that accounts for how past perturbations influence the current state of the system.

The boundary conditions are as follows:

1. Clamped at r = R1

w(Ri, θ, t) = 0 (21)

∂w
∂r

∣∣∣∣
r=Ri

= 0 (22)

2. Free at r = R2

∂2w
∂r2

∣∣∣∣
r=Ro

+
ν

r
∂w
∂r

∣∣∣∣
r=Ro

= 0 (23)

∂

∂r

(
1
r

∂w
∂θ

)∣∣∣∣
r=R2

= 0 (24)

3. Symmetry

w(r, θ, t) = w(r, π, t) (25)

∂w
dθ

∣∣∣∣
θ=0

=
∂w
dθ

∣∣∣∣
θ=π

= 0 (26)

4. Initial displacement and velocity

w(r, θ, 0) = 0 (27)

∂w
∂t

∣∣∣∣
t=0

= 0 (28)

Substituting (18)–(20), the combined solution can be expressed as:

w(r, θ, t) = [AJm(kr) + BYm(kr) + CIm(kr) + DKm(kr)]ΨΓ (29)

where Ψ = [E cos(Ωθ) + F sin(Ωθ)][G cos(ωdt) + H sin(ωdt)]e−ζωt

Due to the complexity of (30), the specific constants A, B, C, D, E, F, G, and H can be
numerically obtained.

The waveforms for the four normal vibrational modes of the flywheel, depicted in
Figure 8a–d, show different modes of deformation at particular natural frequencies. Mode
1 is the first order of oscillation of the flywheel and is the easiest to excite and, thus, the
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least energy-consuming. This is because the amplitude indicates that at this fundamental
frequency, the flywheel oscillates almost like a harmonic motion. The polar spectrum results
in Figure 8e–h illustrate the radial vibrational mode shapes of the flywheel transformed
from the normal modes shown in Figure 8a–d, where each mode corresponds to a unique
spatial pattern of deformation. As the mode number increases from mode 1 to mode 4,
the vibrational energy levels increase with respect to the circumferential positions of the
flywheel. This transformation provides radial patterns of the distribution of vibration
energy along the radial axis dependent on Bessel functions. In mode 2, the waveform
has a greater number of nodes and shows oscillation. Any additional nodes are evidence
of a more complex deformation pattern. Such features are observed in the polar plot
for mode 2, where, in the second case, there is more fluctuation of amplitude, and clear
areas of peak values can be seen. This is an even distribution, which suggests that the
vibration is non-uniform and depends more on the angular position phase because specific
positions experience higher periodicity of vibrational amplitudes. Mode 3 includes a still
more complex waveform, with more oscillations and nodes than the previous modes. The
flywheel experiences more complex deformation in that there are many fluctuations within
the same angular position. The amplitude stays in the same vicinity while revealing an
even higher number of multiple oscillations. Last of all, mode 4 has the largest total number
of periodic oscillations of all four modes. This mode possesses the maximum number of
nodes and the complex mode of vibration and, thus, represents the maximum deformation
of the flywheel.
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5. Time-Frequency Analysis of Flywheel

To address the problem of the flywheel vibration signals, a time-frequency (TF) ap-
proach is adopted in this section. Hence, it diverges from the conventional Fourier methods,
which provide the frequency content of the signal over time. The system parameters for
instance, such as the vibrations, are very essential in the flywheel system.

5.1. Continuous Wavelet Transform (CWT)

Continuous wavelet transform (CWT) offers a powerful tool for establishing energy
localization over a period represented by a continuous signal or, rather, a time series. It
gives a mathematical interpretation of the time-varying parameters of transformations
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and positions or separations in order to provide a mathematical model of the dependent
multi-scales of the signal. The CWT of a signal x(t) is a general transform that can be
expressed mathematically as [29,30]:

Wx(a, b) =
1√
|a|

∞∫
−∞

x(t)Ψ∗
(

t − b
a

)
dt (30)

where Wx(a,b) is the wavelet coefficient; x(t) is the input signal; Ψ(t) the mother wavelet; a
is the scale parameter, and it dilates or compresses the wavelet; b is a translation parameter
and shifts the wavelet; while Ψ*(t) is the complex conjugate of the mother wavelet.

In Figure 9, the flywheel response is analyzed in terms of vibration from three different
angles of view. In this case, the three domains are the time domain, the frequency domain,
and the time-frequency domain, each of which exhibits different characteristics of the
system. Firstly, the time history of the transverse deflection w of the flywheel is depicted
in the time domain over a time of 20 s, as seen in Figure 9a. Secondly, in Figure 9b, it can
be seen that the vibration response has FFT frequency components. Also, there is a high
amplitude at 1 kHz, thus indicating that most of the vibrational energy is at this frequency.
Similarly, the FFT graph shows a lower amplitude at high frequencies up to 20 kHz. This
shows that there is a higher frequency but with a low amplitude. Finally, the time-frequency
representation is assessed by the CWT spectrum. From the CWT plot in Figure 9c, it is
clear that the energy of the signals is more concentrated in low frequencies, with some high
frequencies seen at certain time intervals. These are shown through the intensity of the
color, with the warmer red indicating a higher frequency at certain moments.
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The flywheel vibration analysis in Figure 10 shows that the system has low amplitude
vibrations, with most of the vibrations occurring at low frequencies. The time-domain
signal is displayed in Figure 10a, which shows that there are variations in the signal but with
moderate fluctuations. The FFT response provides the same impression of low-frequency
vibrations, as seen in Figure 10b. In Figure 10c, the CWT shows that these frequencies
remain constant over time, thus indicating the natural behavior of the flywheel in operation.
There are no preponderant higher frequency components, which implies that the system is
not oscillating at critical or destructive levels.
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5.2. Hilbert–Huang Transform (HHT)

The Hilbert–Huang transform (HHT) is fundamentally structured around empirical
mode decomposition (EMD) and Hilbert spectral analysis (HSA). The accurate signal anal-
ysis methods that have been used to decompose non-stationary signals are EMD and HSA.
EMD is integrated into the HHT, working as the main processing method that decomposes
a signal into IMFs that represent the oscillatory modes initially included in the data. These
IMFs are derived following a filtration process that locates the oscillatory components with
characteristic time scales; this results in a data-adaptive and local formulation of the signal
analysis [31].

As mentioned earlier, Hilbert spectral analysis complements EMD by supplying an
implicit method for computing amplitude, phase, and instantaneous frequency data of the
IMFs. Figure 11 shows a block diagram that allows the analysis of time-varying spectral
features inherent in non-stationary signals [32]. However, transverse vibrations can be a
serious problem that affects the performance of flywheels, leading to mechanical failures
and inefficiencies if their effect is not properly considered. In this section, the signal
processing tool, known as the HHT, is applied to analyze the transverse vibration signal of
a flywheel and to provide IMFs and IF data.
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By applying HHT, the transverse vibration signal of the flywheel is decomposed to
reveal the specific characteristics of vibration in various frequency ranges, according to
Figure 12. The results show that high-level excitation affects the motion of the flywheel,
while more detailed information indicates that the flywheel vibrates tremendously at high
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frequencies, which can be tagged as external interferences. These high-frequency vibrations
occur in the first IMFs and the respective IFs represent a high frequency of the frequency
changes with time. This is why, as the frequency content decreases in the subsequent
IMFs, the analysis reveals a more stable and dominant vibrational mode, serving as a
predictor of flywheel structural health. However, the lowest-frequency IMF, which has a
relatively constant IF, suggests the existence of a critical vibration mode, which will dictate
the flywheel’s transverse motion.
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Figure 12. Extraction of IMFs and IF based on HHT.

6. Conclusions

This study has provided a comprehensive analysis of the stress distribution, modal
behavior, and transverse vibration of a flywheel operating exclusively within the linear
elastic range, using FEA and advanced time-frequency techniques (CWT and HHT). From
a stress distribution point of view, major interactions were observed between the radial
and tangential stresses, which exhibited a proportional relationship with peak stress at
an intermediate radius and then decreased towards the outer radius. This relationship
arose due to changes in angular velocity, which caused the peak of radial stress to occur
slightly closer to the inner radius, while the peak of tangential stress appeared more evenly
distributed between the inner and outer radii. The modal analysis identified the natural
frequencies and mode shapes of the flywheel and also provided information on mass
participation factors in the X, Y, and Z directions. The results indicated that certain modes
dominate the vibration response, particularly in specific directions, causing the dynamic
behavior of the flywheel. The transverse vibration analysis, employing CWT and HHT,
provided an overview of the time-frequency characteristics of the vibrational behavior of
the flywheel. Low-frequency vibrations were observed by CWT analysis and showed an
energy density of vibration with higher amplitudes, while the HHT analysis indicated
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that high-frequency vibrations could pose a risk of structure failure if not adequately
controlled. This current study can be extended to explore the use of advanced materials
with higher yield strengths and lower densities to enhance the performance of flywheels
while reducing the risk of failure due to stress concentrations. Investigating the impact
of thermal effects on stress distribution and vibration behavior would provide a more
holistic understanding of the operational dynamics of flywheels and should be supported
by experimental benchmarking.
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List of Symbols

ρ Material density
r Radial distance
ω(t) Angular velocity
dω(t)

dt
Angular acceleration

h Thickness
E Young’s modulus
ν Poisson’s ratio
σrr Radial stress
σθθ Tangential (hoop) stress
ur Radial displacement
∇4 Biharmonic operator
c Damping coefficient
Γ Response to random external perturbations
k Wave number
Jm(kr), Ym(kr) Bessel functions of the first and second kinds
Im(kr), Km(kr) Modified Bessel functions of the first and second kinds
Ω Angular mode number
ζ Damping ratio
T(t) Time-dependent component
Θ(θ) Angular component
ωn Undamped natural frequency
ωd Damped natural frequency
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