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Abstract: This paper examines the performance of Bayesian filtering system identification
in the context of nonlinear structural and mechanical systems. The objective is to assess
the accuracy and limitations of the four most well-established filtering-based parameter
estimation methods: the extended Kalman filter, the unscented Kalman filter, the ensemble
Kalman filter, and the particle filter. The four methods are applied to estimate the param-
eters and the response of benchmark dynamical systems used in structural mechanics,
including a Duffing oscillator, a hysteretic Bouc–Wen oscillator, and a hysteretic Bouc–Wen
chain system. Based on the performance, accuracy, and computational efficiency of the
methods under different operating conditions, it is concluded that the unscented Kalman
filter is the most effective filtering system identification method for the systems considered,
with the other filters showing large estimation errors or divergence, high computational
cost, and/or curse of dimensionality as the dimension of the system and the number of
uncertain parameters increased.

Keywords: system identification; extended Kalman filter; unscented Kalman filter; ensemble
Kalman filter; particle filter

1. Introduction
To design and evaluate the performance of structural and mechanical systems it

is essential to reliably predict features of the system behavior and response characteris-
tics. Physics-based mechanics models are typically employed to predict the response of
complex large-scale structural systems, and the features of the response that can be cap-
tured by parameterized mechanics-based models depend on their functional form and the
adopted parameters. Moreover, a set of parameters rather than point values might properly
characterize structural behavior due to the presence of inherent modeling uncertainty,
unmeasured input excitations, and/or unknown initial conditions [1].

System identification (SI) has emerged as a primary engineering analysis tool aimed
at improving the predicting capability of models from measured response data [2]. SI can
be defined as the inverse problem of using measurements to infer the state and parameters
of models that best fit the observed data. The objective is to maximize the predicting
accuracy and capabilities of a model by minimizing modeling errors and uncertainty.
Applications of SI in structural and mechanical systems include structural condition
assessment and management, structural damage diagnosis/prognosis, response control,
improvement of computer-aided design methods, and enhancement of experimental
testing techniques, among others. In the context of linear systems, an extensive number of
SI algorithms have been developed over the past decades [3]. In some applications, the
features of the dynamic response of the system of interest cannot be captured by a linear
model. Sources of nonlinearity include nonlinear kinematic or geometric response features,
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nonlinear material or constitutive behavior, nonlinear boundary conditions, nonlinear
modeling of energy dissipation mechanisms or devices, and modeling of actuators, among
others [4]. Moreover, nonlinear behavior and phenomena can be exploited to design
systems with enhanced performance and energy harvesting capabilities. Estimation of the
model parameters of nonlinear systems presents an increased challenge with respect to
the linear systems counterpart, in part because of the complexity of modeling nonlinear
phenomena and the lack of a closed-form general input–output mapping that applies to
all nonlinear systems.

SI methods can be broadly classified as deterministic or probabilistic. Determinis-
tic methods rely on an optimization-based strategy to minimize an objective function
defined as a measure of the discrepancy between measured responses and model predic-
tions [5,6]. On the other hand, probabilistic methods use a stochastic model of the system
treating the uncertain parameters as random variables and using statistical inference
(frequentist or Bayesian) to estimate the parameters; in particular Bayesian methods
have received significant attention due to their ability to rigorously handle a broad class
of estimation problems in linear and nonlinear systems. In Bayesian SI, the informa-
tion about the parameters contained in measurements is integrated using conditional
probability distributions obtained using Bayes’ theorem; the estimate of the parameters
and their uncertainty are encapsulated in a probability distribution conditional on the
measured data [7–10].

In addition to the estimation approach adopted, SI can be performed either considering
a set of response measurements (batch estimation) or in real-time with the estimation
performed every time step that a new measurement is available (recursively/sequential
estimation). In dynamical systems, when the estimation process is performed recursively
the resulting procedure is known as filtering [11]. In the filtering setting the estimation
is performed in a predictor–corrector fashion that involves a forward projection of the
estimate of the response and the parameters using a model (prediction), and subsequently
integrating the measurements (correction). Filtering was formalized using probabilistic
methods in the context of optimal linear filtering [12]. The most celebrated method is
the Kalman filter, a recursive estimation algorithm that allows for optimal estimation
(unbiased, minimum variance, and minimum mean-squared error) of the state of a linear
system subjected to disturbing inputs modeled as a stochastic process by combining model
predictions and response measurements.

Filtering can be applied to system identification by including uncertain parameters
in the state, and the resulting procedure is known as joint state-parameter estimation
or augmented state estimation [13]. When the underlying system is linear including
the parameters in the state results in a nonlinear estimation problem, and nonlinear
filtering methods are needed; thus, the parameter estimation problem is nonlinear
irrespective of the underlying dynamics being linear or nonlinear, but with significantly
stronger nonlinearities in the latter case. In the Bayesian solution of the nonlinear
filtering problem, a complete functional description of the conditional probability density
describing the evolution of the state is needed. Despite the possibility, in theory, to
compute this evolving density function, computational limitations both in algorithmic
running time and storage limits prevent the Bayesian nonlinear filtering problem from
being solved in closed form. Under these conditions the problem admits a wider family
of sub-optimal solutions.

The first extension of linear filtering theory to nonlinear problems proposed in the
literature is the extended Kalman filter (EKF), which became the de facto accepted solution
to the problem for several decades. The EKF is a recursive estimation algorithm that follows
from approximating nonlinear transformations of the state distribution by linearizing the
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nonlinear model and using the Kalman filter on the linearized model [13]. The EKF is
neither an unbiased minimum variance, nor the minimum mean-squared error estimate
of the state, and its two main drawbacks are the computational issues related to the
propagation of the covariance matrix, and errors resulting from the linearization performed
where high-order nonlinear terms are neglected. The result is a loss of accuracy and
potential filter divergence. The EKF also requires determining the Jacobian of the model, a
task that is generally computationally intensive.

To overcome the main limitations of the EKF, recent efforts have focused on the devel-
opment of more advanced nonlinear filtering methods that show improved performance.
The three most well-established new methods are the unscented Kalman filter (UKF) [14],
the ensemble Kalman filter (EnKF) [15], and the particle filter (PF) [16]. The Kalman
filtering-based nonlinear methods approximate the distributions involved as Gaussian,
with their mean and covariance estimated using a deterministic sample (for the UKF) or a
random sample (for the EnKF). On the other hand, particle filters use a random sample
to directly approximate the filtering distribution by a probability mass function. This
implies that Kalman filtering methods are suitable only when the distributions involved
are unimodal, while particle filters can handle distributions with non-Gaussian features,
such as high skewness, heavy tails, or multimodality. The aforementioned methods and
some of their variations have found applications in structural mechanics, earthquake engi-
neering and structural dynamics, structural damage assessment, condition monitoring and
performance prediction [17–44].

The objective of this paper is to present a comprehensive case study of the performance
of Bayesian filtering methods in structural and mechanical systems, studying the accuracy
and efficiency of the EKF, UKF, EnKF, and PF under the same operating conditions. Despite
a significant body of work in analyzing the performance of the individual methods, there is
no current guideline regarding which method would have more promising performance
under different identification constraints. Such guidelines depend on a performance
assessment of the four aforementioned algorithms under the same conditions in the context
of nonlinear structural and mechanical systems.

2. Modeling of Nonlinear Dynamical Systems and State-Space
Identification Model

This paper focuses on nonlinear structural and mechanical systems whose dynamic
behavior is modeled by the following equation:

M
..
q(t) + C(θ)

.
q(t) + FR

(
q(t),

.
q(t), θ

)
= u(t) (1)

where q(t) is the displacement vector at time t, M is the mass matrix, C is the damping
matrix, and FR is the restoring force; a dot on top of a variable indicates differentiation
with respect to time. The damping matrix and the restoring force are completely or
partially parameterized by the uncertain parameters vector θ. The forcing input u can
be deterministic or stochastic, and, in the latter case, Equation (1) becomes a stochastic
differential equation to be interpreted using Itô’s definition of a stochastic differential.

The class of system identification methods studied herein operate using state-space
models. Moreover, when the uncertain parameters vector θ needs to be estimated the
dynamic state is augmented to include these parameters. To perform joint state-parameter
estimation the model defined by Equation (1) can be written in state-space form by defining
the augmented state as x =

[
q

.
q θ

]
∈ Rn resulting in a model of the following form:

.
x(t) = f (x(t)) + Du(t) (2)
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where f : Rn → Rn defines the combined system dynamics and parameter estimation
model, and D maps the input to the augmented state-space. The objective of joint state-
parameter estimation is to infer the augmented state (which includes the uncertain parame-
ters) by integrating the identification model with noise-contaminated response measure-
ments modeled as follows:

y(t) = h(x(t)) + ν(t) (3)

where h : Rn → Rm maps the augmented state to the measurements space, and it is
defined depending on the type of response measurement; ν(t) is the measurement noise
modeled as a zero-mean Gaussian white process.

3. Parameter Estimation Using Nonlinear Bayesian Filtering
The objective of parameter estimation is to infer the uncertain vector θ that (completely

or partially) parameterizes the model from response measurements/data. Bayesian in-
ference provides a consistent and robust framework to tackle estimation rigorously in a
probabilistic setting for a broad class of problems. In the Bayesian framework the estimate
of the parameters is characterized by a probability density function conditional on the
available data. Bayesian estimators known as nonlinear filtering methods incorporate an
array of discrete measurements Yk = {y0 . . . yk} where yi = y(ti) and extract the informa-
tion contained in the measurements by processing the data as it becomes available. The
framework employs a predictor-corrector framework where the prediction and correction
follow from the Theorem of Total Probability and Bayes’ Theorem, given respectively by
the following:

p(xk+1|Yk) =
∫

p(xk+1|xk, Yk)p(xk|Yk)dxk =
∫

p(xk+1|xk)p(xk|Yk)dxk (4)

and

p(xk+1|Yk+1) =
p(yk+1|xk+1, Yk)p(xk+1|Yk)

p(yk+1|Yk)
=

p(yk+1|xk+1)p(xk+1|Yk)

p(yk+1|Yk)
(5)

where xk+1 = x(tk+1), the prior/predictive probability density function p(xk+1|Yk) fol-
lows from projecting the state using the dynamics model, and the likelihood function
p
(
yk+1|x k+1

)
is found using the response measurements model. The challenge with

recursive Bayesian estimation is that the posterior projection defined by Equation (4)
and used to obtain the predictive distribution and used as the prior distribution in the
update step in Equation (5) requires either solving a Fokker–Planck equation (when
the stochastic model is in continuous form) or solving the high-dimensional integral in
Equation (4), both of which are analytically intractable and computationally prohibitive
for most applications.

The main approach to address this issue has been assuming that all the distributions
are Gaussian and using a linearized model to estimate the mean and covariance of the
predictive probability distribution, resulting in the extended Kalman filter (EKF) [13]. This
approach provides acceptable results in differentiable systems that do not show significant
excursions to nonlinear response regimes, but the estimates tend to show divergence in
cases of nonlinear problems that involve a parameter space of from low to moderate
dimensions. Two approaches have been sought in the literature to address the limitations
of the EKF: (i) improved approximate parameterizations of the predictive distribution that
do not linearize the model, and (ii) approximating directly the posterior distribution using
a discrete sample. In the first class of methods the predictive distribution is generally
approximated by a Gaussian distribution, reducing the problem of estimating a complete
probability distribution to the estimation of only the first two moments either from a
deterministic or a random sample. A recently proposed deterministic approach to estimate
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these moments is based on using the Unscented Transform (UT), a sampling-based method
that guarantees second-order accuracy for any functional form of the model or type of
nonlinearity; the application of the UT in filtering problems is known as the Unscented
Kalman Filter (UKF). Another approach of this class uses a random sample and a Monte
Carlo estimate of the mean and the covariance of the predictive distribution, resulting
in the Ensemble Kalman Filter (EnKF). The second class of methods, known as particle
filters, attempt to directly approximate/estimate the posterior distribution using a weighted
sample. In contrast to the first class of methods that assume a Gaussian distribution for all
the distributions involved, in particle filters the posterior distribution is directly estimated
without assuming a functional form.

3.1. Extended Kalman Filter (EKF)

The EKF has been the established method for filtering in nonlinear systems. The
method follows from approximating the projected mean x̂−k and covariance P̂−

xkxk
of non-

linear transformations of the state using a linearized model based on a truncated Taylor
series expansion. The linearized projection is used in conjunction with the Kalman filter
as follows:

x̂k = x̂−k + Kk
(
yk − ŷ−k

)
(6)

P̂xkxk = P̂−
xkxk

− KkP̂−
ykyk

KT
k (7)

Kk = P̂−
xkyk

(
P̂−

ykyk

)−1
(8)

where x̂k and P̂xkxk are, respectively, estimates of the mean and covariance of the state
posterior distribution defined by Equation (5), yk is the measured response, and Kk is
the Kalman gain, which serves as a weight between model predictions and measured
responses and leverages process noise and measurement noise. The Kalman filtering
equations result in the optimal linear estimator for the mean and covariance of the state
posterior distribution for both linear and nonlinear systems if only the mean and covariance
of the distributions involved are considered. The difficulty in applying the Kalman filtering
approach with nonlinear models is that computing the projected/prior mean x̂−k and
covariance P̂−

xkxk
of the state prior defined by Equation (4) requires computing the moments

of nonlinear transformations of random variables, which, in general, cannot be computed
in closed-form, particularly when the state dimension is relatively large. To estimate the
prior mean and covariance the EKF uses a first-order truncated Taylor series, resulting in
the following [13]:

x̂−k ≈ fd(x̂k−1) (9)

P̂−
xkxk

≈ ∇ fd|x̂k−1 P̂xk−1xk−1
∇ f T

d |x̂k−1 + BdQdk−1
BT

d (10)

where fd is a numerical discretization of the dynamic model, and ∇ is the gradient operator.
The term BdQdk−1

BT
d in Equation (10) is the projected forcing input covariance, where Qdk−1

is the input noise covariance and R is the measurement noise covariance. The limitations
of this approach include it being a first-order method, which can lead to large estimation
errors and divergence of the filter, and the computation of the gradient which can be
computationally prohibitive in high-dimensional problems. The following pseudocode
shows the overall steps in the implementation of the EKF (Algorithm 1):
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Algorithm 1: EKF

1. Define state initial/prior mean x̂0 and covariance P̂x0x0

2. Compute the model gradient and evaluate it in the initial/prior estimate ∇ fd|x̂0

3. Compute the measurement gradient (if nonlinear) and evaluate it in the
initial/prior estimate ∇h|x̂0 ; note that if h is linear h(x) = Hx

4. For k = 1, . . . , N
4.1 Perform the projection step
x̂−k = fd(x̂k−1)

P̂−
xkxk

= ∇ fd|x̂k−1 P̂xk−1xk−1
∇ f T

d |x̂k−1 + BdQdk−1
BT

d

4.2 Perform the update step

Kk = (P̂−
xkxk

)
−1

HT(HP̂−
xkxk

HT + R)
−1

P̂xkxk = P̂−
xkxk

− KkP̂−
ykyk

KT
k

x̂k = x̂−k + Kk(yk − ŷ−k )

3.2. Unscented Kalman Filter (UKF)

The UKF is a recursive estimation method based on the use of the Unscented Transform
(UT) to estimate the first two moments of the predictive distribution [45]. The UT uses
a deterministic sample known as sigma points to estimate moments of transformations
of a random variable [14]. Let p(xk|Yk) represent the probability distribution of the state
conditional on all measurements available up to time step tk and let x̂k and P̂xkxk denote,
respectively, the mean and covariance of p(xk|Yk). To estimate the mean and covariance of
the predictive distribution p(xk+1|Yk) the UT uses the following deterministic sample:

χi =



x̂k i = 0

x̂k +

(√
(N + λ)P̂xkxk

)
i

i = 1, · · · , n

x̂k −
(√

(N + λ)P̂xkxk

)
i

i = n + 1, · · · , 2n

(11)

where n is the dimension of the state and
(√

P̂
)

i
denotes the i-th column of the matrix

square root of P̂. The parameter λ is used to adjust the scaling of the sample and it is tuned
off-line using the analytical model; choosing λ = 3 − n ensures second-order accuracy
in the first and second moment estimates. The sigma vectors are projected to the next
time step using the model, and the mean and covariance of p(xk+1|Yk) are estimated as a
weighted sum of the projected vectors, defined by the following:

x̂−k = ∑2n
i=0 Wiχ

−
i where χ−

i = fd(χi) (12)

P̂−
xkxk

= ∑2n
i=0 Wi

(
χ−

i − x̂−k
)(

χ−
i − x̂−k

)T (13)

where the weights are given by W0 = λ/(n + λ) and Wi = 1/2(n + λ) for i ̸= 0. The
sample defined by the sigma points in Equation (11) might result in a non-positive definite
covariance when the dimension of the state is larger than 3. To address this issue the
scaled unscented transform was proposed. In the modified algorithm a new set of sigma
points is obtained using an auxiliary nonlinear transformation on the original points which
guarantees positive definiteness of the covariance. In the scaled unscented transform
approach the new sigma points and weights are computed as χ∗

i = χ0 + α(χi − χ0) with
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the associated weights given by W∗
0 =

(
1/α2)W0 +

(
1 − 1/α2) and W∗

i =
(
1/α2)Wi for

i ̸= 0.
The implementation of the UKF can be summarized in the following pseudocode

(Algorithm 2):

Algorithm 2: UKF

1. Define state initial/prior mean x̂0 and covariance P̂x0x0

2. Select the scaled UT parameter α, and compute the weights
{

W∗
i
}

3. Compute the initial set of sigma points {χ i} based on Steps 1–2
4. For k = 1, . . . , N

4.1 Perform the projection step
χ−

i = fd(χi) and y−i = h(χi)

x̂−k = ∑2n
i=0 W∗

i χ−
i and ŷ−k = ∑2n

i=0 W∗
i y−i

P̂−
xkxk

= ∑2n
i=0 W∗

i
(
χ−

i − x̂−k
)(

χ−
i − x̂−k

)T
+ BdQdk−1

BT
d

P̂−
ykyk

= ∑2n
i=0 W∗

i
(
y−i − ŷ−k

)(
y−i − ŷ−k

)T

P̂−
xkyk

= ∑2n
i=0 W∗

i
(
χ−

i − x̂−k
)(

y−i − ŷ−k
)T

4.2 Perform the update step

Kk = P̂−
xkyk

(P̂−
ykyk

)
−1

P̂xkxk = P̂−
xkxk

− KkP̂−
ykyk

KT
k

x̂k = x̂−k + Kk
(
yk − ŷ−k

)
Compute a new set of sigma points {χ i} using x̂k and P̂xkxk

3.3. Ensemble Kalman Filter (EnKF)

The EnKF is a filtering method that addresses two issues in state estimation for
nonlinear systems in high-dimensional spaces: (i) the computational issues related to the
propagation of the covariance matrix, and (ii) the closure problem resulting from neglecting
higher order terms in the state error covariance matrix propagation [15]. The EnKF uses
the Kalman filter framework with the mean and covariance of the predictive distribution
computed using sample-based statistical estimates based on an ensemble/random sample
of states.

Let Xk|k−1 =
{

x(1)k|k−1, x(2)k|k−1, . . . , x(N)
k|k−1

}
denote a prior ensemble of N states obtained

by random sampling the posterior at step k and projecting each individual sample using the
dynamic model. The ensemble covariance matrix of the projected distribution is obtained
using the sample-based estimate as follows:

Pk|k−1 = ∑N
i=1

(x(i)k|k−1 − xk|k−1)(x(i)k|k−1 − xk|k−1)
T

N − 1
(14)

where xk|k−1 is the sample mean. Using the measurement yk at time step k, a perturbed
measurements matrix is defined by the following:

Yk =
{

yk + ε1
k, yk + ε2

k, . . . , yk + εN
k

}
(15)
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where εi
k is the ith realization of a zero mean Gaussian white computed based on the noise

process parameters. The ensemble measurement error covariance matrix is computed using
the sample-based estimate as follows:

Rk = ∑N
i=1

ε
(i)
k ε

(i)
k

T

N − 1
(16)

The posterior ensemble is computed using the prior sample adjusted by the prediction
error using Kalman filter type estimate given by the following:

Xk|k = Xk|k−1 + Pk|k−1HT
(

HPk|k−1HT + Rk)
−1

(
Yk − HXk|k−1

)
(17)

where the matrix H is defined based on a linear measurements model of the form h(x) = Hx.
Equation (17) provides an ensemble/sample estimate of the posterior distribution from
which the mean and covariance matrix are estimated. The method is computationally
demanding since the size of the ensemble needed is generally large.

For a sufficiently large sample the EnKF is expected to outperform all other Kalman fil-
tering based methods (including the EKF and UKF) since unbiased sample-based estimates
converge to the exact parameters values in the limit N → ∞ with a convergence rate of the
order 1√

N
, although, in practice, there are computational limitations to the sample size that

can be employed particularly for systems with a large augmented state-space. Similarly to
the EKF and UKF, the approach is not appropriate for problems with highly non-Gaussian
features, such as distributions with significant skewness and/or heavy tails.

The algorithm implementation of the EnKF can be summarized as follows (Algorithm 3):

Algorithm 3: EnKF

1. Define state initial/prior mean x̂0 and covariance P̂x0x0

2. Select the sample size M, and generate the initial ensemble
{

x(1)1 , x(2)1 , . . . , x(M)
1

}
3. For k = 1, . . . , N

3.1 Perform the projection step

x−i = fd

(
x(i)k

)
and y−i = h

(
x(i)k

)
x̂−k = 1

M ∑M
i=0 x−i and ŷ−k = 1

M ∑M
i=0 y−i

P̂−
xkxk

= 1
M−1 ∑M

i=0
(
x−i − x̂−k

)(
x−i − x̂−k

)T
+ BdQdk−1

BT
d

P̂−
ykyk

= ∑M
i=0

(
y−i − ŷ−k

)(
y−i − ŷ−k

)T

P̂−
xkyk

= 1
M ∑M

i=0
(
x−i − x̂−k

)(
y−i − ŷ−k

)T

3.2 Perform the update step
Kk = P̂−

xkyk
(P̂−

ykyk
)−1

P̂xkxk = P̂−
xkxk

− KkP̂−
ykyk

KT
k

x̂(i)k = x−i + Kk
(
yk − ŷ−k

)
x(i)k+1 = x̂(i)k

3.4. Particle Filter (PF)

The PF is a filtering algorithm that attempts to estimate the state posterior distribution
from at each time step from discrete random sample. The approach does not make any
assumptions about the parametric form of the posterior such as the Gaussian assumption
made by the Kalman filtering-based methods. This allows for the treatment of problems
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where the distributions are multi-modal, heavily skewed, or have heavy tails. Let Xk

denote the set/sample of states from the posterior distribution Xk = {x0, x1, . . . , xk}. Using
Bayes theorem, the Markovian nature of the model, and the outpus model, the filtering
distribution is given by the following [46]:

p(Xk|Yk) =
p(x0)

p(Yk)
∏k

i=1 p(yi|xi)p(xi|xi−1) (18)

To obtain features of the joint posterior distribution, such as marginal distributions,
high-dimensional integrals have to be computed with respect to sub-spaces of the aug-
mented state space, a task that is prohibitive for state spaces of large dimensions. To
overcome this issue stochastic simulation methods based on sampling are employed. An
approach to obtain a sample from the posterior is sampling from an auxiliary distribution
using importance sampling (IS), where expectations of the state

E[g(Xk)] =
∫

g(X)p(Xk|Yk)dXk (19)

are estimated as
Ê[g(Xk)] = ∑N

i=1 g
(

X(i)
k

)∼
w
(i)
n (20)

where
∼
w
(i)
n =

w(i)
n

∑M
j=1 w(j)

n

w(i)
n =

p(Yk|Xk)p(xk)

π(Xk|Yk)
(21)

and the independent samples are drawn from π, the importance distribution function.
Under the premise that the support of π includes the support of p(Xk|Yk) and E[g(Xk)] < ∞,
the estimator Ê[g(Xk)] is guaranteed to converge almost surely to the true E[g(Xk)], with the
rate of convergence strongly depending on the choice of importance function. The selection
of the importance function of prime importance for the PF algorithm to be accurate. Because
of computational efficiency constraints, it is desired to use importance functions that result
in a recursive algorithm, allowing samples from a time step to be used in the following
step without having to re-sample on each step, which would be practically unfeasible for
the sampling rate of interest in systems with fast dynamics. Thus, for convenience, the
sampling distribution is defined by the (unconditional) forward model p(xi|xi−1), resulting
in a recursive algorithm.

The main limitation of this approach is that the importance functions that allow the
algorithm to be implemented in a recursive fashion, do so at the expense of increasing the
variance of the weights [16]. This implies that after a number of analysis steps, which in
practice is relatively low when compared to both the model discretization time step and
measurements sampling rate, the effective sample size decreases and ultimately degenerates
to a single point eliminating the ability of the sample to represent the distribution. This
issue is exacerbated when the measurement noise is small, resulting in a likelihood function
that decays fast. Some strategies have been proposed to alleviate this issue, but not to
completely eliminate it. The most popular approach is to perform a re-sampling step
when the weights variance exceeds a threshold, replicating samples with high weights
and discarding samples with low weights. The drawback of the re-sampling step is that
the samples become correlated and can no longer be considered an independent sample,
increasing the variance of the estimates.

Despite using a re-sampling strategy and other proposed approaches discussed in
Ref. [16], for dynamical systems with sampling rates higher than 100 Hz (which is the case
in most practical applications), the variance of the weights increases rapidly and the sample
collapse limiting the accuracy of the PF. The development of approaches to improve the
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performance of the PF remains an open research area. The parallelized PF with resampling
(“bootstrap filter”) can be implemented using the following algorithm (Algorithm 4):

Algorithm 4: PF with resampling

1. Define state initial/prior mean x̂0 and covariance P̂x0x0

2. Select the number of particle filters L and the sample size M for each filter, and

generate the initial sample
{

x(1,1)
1 , x(1,2)

1 , . . . , x(1,M)
1 , . . . , x(L,M)

1

}
3. For j = 1, . . . , L

Set the weights of filter j to w(i)
0 = 1/M where i = 1, . . . , M

For k = 1, . . . , N

x−i = fd

(
x(j,i)

k

)
and y−i = h

(
x(j,i)

k

)
x̂−k = ∑M

i=0 x−i

(
w(i)

k−1

∑M
s=1 w(s)

k−1

)
P̂−

xkxk
= ∑M

i=0
(
x−i

)(
x−i

)T
(

w(i)
k−1

∑M
s=1 w(s)

k−1

)
+ BdQdk−1

BT
d

Evaluate the likelihood function for each sample: p(i)y|x = N
(
y−i , yk, R

)
Note: N(a, µ, Σ) is a Normal distribution with parameters (µ, Σ) evaluated at a

w(i)
k = w(i)

k−1 × p(i)y|x

x̂k = ∑M
i=0 x−i

(
w(i)

k

∑M
s=1 w(s)

k

)
P̂xkxk = ∑M

i=0
(
x−i

)(
x−i

)T
(

w(i)
k

∑M
s=1 w(s)

k

)
x(j,i)

k+1 = x−i

COV = coefficient of variation of the sample
{

w(i)
k

}
If COV > 2 (resample step)

Obtain the sample
{

x(j,i)
k+1

}
by random sampling with replacement the

set {x−i } with probabilities defined by {w (i)
k

}
Set w(i)

k = 1/M

Compute the average of x̂k and P̂xkxk across the L filters

4. Numerical Examples
The performance of the EKF, UKF, EnKF, and PF is assessed when the filters are applied

to system identification in the context of three systems: a Duffing oscillator, a nonlinear
hysteretic oscillator, and a nonlinear hysteretic chain system. The objective is to study
the accuracy and computational effort required by the methods under the same operating
conditions. The scalability of the methods is also studied, that is, their ability to handle
systems of increased complexity with parameter spaces of increasing dimension.

4.1. Duffing Oscillator

The Duffing oscillator dynamics are modeled by the following:

m
..
q(t) + c

.
q(t) + k1q(t) + k2q3(t) = u(t) (22)



Vibration 2025, 8, 1 11 of 25

where m is the oscillator mass, c is the damping coefficient, and k1 and k2 are, respectively,
the linear and cubic stiffness coefficients. The Duffing oscillator shows a wide variety of
nonlinear response features, and it is applied to model the behavior of many mechanical,
structural, and electrical systems, such as the restoring characteristics of deformable solids,
buckling of slender members, nonlinearity in circuits, superconductors, and the chaotic
behavior of dynamical systems in different domains, among others [47].

The exact/true system parameters used to generate the data are (in consistent SI units)
m = 1 kg, c = 0.3 Ns/m, k1 = −1 N/m and k2 = 1 N/m3. For these parameter values
under free vibration, the unforced system has three fixed points, namely, an unstable fixed
point at 0 and two stable fixed points at 1 and −1. We consider the case where the system
is driven by the deterministic harmonic input u(t) = 0.3cos(1.25t)N; under this condition,
the system exhibits two period-two subharmonic oscillations [30]. The initial conditions
are selected as q(0) = 1 and

.
q(0) = 0. To solve the forward problem and to perform the

estimation, the system is discretized using the fourth-order Runge–Kutta method with time
step ∆t = 0.005 s.

The objective is to estimate the parameters vector θ = {c k1 k2} assumed to be uncer-
tain/unknown. To perform Bayesian system identification, an initial prior distribution for
the parameters needs to be specified. Figure 1 shows the prior distributions adopted and
the system’s exact/true parameters. Significant uncertainty about the true values of the
parameters has been assumed, with the true parameters falling on the tails of the prior
distributions and initial errors between 30% and 50%; the algorithms were initialized with
different sets of initial estimates, and no significant variation in the results was observed.
The measurement data used for estimation consists of a noise-contaminated displacement
response, with the noise modeled as Gaussian white noise with a 10% noise-to-signal root-
mean-square (RMS). The noise model is consistent with models for this type of sensor [48].
It was observed that the performance of the filters did not change significantly with RMS
values of up to 20%.
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The UKF was implemented using the scaled unscented transform algorithm with the
scale parameter selected as α = 10−3 based on previous filter performance assessments [45].
The sample size for the EnKF was selected as N = 2000; the sample size was selected based
on a convergence analysis where the sample size was increased until no significant variation
in the estimates was observed. The PF was applied using the sequential importance
sampling (SIS) algorithm with resampling, also known as the bootstrap filter [46], combined
with the parallelized implementation proposed in Ref. [20] to reduce and delay sample
degeneracy. The weight coefficient of the variation threshold for resampling was selected
as 3, with 20 parallel particle filters, each running with 4000 particles. For the PF, increasing
the sample size reduces sample degeneracy and improves the estimation; however, there
are computational limitations to the sample size due to limited computer memory and
the required computational time; the sample size of 80,000 total particles selected is close
to the maximum that a standard desktop computer memory allows. The use of high-
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performance computing systems is needed to further increase the sample size at the expense
of a high computational effort. For most practical applications, the availability of such
high-performance computing systems is limited.

Figures 2–4 show the estimation results for the oscillator damping, linear stiffness,
and cubic stiffness parameters, respectively; the figures show the mean estimate and the
uncertainty bounds defined as ±3 standard deviations, with ‘SYS’ indicating the exact/true
system response. The root-mean-square error (RMSE) is used as a measure of the estimation
accuracy of the filters; the RMSE of the estimate φ̂ of the true/exact parameter φ is defined

as RMSE =

√
E
[
(φ̂ − φ)2

]
where E[·] is the expectation operator, and the estimate φ̂ is a

random variable. The RMSE allows us to quantify the estimation accuracy by accounting
for both estimation bias and uncertainty, and, for this reason, it is widely adopted as an
estimation accuracy metric; if two estimators are unbiased, then the estimator with larger
uncertainty would result in a larger RMSE. Figures 2–4 show that the EKF, UKF, and EnKF
successfully estimate all the oscillator parameters, with the PF not showing convergence to
the exact parameters’ values. It is interesting to note that the EKF provided good estimation
results for this example, in agreement with the results reported in Ref. [30]. This is attributed
to the time step ∆t = 0.005 used for the simulations, which is considered small for the
characteristic time scale of the system’s dynamic behavior, resulting in improved accuracy
of the linearization employed by the EKF.

Based on the particle’s coefficient of variation, the PF showed particle degeneracy at
approximately t = 5 s. This is confirmed by Figures 2–4, and particularly the RMSE, which
show that all the filters provide comparable estimates, uncertainty, and accuracy up to
t = 5 s; after this time, all the particles of the PF collapsed into a single particle, and the
sample was no longer able to properly approximate the parameters posterior distribution.
The PF RMSE is seen to remain large when compared to the RMSE of the other filters. It
is worth pointing out that the main factor defining the onset of particle degeneracy is the
number of analysis time steps. In the case of the present example, degeneracy started after
1000 steps. A strategy to attempt to delay the onset of particle degeneracy is to downsample
the measurements by not updating the posterior distribution at every time step, that is, not
using all the available measurements; this approach was successfully employed in Ref. [30]
to improve the accuracy of the PF. This strategy is adopted at the expense of significantly
decreasing the sampling frequency, which is not ideal in applications since it is desirable
to fully exploit and extract the information available on the measurements. Moreover,
downsampling the measurements has an impact on the accuracy and significantly increases
the estimate’s uncertainty. Another strategy to delay particle degeneracy is to include
a fictitious process noise that inflates the particles’ variance. Although this strategy, in
general, improves the estimation accuracy of filtering methods by increasing the parameter
uncertainty, it does not resolve the particle degeneracy issue nor significantly delay the
particle’s collapse. Including a fictitious noise is considered a heuristic, and there are no
rigorous methods to define the variance of the noise or how much fictitious uncertainty
should be introduced to the problem.

From a theoretical point of view, the only approach to effectively delay particle de-
generacy is to modify the proposal distribution using improved estimates obtained, for
example, using a Gaussian mixture model (Gaussian mixture sigma-point particle filter),
a model linearization (Extended particle filter), or the unscented transform (Unscented
particle filter). Although the more refined versions of the particle filter delay the onset of
particle degeneracy, the issue still persists, with the particles eventually concentrating on
small regions of the probability space, albeit a few time steps after the standard PF [24].
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Figure 4. Cubic stiffness coefficient (k2) estimates (in N/m3).

Figures 5 and 6 show the estimates of the oscillator displacement and velocity, re-
spectively. All the filters show a state estimation accuracy comparable to the parameter
estimation, with the PF showing degradation due to particle degeneracy. Similarly to the
parameter estimation results, the PF dynamic response estimates and uncertainty are in
agreement with the other filters up to t = 5 s, the approximate time instant at which the
particle sample collapses to a single particle. In addition to the accuracy of the filters, the
computational effort and efficiency are also of importance for implementation in practice.
The computational time (in seconds) required by the filters was, for the EKF, 500 s, for the
UKF, 2 s, for the EnKF, 90 s, and, for the PF, 5370 s. The results show that the UKF is the
most efficient estimation algorithm with good accuracy at an affordable computational
cost. Most of the computational time required for the EKF is used in the computation
of the gradient required to linearize the model. The EnKF and PF are computationally
intensive and not suitable for online or real-time applications due to the effort required to
project/update the large set of sample points/particles employed by the algorithms. The
RMSE of the estimates providing a measure of the accuracy of the four filters is summarized
in Table 1.

Table 1. RMSE summary for the Duffing oscillator example.

c (Ns/m) k1 (N/m) k2 (N/m3)

EKF 7.4 × 10−6 6.7 × 10−5 7.9 × 10−5

UKF 7.4 × 10−6 6.7 × 10−5 7.9 × 10−5

EnKF 4.8 × 10−5 1.5 × 10−4 1.5 × 10−4

PF 0.0012 0.03 0.04
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4.2. Bouc–Wen Hysteretic Oscillator

In this section, we consider a nonlinear hysteretic oscillator of the Bouc–Wen type [49].
The development of response and parameter estimation methods in the context of hysteretic
models has received notable attention in recent decades due to their application in the
modeling of material nonlinearity and inelastic behavior in structural mechanics, including
low-cycle damage due to severe loading and high-cycle accumulated fatigue [50–55]. The
dynamic behavior of an oscillator with a Bouc–Wen model for hysteresis is governed by
the following equation:

m
..
q(t) + c

.
q(t) + Dykz(t) = u(t) (23)

where k is the initial stiffness and Dy is the yielding displacement. The normalized hys-
teretic force variable z is governed by the following:

.
z(t) =

1
Dy

[ .
q(t)− β

∣∣ .
q(t)

∣∣|z(t)|ν−1z(t)− γ
.
q(t)|z(t)|ν

]
(24)

where β, γ, and ν define the shape and geometry of the hysteresis loops including the
transition between elastic and plastic behavior regimes. The parameters β and γ are
not unique when treated independently, and the constraint β + γ = 1 is used to enforce
uniqueness; this implies that only one of the parameters needs to be estimated [49]. Without
loss of generality, the parameter β is estimated, and the parameter γ is readily computed
from the constraint equation.

The true/exact system parameters used to generate the data are as follows (in con-
sistent SI units): m = 1 kg, k = 9 N/m, Dy = 0.3 m, β = 0.2, ν = 2, and a 5% damping
ratio. The oscillator is excited by a base acceleration,

..
ug, in which case the forcing input

is u = −m
..
ug. To solve the forward problem and to perform the estimation, the system is

time discretized using the fourth-order Runge–Kutta method with time step ∆t = 0.005 s.
The objective is to estimate the nonlinear parameters vector θ = { β Dy ν }, which is as-
sumed to be uncertain/unknown. The measurement data used for estimation consists of
noise-contaminated absolute acceleration response with a 10% noise-to-signal RMS. The
nonlinear Bayesian filters are implemented using the filter parameters of the previous
section. The prior distributions adopted for the parameters are depicted in Figure 7, which
shows that initial errors between 60 and 100% are assumed for all the parameters. The
figure also shows that significant uncertainty about the true values of the parameters is
accounted for in the analysis. The level of uncertainty in the prior distributions adopted
are in agreement with the expected level of prior knowledge about structural nonlinear
parameters where nonlinear parameters show significant uncertainty and variability.
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Figures 8–10 show the estimation results for the nonlinear hysteresis geometry pa-
rameters; the figures show the mean estimate and the uncertainty bounds defined as
±3 standard deviations. The figures show that the EKF, UKF, and EnKF are able to suc-
cessfully estimate the oscillator nonlinear parameters, while the PF shows convergence
difficulties. Similarly to the previous example, based on the particle’s coefficient of vari-
ation, the particle degeneracy was detected at t = 2 s, which can be confirmed from the
estimated time histories by noting the rapid collapse of the uncertainty bounds at this time
when compared to the other filters. The reduction in the PF uncertainty bounds at t = 2 s is
not related to the updating of the posterior distribution as more data becomes available, and
instead is a limitation of the algorithm due to the importance distribution adopted that results
in a rapid collapse of the particles; the uncertainty reduction is a fictitious artifact due to the
collapse and not representative of the actual distribution uncertainty, which can be verified by
comparing the uncertainty bounds provided by the other filters. The RMSE of the estimates
providing a measure of the accuracy of the four filters is summarized in Table 2.

Figure 11 shows the displacement estimates provided by all the filters, while Figure 12
shows the force–displacement histories, which depict the hysteretic behavior. The UKF
shows the best hysteretic response tracking capabilities, followed by the EnKF and EKF.

Table 2. RMSE summary for the Bouc–Wen oscillator example.

β ν Dy (m)

EKF 2.6 × 10−5 1.1 × 10−4 7.2 × 10−5

UKF 1.9 × 10−5 1.3 × 10−2 1.2 × 10−3

EnKF 2.0 × 10−5 1.2 × 10−2 1.2 × 10−3

PF 0.25 3.12 0.15
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4.3. Bouc–Wen Hysteretic Chain System

In this section, we study the scalability of the methods for a system with an increased
number of parameters and limited response measurements. For this purpose, we consider
a five-degrees-of-freedom chain-type system, where each spring of the chain is governed by
the hysteretic Bouc–Wen model discussed in the previous section. The mass and restoring
force characteristics of the system are shown in the left panel of Figure 13. Damping is
modeled as modal damping with a 5% damping ratio for all modes, computed based on
the initial linear properties of the system.
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The true/exact system parameters are selected as follows (in consistent SI units). The
mass and initial linear stiffness (for all springs) are M = 4.3 × 104 and k = 2 × 107. The
hysteretic parameters for all the springs are selected as Dy = 0.10, β = 0.20, and ν = 2.
The parameters are selected to be consistent with the parameters of the reinforced concrete
structure tested on a shake table shown in Figure 13 [56,57]. The system is excited by a
base acceleration consisting of a record of the 1994 Northridge earthquake. The objective
is to estimate the parameters vector θ = {β Dy ν} for each of the five springs of the model.
The measurement data used for estimation consist of the noise-contaminated absolute
acceleration response of degrees-of-freedom 1, 3, and 5, with a 10% noise-to-signal RMS
(see Figure 13). Note that, in this study, we focus on the parameters of the system; for a
related study focused on seismic response reconstruction, the interested reader can consult
Ref. [57].

The nonlinear Bayesian filters are implemented using the filter parameters discussed
in the previous section. The parameters prior distributions are selected with random initial
errors between 25% and 75% for all the parameters and a coefficient of variation of 5%. Note
that the dimension of the augmented state for this example is x ∈ R30, with three dynamic
response variables and three parameters for each degree of freedom. The relationship
between the dimension of the state and the number, type, and location of measured
outputs is the main factor determining the accuracy and capability of the estimators
to successfully infer the parameters (identifiability), with scalability and identifiability
limitations arising as the dimension of the augmented state increases, an issue known as
the curse of dimensionality. Moreover, the use of absolute acceleration measurements,
usually used in practice due to the affordability of accelerometer sensors, presents an
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increased challenge in the estimation of nonlinear parameters with reduced identifiability
with respect to other types of measurements, such as displacements [58].

Figures 14–16 show the estimation results for the hysteresis shape parameter, the
yielding displacement, and the linear–inelastic transition parameter, respectively; the
figures show the mean estimates for the springs of each degree of freedom. The figures
show that only the UKF and EnKF are able to successfully estimate the nonlinear parameters
of the system. The PF shows the same particle degeneracy issue of previous examples,
although the issue is exacerbated by the dimension of the augmented state. It is interesting
to note the degradation of the estimation accuracy of the EKF with respect to the oscillator
counterpart. As shown in Section 4.2, the EKF was able to estimate the single-degree-
of-freedom hysteretic oscillator parameters, while, in this section, the EKF estimates are
not accurate under an increased dimension of the augmented state and the use of limited
acceleration measurements. On the other hand, the UKF and EnKF were able to maintain a
comparable level of accuracy.

Finally, it is interesting to note that the computational time required by the filters for
this example were EKF—4 h, UKF—19 min, EnKF—5 h, and PF—50 h. Thus, the UKF
is the most efficient estimation algorithm with an accuracy comparable to the EnKF at a
significantly reduced computational cost.
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5. Conclusions
This paper examined the performance of nonlinear Bayesian filtering when applied

to the identification of the parameters of structural and mechanical systems. This study
employed metrics to assess the accuracy and limitations of the four most well-established
nonlinear filtering methods: the extended Kalman filter (EKF), the unscented Kalman filter
(UKF), the ensemble Kalman filter (EnKF), and the particle filter (PF). The filtering methods
were applied to estimate the parameters and the response of three benchmark dynamical
systems used in structural mechanics, namely, a Duffing oscillator, a hysteretic oscillator,
and a hysteretic chain-type system.

For the single-degree-of-freedom oscillators, the EKF and UKF converged to the true
system parameters with a comparable estimation accuracy, with the EKF showing a higher
computational cost. In the case of multiple degrees-of-freedom systems, the EKF was
not able to scale appropriately to large parameter spaces, while the UKF preserved the
estimation accuracy observed for the oscillators. In the case of the EnKF, the algorithm
provided estimates of the same order of accuracy as the UKF, albeit at a significantly
higher computational cost that was on the order of several hours. The PF was not able
to converge to the true parameters for any of the systems studied, with the particles
showing severe degeneracy, collapsing to a reduced subset of the parameter space after
a few implementation steps. Based on the performance, accuracy, and computational
efficiency of the methods under different operating conditions, it is concluded that the UKF
is the most effective filtering-based system identification method for the type of systems
considered herein, showing a stable estimation accuracy for parameter spaces considered
of high dimension in applications.
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