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Abstract: Different additive manufacturing modalities enable the production of multi-
material components which can be used in a wide range of industrial applications. The
prediction of the mechanical properties of these components via finite element modelling
rather than through testing is critical in terms of cost and time. However, due to the higher
computational time spent on the modelling of lattice structures, different methods have
been investigated to accurately predict mechanical properties. For this purpose, this study
proposes the use of a homogenization method in the two most common types of multi-
material lattices: honeycomb and re-entrant auxetics. Modal analyses were performed, and
the first six mode shapes were extracted from explicit and implicit models. The results
were compared in terms of mode shapes and natural frequencies. The results showed that
homogenization can be successfully applied to multi-material honeycomb and re-entrant
auxetic lattices without compromising the accuracy. It was shown that the implicit models
predict the natural frequencies with an error range of less than 6.5% when compared with
the explicit models in all of the mode shapes for both honeycomb and re-entrant auxetic
lattices. The Modal Assurance Criteria, which is an indication of the degree of similarity
between the mode shapes of explicit and implicit models, was found to be higher than
0.996, indicating very high similarity.

Keywords: homogenization; metamaterial; multi-material vibration; honeycomb; re-entrant

1. Introduction
Auxetics are unique structures and a type of metamaterial whose mechanical proper-

ties are rarely observed in other materials. They exhibit a negative Poisson’s ratio, meaning
that in cases of compressive loading, they contract in both the direction of the applied load
and the transverse direction, and similarly in cases of tension loading, the situation is the
same but with elongation instead of contraction [1]. Due to their unique characteristics,
they find usage in biomedical applications [2], in energy-dissipating structures [3,4], in
crashworthiness tubes used in automotive and aerospace applications to increase energy
absorption capability without considerably increasing the total weight [5–7], and in blast
loading applications [8].

The mechanical properties of auxetic structures have been investigated in different
scientific studies. Zhou et al. compared the additively manufactured hexagonal structure
and two types of auxetic structures (double arrowhead and re-entrant). Their results
revealed that the double arrowhead structure showed higher specific energy absorption
and compressive strength than the other cellular structures [9]. Similar conclusions were
also previously found by the authors [10]. Günaydın et al.’s study revealed that the re-
entrant structure has lower energy absorption capability under quasi-static compression
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than the anti-tetrachiral structure [11]. Aktas et al.’s study revealed that re-entrant auxetic
structures have higher specific energy absorption than tetra-chiral auxetic structures [12].
Lu et al.’s study showed that the anti-tetrachiral auxetic structure has a higher energy
absorption capability than hexachiral structures, and hierarchical design can be used
to improve energy absorption ability [13]. Simpson and Kazanci’s experimental studies
revealed that crash boxes filled with re-entrant auxetic structures have lower specific energy
absorption than those filled with honeycomb structures [14]. Gülcan’s experimental study
revealed that anti-tetrachiral lattices show higher energy absorption, mean crush force, and
crush force efficiency than re-entrant and honeycomb lattices [15].

Auxetic structures also have very unique vibration characteristics like band gaps
and directional wave propagation characteristics [16]. Namazinia et al. investigated
the free vibration characteristics of a sandwich plate with a re-entrant auxetic core in a
hygrothermal environment and stated that increasing the auxetic core thickness increases
the fundamental natural frequencies [17]. Thang et al. investigated the free vibration
of barrel-shaped sandwich shells with re-entrant auxetic cores and stated that different
vibration modes resulted in fundamental natural frequencies that are highly dependent
on geometric parameters [18]. Liu et al. proposed a novel auxetic structure embedded
with resonators and showed that local resonant band gaps can be generated at lower
frequencies [19]. Shoaei et al. proposed an analytical solution based on the multiple-scale
method of perturbation for the free and forced vibrations of multilayer annular plates
consisting of two top and bottom isotropic layers and one auxetic re-entrant layer [20].
Tran et al. investigated the free vibration characteristics of a sandwich panel with a re-
entrant auxetic core and stated that increasing the side wall angle of the auxetic structure
decreases the vibration frequency of the plate [21]. Similar conclusions were also reached
by Sarafraz et al. [22]. They also stated that increasing the thickness of the auxetic re-
entrant core and the thickness-to-length ratio generally resulted in a reduction in the
natural frequencies.

It is important to predict the mechanical properties of components with auxetic struc-
tures through testing. However, since these tests are expensive and time consuming,
mechanical analysis plays a very important role in predicting the real mechanical proper-
ties of these components. On the other hand, since these structures are so complex, it is very
difficult to perform a mechanical analysis based on conventional finite element methods
due to the high computational time and cost [23]. Generally, homogenization methods
and their associated multiscale algorithms describe global behavior by reducing governing
equations with rapidly varying coefficients to equations with effective coefficients, which
can not only save computing resources, but also guarantee calculation precision.

In the homogenization theory, which was first applied to periodic domains using
two-scale asymptotic expansions [24–26], the stiffness matrix can be reformed according
to the unit cell topology and may show orthotropicity [27]. In the scientific literature,
homogenization methods have been applied to different cellular structures and good cor-
relations between classical finite element models and homogenized models have been
observed [28–31]. Dirrenberger et al. applied homogenization to three different types of
auxetic structures—hexachiral, tetra-antichiral, and rotachiral—and calculated the elas-
tic moduli [32]. Reis and Ganghoffer applied homogenization to re-entrant hexagonal,
hexachiral, cross chiral, rafter, and re-entrant square lattices and found good agreement be-
tween the homogenized results and the finite element simulation results [33]. El Nady et al.
applied mechanical and numerical homogenization to auxetic structures to predict elastic
responses, accounting for large changes in the geometry [34]. Wang et al. applied the strain-
based expansion homogenization method to re-entrant auxetic structures and calculated
the Young’s modulus and Poisson’s ratio in two principal directions. They found good
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agreement between the theoretical, simulation, and experimental results [35]. Biswas et al.
applied homogenization to tetra-chiral auxetic structures and stated that homogenization
accurately captures the rotation of the central ring and the stretching of the tangential
ligaments [36]. Zhang et al. applied homogenization to bowtie-shaped auxetic structures
to obtain the equivalent stiffness and then used it in free and forced vibration analysis [37].

Since some additive manufacturing technologies enable the manufacturing of compo-
nents with multiple materials, it is important to predict the mechanical properties of these
components with analysis and/or homogenization methods. It is clear from a literature
survey that most of the existing studies focus on the application of the homogenization the-
ory to different types of auxetic structures. However, to the best of the authors’ knowledge,
no study so far has focused on using the homogenization theory in multi-material auxetic
structures. To fill this gap, the present study focused on the feasibility of using the homoge-
nization method in multi-material honeycomb and re-entrant auxetic structures. Modal
analyses were performed, and the implicit and explicit analysis results were compared in
terms of the first six deformation modes.

2. Materials and Methods
2.1. Unit Cell

In the present study, honeycomb and auxetic re-entrant structures were used as test
cases. The corresponding unit cells are shown in Figure 1. Siemens NX 12 software (Siemens
AG, Munich, Germany) was used to generate the geometries. Due to the advancements in
additive manufacturing technology, components can be produced with multiple materials.
Fused deposition modelling (FDM) [38] and material jetting [39] are two types of additive
manufacturing modalities that enable the production of multi-material components. Con-
sidering the limitations of FDM and material jetting technologies, the ligament thicknesses
of both topologies were set at 1.1 mm. To allow back-to-back comparison, the thickness
and inner length were the same for the two lattice topologies.
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2.2. Multi-Material Lattice Structure

The homogenization theory depends on a periodic arrangement of cell structures
that are considerably smaller than the macroscopic scale. Ideally, these microscale units
should be much smaller than the macroscopic scale. However, when optimizing to meet the
minimum size constraints of existing additive manufacturing technologies, it is essential to
identify the smallest cell size that effectively adheres to the principles of the homogenization
theory [40]. In this paper, numerical studies are utilized to examine how the number of unit
cells in a lattice structure affects the accuracy of homogenization. Figure 2 shows elastic
modulus convergence in the z direction for honeycomb lattice topology. It is clear that
after 5 unit cells, the elastic modulus in the z direction becomes almost constant. Since the
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difference in elastic modulus in the z direction between 5 unit celled and 6 unit celled lattice
structures is at an inconsiderable level, in the present study, 5 unit cells were stacked along
the x and y directions to obtain the samples. In the present study, nylon and onyx (with
chopped carbon fibers added to the nylon) were used as the input materials. Onyx was
selected as a candidate material in the present study since it is a relatively new composite
FDM material. As can be seen from Figure 3, onyx was selected as the material of the
parallel ligaments (blue ligaments) and nylon was selected as that of other ligaments. The
material properties of both materials are shown in Table 1.
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Table 1. Mechanical properties of nylon and onyx [41].

Material Tensile Modulus
(GPa)

Tensile Strength
(MPa) Density (g/cm3)

Nylon 1.7 51 1.1

Onyx 2.4 40 1.2

2.3. Finite Element Model

Finite element models (FEM) were prepared using Ansys Workbench 2020, R2. Modal
analyses were run both on the original geometries and the solid bodies that fit the outer
boundaries of the original lattice structures. The free–free boundary condition that means
that the lattice structure is free to move at its boundaries was used during analysis. The
main advantage of using free boundaries is the elimination of the effects of boundary
conditions. The natural frequencies and their related mode shapes were obtained from
the modal analysis. The first six mode shapes were considered in the comparisons. Ansys
Material Designer was used to obtain the equivalent material properties of the solid bodies.
In Material Designer, anisotropic analyses were performed first, and it was observed that
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the structures showed orthotropic behavior by considering the elastic modulus in different
directions. Therefore, orthotropic analyses were used in Material Designer.

During homogenization, the effective elastic matrix of the honeycomb and auxetic re-
entrant structures was estimated by applying strain loadings to the structures and solving
the linear material constitutive relation via Hooke’s law (σ = [C]ε). Due to the orthotropicity,
9 unknowns were used instead of 36 in the stiffness matrix (Equation (1)) [27]. Based on
the stiffness matrix information extracted from Material Designer, unit cells of both the
re-entrant and hexagonal lattice structures showed orthotropic elastic properties.

σ11

σ22

σ33

σ12

σ13

σ23


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε11

ε22

ε33

ε12

ε13

ε23


(1)

Since C12 = C21, C13 = C31, and C23 = C32, due to symmetry, the stiffness matrix can be
expressed as shown in Equation (2) [27].

σ11

σ22

σ33

σ12

σ13

σ23


=



C11

C12

C31

C12

C22

C32

C13

C23

C33

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

C44

0
0

0
C55

0

0
0

C66





ε11

ε22

ε33

ε12

ε13

ε23


(2)

C =



76.48
69.45
59.29

69.45
83.33
62.04

59.29
62.04
276.36

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

5.39
0.00
0.00

0.00
49.36
0.00

0.00
0.00

35.49



C =



71.65
−51.26
11.26

−51.26
59.07
0.08

11.26
0.08

321.07

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

1.31
0.00
0.00

0.00
35.23
0.00

0.00
0.00

39.24


After the homogenization of both the honeycomb and auxetic re-entrant structures,

their stiffness matrices were obtained as seen above where the first one is result of homoge-
nization of honeycomb structure and the second one is the result of the homogenization of
auxetic re-entrant structure. As observed in stiffness matrix of re-entrant structure, negative
elements exist, and this is caused by the unique characteristics of auxetic structures, which
are related to their negative Poisson’s ratio.

2.4. Mesh Convergence

Quadrilateral elements were used in the discretization of the honeycomb and re-
entrant structures due to the thin walls of their ligaments. Mesh size convergence studies
were performed by conducting a series of simulations with different mesh sizes and
considering the computational run time and accuracy by comparing the orthotropic material
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properties that were obtained after the homogenization of the explicit unit cells of the lattice
structures. The results showed that a mesh size of 0.2 mm is the convergence starting point;
therefore, both lattices were discretized by using a mesh size of 0.2 mm. The related meshed
geometries are shown in Figures 4 and 5, and the number of meshes and the number of
nodes are shown in Table 2.
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In Figure 5, the explicit models are the macroscale models where discretization was
applied to the full-scale geometry. On the other hand, the implicit models are homoge-
nized models where, instead of modeling the entire macroscale, which requires greater
computational resources, representative bulk volume was modelled. This representative
bulk volume was generated based on the representative volume element, which is basically
a single unit cell and can be patterned in different directions to obtain the final structure.
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Homogenized or implicit models have equivalent material properties when compared with
their explicit counterparts.

Table 2. Mesh type, number of nodes, and number of elements.

Honeycomb Re-entrant

Model Type Explicit Implicit Explicit Implicit

Mesh type Quadrilateral Quadrilateral Quadrilateral Quadrilateral

Number of nodes 10,381,912 1,444,581 20,308,548 10,851,093

Number of elements 2,033,304 348,880 4,159,360 2,665,600

2.5. Mode Correlation

The Modal Assurance Criteria (MAC) [42] is a quantitative tool used in the field of
structural dynamics to assess the similarity between mode shapes. The MAC is essentially
a mathematical formula that compares the eigenvectors associated with these mode shapes.
By comparing these eigenvectors, the MAC provides a numerical value between 0 and
1. This value serves as an indicator of the degree of similarity between the mode shapes
of the different models or structures being compared. An MAC value close to 1 suggests
a high degree of similarity, indicating that the mode shapes being compared are almost
identical. Conversely, an MAC value near 0 implies little to no similarity, suggesting that
the mode shapes are significantly different. By applying the MAC, it can be ensured that
the natural frequencies and mode shapes of a structure are accurately identified, leading to
more reliable and safe designs. The MAC can be expressed as follows:

MAC =

∣∣∅T
1∅2

∣∣2(
∅T

1∅1
)(
∅T

2∅2
) (3)

where the matrices of the eigenvectors, Ø1 and Ø2, are associated with two distinct sets of
modal analyses. To determine the MAC value between two different geometries, including
both implicit and explicit models, the MAC value was calculated for each pair of corre-
sponding nodes that match within a 0.01 mm tolerance. However, due to the significant
differences in the topology of the implicit and explicit geometries, the number of matching
nodes is limited. Therefore, in this study, only the nodes that play a significant role in
representing the modes were used to calculate the MAC values, and nodes at the edges of
the geometries were selected.

3. Results and Discussion
As a result of the homogenization, the orthotropic material properties are calculated

and presented in Table 3.

Table 3. Homogenized mechanical properties of re-entrant and honeycomb lattice structures (E,
elastic modulus (GPa); G, shear modulus (GPa); υ, Poisson’s ratio).

Material E1 E2 E3 G12 G23 G13 υ12 υ23 υ13

Re-entrant 0.027 0.022 0.316 0.001 0.035 0.039 0.868 0.025 0.035
Honeycomb 0.018 0.020 0.227 0.005 0.049 0.035 0.809 0.036 0.033

3.1. Honeycomb Structures

Total deformation with respect to the first six mode shapes for the honeycomb explicit
and implicit models are shown in Table 4, and the natural frequencies of the honeycomb
explicit and implicit models are tabulated in Table 5.
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Table 4. First six mode shapes of honeycomb explicit and implicit models.

Honeycomb Explicit Honeycomb Implicit

1st Mode
MAC = 0.999
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Table 4. Cont.

Honeycomb Explicit Honeycomb Implicit

5th Mode
MAC = 0.997

Vibration 2024, 7, FOR PEER REVIEW  9 
 

 

3rd Mode 

MAC = 0.998 

 

 
f = 1002.6 Hz 

 

 
f = 1023.5 Hz 

 

4th Mode 

MAC = 0.996 

 

 
f = 1073.1 Hz 

 

 
f = 1105.4 Hz 

 

5th Mode 

MAC = 0.997 

 

 
f = 1112.0 Hz 

 

 
f = 1119.5 Hz 

 

6th Mode 

MAC = 0.996 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

f = 1112.0 Hz

Vibration 2024, 7, FOR PEER REVIEW  9 
 

 

3rd Mode 

MAC = 0.998 

 

 
f = 1002.6 Hz 

 

 
f = 1023.5 Hz 

 

4th Mode 

MAC = 0.996 

 

 
f = 1073.1 Hz 

 

 
f = 1105.4 Hz 

 

5th Mode 

MAC = 0.997 

 

 
f = 1112.0 Hz 

 

 
f = 1119.5 Hz 

 

6th Mode 

MAC = 0.996 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

f = 1119.5 Hz

Vibration 2024, 7, FOR PEER REVIEW  9 
 

 

3rd Mode 

MAC = 0.998 

 

 
f = 1002.6 Hz 

 

 
f = 1023.5 Hz 

 

4th Mode 

MAC = 0.996 

 

 
f = 1073.1 Hz 

 

 
f = 1105.4 Hz 

 

5th Mode 

MAC = 0.997 

 

 
f = 1112.0 Hz 

 

 
f = 1119.5 Hz 

 

6th Mode 

MAC = 0.996 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

6th Mode
MAC = 0.996

Vibration 2024, 7, FOR PEER REVIEW  10 
 

 

 

 

 

 
f = 1263.6 Hz 

 

 

 
f = 1295.5 Hz 

Table 5. Natural frequencies of honeycomb explicit and implicit models. 

 Natural Frequencies (Hz) 

 Honeycomb Explicit Honeycomb Implicit Error (%) 

First mode 568.29 587.43 3.4 

Second mode 779.85 798.82 2.4 

Third mode 1002.6 1023.5 2.1 

Fourth mode 1073.1 1105.4 3.0 

Fifth mode 1112.0 1119.5 0.7 

Sixth mode 1263.6 1295.5 2.5 
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Table 5. Natural frequencies of honeycomb explicit and implicit models.

Natural Frequencies (Hz)

Honeycomb Explicit Honeycomb Implicit Error (%)

First mode 568.29 587.43 3.4
Second mode 779.85 798.82 2.4
Third mode 1002.6 1023.5 2.1

Fourth mode 1073.1 1105.4 3.0
Fifth mode 1112.0 1119.5 0.7
Sixth mode 1263.6 1295.5 2.5

It is clear from Table 4 that there is a very good correlation between the implicit and
explicit models for the first six mode shapes of the honeycomb lattice. Comparison of the
natural frequencies based on the implicit and explicit models for the first six mode shapes
(Table 5) reveals that a maximum error of 3.4% was found in the first mode. It is clear that
the implicit models resulted in higher natural frequencies.

The MAC results of the honeycomb lattice structure are shown in Table 6. It is clear
that a very good and satisfactory MAC correlation was found between the implicit and
explicit models. Since the MAC number for the first six mode shapes is higher than 0.996, it
can be stated that very high similarity is present between the natural frequencies found
based on the implicit and explicit models.
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Table 6. MAC results of honeycomb lattice structure.

Implicit
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12
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0 0 0 0 0 0.996

3.2. Re-Entrant Structures

Total deformation with respect to the first six mode shapes for the re-entrant auxetic
explicit and implicit models is shown in Table 7. Very good correlation can be observed
between the six mode shapes based on the explicit and implicit models.

Table 7. First six mode shapes of re-entrant auxetic explicit and implicit models.

Re-Entrant Explicit Re-Entrant Implicit

1st Mode
MAC = 0.999
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Table 7. Cont.

Re-Entrant Explicit Re-Entrant Implicit

4th Mode
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Table 8 shows the natural frequencies of the re-entrant auxetic explicit and implicit models for
the first six mode shapes. The minimum and the maximum natural frequency errors between the
explicit and implicit models were observed in the second (1.2%) and fourth mode (6.5%) shapes,
respectively. It can be concluded that the implicit models accurately predict the natural frequencies
within a 6.5% error range when compared to the explicit models. Similar to the honeycomb lattices,
in the re-entrant auxetic lattices, the implicit models resulted in higher natural frequencies.

Table 8. Natural frequencies of re-entrant auxetic explicit and implicit models.

Natural Frequencies (Hz)

Re-entrant Explicit Re-entrant Implicit Error (%)

First mode 267.8 273.8 2.2
Second mode 448.3 453.8 1.2
Third mode 596.4 606.2 1.6

Fourth mode 665.5 708.8 6.5
Fifth mode 785.0 798.1 1.7
Sixth mode 919.3 938.2 2.1
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The MAC results of the re-entrant auxetic lattice structure are shown in Table 9. Similar
to the honeycomb lattices, in the re-entrant auxetic lattices, a very good MAC correlation
was found between the implicit and explicit models. The MAC number was found to be
higher than 0.996 for the first six mode shapes.

Table 9. MAC results of re-entrant lattice structure.

Implicit
273.8 453.8 606.2 708.8 798.1 938.2

Ex
pl

ic
it

26
7.

8

0.999 0 0 0 0 0

44
8.

3

0 0.999 0 0 0 0

59
6.

4
0 0 0.997 0 0 0

66
5.

5

0 0 0 0.987 0 0

78
5.

0

0 0 0 0 0.996 0

91
9.

3

0 0 0 0 0 0.970

4. Conclusions
This study investigated the efficiency of applying a homogenization method to two

types of multi-material lattices: honeycomb and re-entrant auxetic. Modal analyses were
performed, and the first six mode shapes were extracted from explicit and implicit models.
The results were compared in terms of mode shape, maximum deformation, and natural
frequency. The following main conclusions can be drawn:

• It was numerically shown that homogenization can be successfully used in the modal
analysis of multi-material honeycomb and re-entrant auxetic lattices without com-
promising the accuracy. There is a good agreement between the explicit and implicit
mode shapes for both lattices.

• Regarding the natural frequency, the error ranges between the implicit and explicit
models are 0.7–3.4% for the honeycomb structure and 1.2–6.5% for the re-entrant
auxetic structure.

• The MAC number was found to be higher than 0.996, which is an indication of very
high similarities between the explicit and implicit models.

In this research, two elastic materials (nylon and onyx) were utilized. A further
extension of this study may involve considering other complex material behaviors, such
as viscoelasticity or anisotropy. Moreover, like the material, the manufacturing method
changes the mechanical behavior of auxetic metamaterials, as stated in the literature [15].
Therefore, future studies may focus on the application of the homogenization method to
different types of auxetic metamaterials produced by different manufacturing methods.

This study investigated the feasibility of the application of a homogenization method
to multi-material auxetic metamaterials. Our future studies will focus on the experimental
validation of the numerical results.

Moreover, comparisons with alternative state-of-the-art methodologies may be made to
gain insight into the advantages and relative limitations of the proposed methodology [43,44].
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