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Abstract: In mechanical engineering, the building industry, and many other branches of
industry, vibration machines are widely used, in which circular and directed oscillations
predominate in the form of movement of the working equipment. This article examines
methods for generating asymmetric oscillations, which are estimated by a numerical
parameter, namely by the coefficient of asymmetry of the magnitude of the driving force
when changing the direction of action in a directed motion within each period of oscillations.
It is shown that for generating asymmetric mechanical vibrations, vibration devices are
used, consisting of vibrators of directed vibrations, called stages. These stages form the
total asymmetric driving force. The behavior of the total driving force of asymmetric
vibrations and the working equipment of the vibration machine are described by analytical
equations, which represent certain laws of motion of the mechanical system. This article
presents a numerical analysis of methods for obtaining laws of motion for a two-stage,
three-stage, and four-stage vibration device with asymmetric oscillations. An analysis of
the methodology for obtaining a generalized law of motion for a vibration device with
asymmetric oscillations is performed based on the application of polyharmonic oscillation
synthesis methods. It is shown that the method of forming the total driving force of a
vibration device based on the coefficients of the terms of the Fourier series has limited
capabilities. This article develops, substantiates, and presents a generalized method for
calculating and designing a vibration device with asymmetric oscillations by the value
of the total driving force and a given value of the asymmetry coefficient in a wide range
of rational designs of vibration machines. The proposed method is accompanied by a
numerical example for a vibration device with an asymmetry coefficient of the total driving
force equal to 10.

Keywords: vibration machines; vibration device; asymmetric vibrations; driving force;
summation of vibrations; asymmetry coefficient of the driving force

1. Introduction
Vibrational processes are part of oscillatory processes, which are reflected in the

fundamental works of scientists from different countries [1–6].
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Theoretical developments that form the science of vibrational processes and tech-
nologies are based on the general laws of oscillation theory [7–12], which, in turn, are the
theoretical basis for many areas of research and their practical use [13–16].

In accordance with the widespread use of vibration technologies and vibration ma-
chines in a number of industrial production of materials, works, and services, methods
for their design are described to one degree or another in specialized technical litera-
ture [10,11,17]. A special place in the development of methods for general and special
design and calculation of parameters of vibration machines is occupied by the works of
Andronov A.A., Ashavskiy A.M., Bauman V.A., Blekhman I.I., Mandelstam L.I. Strelkov S.P.

In works [17–19], fundamental requirements and criteria for the development of [17]
laws of change and control of the driving force of a vibration machine depending on the area
of application and its functional tasks are formed in a sufficiently complete manner for the
prospective design of vibration machines. In order to implement the requirements for the
development of design methods and calculation of technological parameters of vibration
machines, formulated in [17,18,20] and in a number of other specialized studies [21–24],
when solving new technical problems, their formalization and additional analysis of the
kinetics of processes occurring under the conditions of superimposed vibration effects are
required each time [25,26].

Problems of this kind include, in particular, the development of a methodology for
designing vibration devices with asymmetric oscillations or with an asymmetric driving
force. Considering that this scientific direction is still in its infancy, some features of termi-
nology and definitions should be noted. In this article, the terms ‘asymmetric driving force’
and ‘asymmetric oscillations’ are considered equivalent, as well as ‘asymmetry coefficient
of the driving force magnitude’ and ‘dynamic coefficient of the oscillatory system’.

The issues of parameter asymmetry in oscillatory processes are common topics in
scientific publications. In the works [26–28], some classification features of asymmetry in
oscillatory, and therefore, in vibrational processes are given, namely:

• geometric asymmetry,
• asymmetry of frictional properties,
• force asymmetry,
• temporal asymmetry of excitation,
• frequency asymmetry,
• functional asymmetry,
• kinematic asymmetry,
• structural (constructive) asymmetry,
• gradient asymmetry,
• wave asymmetry,
• initial asymmetry, i.e., associated with the initial conditions of motion.

Without going into a detailed description of each type of classification feature, it can
be noted that the selected type of asymmetry can be closely related to another type of
asymmetry or have conditions for the transition of one into another. The use of one or
another type of asymmetry in the scientific or technical sphere is associated with specific
conditions and priorities of the authors. In this work, force asymmetry is considered a
complex parameter that can be assessed and characterized by a numerical value, namely
the coefficient of asymmetry of the driving force (kas) or the coefficient of dynamism of
the oscillatory system (Kd or kd) [29,30]. Asymmetric force is considered a force (F) of
directed action along some straight line with a variable magnitude, whose magnitude in
one direction significantly, or by some number of times, exceeds the magnitude of the
component acting in the opposite direction while one of the components, for example,
the larger one, can be taken as positive (+F), and in the opposite one, negative (−F). The
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magnitude of the asymmetry coefficient of the driving force (kas) or the dynamic coefficient
of the oscillatory system (Kd or kd) can be calculated from the expressions:

kas = Kd = kd = −+F
−F

=
F

|−F| =
Fuw

Fis
(1)

where Fuw is the magnitude of the driving force acting in the direction of performing ‘useful
work’; Fis is the magnitude of the driving force acting in the direction of performing ‘idle
stroke’, in the opposite direction; and (+F) and (−F), respectively, are the components of
the total value of the driving force, acting alternately in opposite directions.

The novelty of the study is that for the first time, an equation of the total driving force
is given, ensuring the obtaining of any coefficient (for technical and technological tasks) of
asymmetry of the driving force, for example, more than 10. This is achieved by the fact that
on the basis of the analysis of a number of works in the field of development of methods
for calculating and designing vibration machines, the authors introduce a new term in
relation to the form of oscillations of the working equipment of vibration machines which is
asymmetric oscillations. This type of oscillation has a numerical characteristic, namely, the
asymmetry coefficient of the driving force. This work currently lacks a general methodology
for designing and calculating vibration devices with asymmetric oscillations, and the
available individual examples for vibration devices with low values of the asymmetry
coefficient of the driving force, for example, in the range of 2–4, are of an exclusively local
nature for specific conditions. The novelty is that the use of the method of decomposition of
piecewise smooth or monotone functions into a Fourier series for creating a general law for
designing and calculating vibration devices with asymmetric oscillations is not applicable.
Since it does not allow for the obtaining of a coefficient of asymmetry of the driving force
with a greater value, for example, more than four.

The purpose of this article is to develop an engineering methodology for designing
vibration devices with asymmetric oscillations based on the initial parameters: the magni-
tude of the total driving force acting in the direction of performing useful work and the
asymmetry coefficient of the magnitude of the total driving force.

2. Materials and Methods
This article uses methods of analytical, numerical, and comparative research, logically

closely related to classical methods of vibration theory and real methods of calculation and
design of technological vibration machines, with their parameters and conditions of the
application area, such as vibration displacement, vibration sorting, vibration compaction,
vibration driving of piles and others. To evaluate the existing patterns of designing vibration
devices with asymmetric oscillations, numerical methods for estimating the coefficient of
asymmetry of the magnitude of the driving force and the obtained values of its asymmetry
coefficient are used. To evaluate the possibility of creating a general methodology for
designing vibration devices with asymmetric oscillations and a generalized law for the
formation of asymmetric oscillations, classical laws of analytical mathematics are used, i.e.,
expansion of piecewise smooth and continuous functions in a Fourier series. When creating
a mathematical model of a vibration device with asymmetric oscillations, the d’Alembert
principle was used to obtain the equilibrium equations of the systems under consideration.
Theorems on the properties of optimal Maxwell–Fejer polynomials, which specify the
optimal Maxwell–Fejer impulse, were used as a method for assessing the created general
methodology for designing and calculating vibration devices with asymmetric oscillations.
When deriving the general equation for the value of the total driving force, the search
method by simplex (S2-method) was used in problems of constructing a regular simplex
for a given base point and scale factor.
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3. Results
Vibratory machines occupy an important place in a number of technological processes,

for example, in operations of sorting and separating various materials [31] into fractions,
inter-operational transportation [32,33], compaction and molding [31,34,35], immersion
of structural elements into the ground and their extraction from the ground [22,36,37],
cutting [38,39], and destruction and digging [40,41]. In the building industry, vibration
machines are used to produce building materials and perform construction and road
construction work. In vibration machines, the driving force of the working equipment is
the ‘driving force’. The driving force serves to periodically move the structural elements
of the machines with a certain amplitude A and frequency f and is characterized by the
magnitude, modulus or amplitude value, direction or, line of action, point of application,
and the nature of the behavior or position of the line of action in time [42–44].

Among the various types of vibration machines, a class of vibration inertial machines
stands out, which the driving force of the vibration device is generated by one or several
shafts rotating at an angular velocity ω (rad/s); with eccentric weight fixed to them, with a
mass of m (kg), the center of gravity of which is shifted relative to the axis of rotation by a
certain value, r (m), called eccentricity, and is described by the law of change [29,35].

F = m·r·ω2·cos(ωt + φ
)

(2)

where F = m·r·ω2 is the amplitude value of the driving force, H; t is the current time,
s; φ is the initial phase of oscillations, deg, rad; m is imbalance mass, kg; r is imbalance
eccentricity, m; and ω is the angular velocity of rotation of the unbalanced shaft, rad/s.

In the case where mechanical vibrations are generated by a rotating driving force (F),
such vibrations are called circular or elliptical, depending on the ratio of resistance forces
along the coordinate axes.

The magnitude of the driving force for a driving force of directional action, without
asymmetry, i.e., when kas = Kd = 1.0, acting in the direction of performing useful work
(Fuw), is equal in magnitude to its action in the opposite direction, i.e., in the direction of
performing an idle stroke (Fis).

However, the equality of the components of the total driving force in the direction of
performing useful work and in the direction of performing idle stroke during vibration
displacement and vibration transport of materials, during vibration immersion and vibra-
tion extraction of structural elements into and from the soil, as well as during vibration
compaction is undesirable. In such a case, the following relationship must be fulfilled:
Fuw ≫ Fis, and accordingly, kas = Kd ≫ 1.0.

This problem can be solved by asymmetric oscillations, which allow obtaining a
significant difference in the magnitude of the driving force acting in the direction of
performing useful work, Fuw = +F, and in the direction of performing idle stroke,
|Fis| = Fuw

kas
. In this case, the ratio of forces (Fuw and Fis) is estimated by the asymmetry

coefficient of the driving force, kas, or the dynamic coefficient of the oscillatory system (1).
Further improvement of vibratory machines is connected with the task of developing

the methodology and principles of designing vibration devices with asymmetric oscillations.
However, at present this direction is still in the state of development. In accordance with
this, this article is aimed at developing and forming the methodology and principles of
designing vibration devices with asymmetric oscillations. At the same time, the objective of
this article is to analyze existing methods for designing asymmetric oscillations of vibration
machines and comparative studies of the results of their use.

At present, there are some theoretical provisions [9,11,14,25,27,45] that allow to con-
sider them as prerequisites for the formation of a methodology for designing vibration
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devices with asymmetric oscillations. The existing theoretical provisions do not yet have a
generally accepted analytical completeness, but they have some general conclusions.

The first conclusion is based on the fact that asymmetric oscillations can be obtained by
adding several directed oscillations. As a result of adding the driving forces of the directed
oscillations, a total directed driving force is created that is asymmetric in magnitude in
opposite directions. The second conclusion is that the rotation frequencies of the unbalanced
shafts of each subsequent directed oscillation, starting with the second one, are multiples
of the first, Table 1.

Table 1. Ratio of angular frequencies of vibrators with directional oscillations in a single vibration
device with asymmetric oscillations.

Characteristics of Oscillations First Stage Second Stage Third Stage nth Stage

Frequency of single-directed oscillations ω1 ω2 ω3 . . . ωn
The ratio of the frequencies of

single-directed oscillations to the frequency
of the first stage

ω1 2ω1 3ω1 . . . nω1

Attempts to use asymmetric vibrations in the building industry were made as early as
the middle of the last century [31], although the term ‘asymmetric vibrations’ had not yet
been introduced.

The vibration device [31] consists of four unbalanced shafts, installed two on top of
each other, forming two pairs, each of which generates directed vibrations with equal
driving forces (F). The vibration frequency of one pair of unbalanced shafts is 400 rpm,
forming the first stage of the vibration device, and the rotation frequency of the second pair
of unbalanced shafts is 800 rpm, forming the second stage of the vibration device.

Using the vibration parameters from the provisions of [31], it is possible to calculate
the magnitude of the total driving force as the sum of two directed oscillations, forming a
vibration device with two vibration stages.

Fsum2 = F1 + F2 = m1r1ω2
1cosω1t + 0.5m1r1(2ω1)

2cos(2ω1t + π) (3)

where F1 and F2 are, respectively, the driving force of the vibration device of the first and
second stages of directed oscillations, kN; m1 is the mass of the eccentric weight of the first
stage of directed oscillation, kg; r1 is the eccentricity of the eccentric weight of the first stage
of directed oscillation, m; and t is the current time within one period of oscillations, s.

The following parameter values are accepted according to the recommendations [27]:
m1 = 10, m2 = 5 (kg), r1 = 0.02, r2 = 0.01 (m), ω1 = 41.9, and ω2 = 2ω1 = 83.8 (rad/s).
The static moment of the imbalances of the two-stage vibration device (Mst2) of the first
term in Equation (3) is M1st2 = m1·r1 = 0.2 (kg·m), and of the second term in (3) is
M2st2 = m2·r2 = 0.05 (kg·m), and their ratio.

M1st2 : M2st2 = 100% : 25% (4)

In this case, the oscillation frequency is f = 6.67 Hz, and the oscillation period is
T = 0.15 s. Calculation of forces based on 20 values of the oscillation period shows that the
value of the total driving force with the law of its change according to Equation (3) in the
direction of performing useful work (Fuw) is Fsum2 = Fuw = −701.4 kN, and in the direction
of performing idle stroke is Fis = 394.5 kN. Hence, for a two-stage vibration device with
asymmetric oscillations (3), the asymmetry coefficient will be: kas2 = |−701.4|

394.5 = 1.78.
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The graph of the change in the components and the total value of the driving force,
according to the recommendations [27] based on the calculations, is shown in Figure 1. The
direction of the total driving force (Fsum2) is toward the negative values of the ordinate axis.
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Figure 1. Adding two (F1 and F2) directed oscillations to obtain the total oscillation by initial
conditions [31]. The asymmetry coefficient of the driving force is kas2 = kd2 = 1.78, (Fsum2).

In the graph, Figure 1, the direction of useful work performed by the driving force
(Fsum2) is taken in the direction of negative values of the ordinate axis, for example, for
driving piles.

On the one hand, the method of this technical solution [31] consists of doubling the
angular frequency of rotation of the second stage eccentric weights in relation to the first.
On the other hand, the mass and eccentricity of the second stage eccentric weights are
halved, so that the amplitude values of the magnitude of the driving force of the first and
second stages remain equal, |F1| = |F2| = 350.7 kN, and the sum is |F1|+ |F2| = 701.4.

It should be noted that the largest number of publications and patents related to asym-
metric oscillations of any parameter are associated with two-stage vibration devices, the
asymmetry coefficient (kas2) of which tends to two: kas2 → 2.0 . Where the index ( as2) char-
acterizes the asymmetry of the parameter of a two-stage vibration device generating a total
driving force by two coordinated directional harmonic oscillations with multiple frequencies.

Another example of the development of a methodology for designing a vibration
device with asymmetric oscillations is the work [46]. In this work, the term asymmetric
oscillations also does not appear. In [46], an equation is given for the total value of the
driving force of forced oscillations, consisting of three components y(t) = Fsum3:

y(t) = 4.5sin
ω

2
t + 3sin

(
ωt − π

2

)
+ 1.5sin(

3
2

ωt − π) (5)

where 4.5, 3, 1.5 are the amplitudes of harmonics in the spectrum of subharmonic os-
cillations [46]; φi = 0,−π

2 ,−π constitute the initial phase angles; and ω is the angular
velocity, rad/s.

To carry out a comparative calculation, it was assumed that ω = 104.7 rad/s, and the
magnitude of the amplitude value of the function y(t) = Fsum3 = 9.0 [47].

The authors of [46] draw attention to the fact that Equation (5) is used to tune the
resonant oscillations of a vibration machine with a piecewise linear characteristic of elastic
connections and, under these specific conditions, is the law of change of the function y(t).
Using the parameters related to the vibration device [46], the calculation of the value of
the total driving force has been performed, the graph of which is shown in Figure 2. The
direction of action of the value of the total driving force (Fsum3) is chosen similarly to [46],
upward, toward the positive values of the ordinate axis.
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Figure 2. Addition of three directional oscillations (F1 and F2, F3) to obtain a total oscillation (Fsum3)
with asymmetry of the driving force kas3 = kd3 = 3.0, [46].

As can be seen from Figure 2, the total driving force (Fsum3) is the sum of three
separate synchronized harmonic oscillations, that is, three stages of the vibration device
with multiple frequencies, is asymmetric in magnitude, with amplitude values in the
direction of performing useful work (Fsum3 = 9.0) and in the direction of performing idle
stroke (Fis3 = 3.0) with an asymmetry coefficient: kas3 = kd3 = 9.0

3.0 = 3.0. It can be written
that the amplitude value of the function.

y(t) = Fsum3 = F13 + F23 + F33, (6)

where F13, F23, F33 are, respectively, the force of the first, second, and third components of
the total driving force at three stages of the vibration device. Equation (6) can be written
as follows:

y(t) = Fsum3 = λ1·Fsum3 + λ2·Fsum3 + λ3·Fsum3 (7)

where λ1, λ2, λ3 are, respectively, the coefficients that determine the ratio of the component
forces in fractions of the value of the total driving force. In the case of Equation (5), it can
be written as follows:

Fsum3 = 0.5·Fsum3 + 0.33·Fsum3 + 0.17·Fsum3 (8)

In this case, the value of the static moment of the unbalance of the three-stage vibration
device (Mst3) is, for the first stage, M1st3 = m1·r1 = 1.64 (kg·m), for the second stage,
M2st3 = m2·r2 = 0.274 (kg·m), and for the third stage, M3st3 = m3·r3 = 0.061 (kg·m). Their
ratio is as follows:

M1st3 : M2st3 : M3st3 = 100% : 16.67% : 3.71% (9)

The next stage of development and improvement of the methodology for designing
and calculating vibration devices with asymmetric oscillations can be attributed to the
works [48,49].

In these works, the definition of ‘asymmetric’ oscillations also does not appear. At
the same time, oscillations generated by vibration devices with similar parameters form
oscillations with an asymmetric value of the total driving force. For a vibration device with
four vibration stages, it is recommended to adopt the ratio of static moments of eccentric
weight, expressed as a percentage:

M1 : M2 : M3 : M4 = 100 : 18.72 : 5.6 : 1.38 (10)
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The recommendations given in [49] for selecting the parameters of the vibration device
make it possible to calculate the output parameters and plot a graph of the change in the
components and the total driving force within the oscillation period, as shown in Figure 3.
The magnitude of the total driving force (Fsum4) is calculated in the direction of the negative
values of the ordinate axis, downwards.
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asymmetry of the driving force kd = 4.0, (kas4 = kd4 = 3.89, (Fsum4)).

Equation (10) can be considered as a method for designing a vibration device with an
asymmetry coefficient of the driving force equal to four.

From the graph, Figure 3, it is evident that the magnitude of the total driving force
is asymmetrical, since the force acting in the direction of performing useful work exceeds
the force acting in the direction of performing idle stroke by the value of the asymmetry
coefficient, which is equal to kac = kd = −−27.13

6.98 = 3.89.
The design methodology for a vibration device with asymmetric oscillations according

to [49] for a given amplitude value of the total driving force is carried out in several steps,
or stages, for example, for a four-stage vibration device.

At the first stage, the amplitude value of the total driving force and the asymmetry
coefficient equal to kas = kd = 4.0. are determined.

At the second stage, the angular speed of rotation of the unbalanced shafts of the first
and subsequent stages are assigned: ω1; ω2 = 2ω1; ω3 = 3ω1; ω4 = 4ω1.

At the third stage, the parameters of the static moment, M1st, of the unbalance of the
first stage are selected based on its mass, m1, and eccentricity, m1: M1st = m1r1.

At the fourth stage, according to relation (10), the static moments of the unbalances of
the second, third, and fourth stages, M2, M3, M4, are determined.

At the fifth stage, according to the obtained values of the static moments, the masses
of the unbalances of all stages, mi, and their eccentricities, ri, are determined.

At the sixth stage, the selected parameters are checked for the value of the total driving
force, Fsum4.

Attempts to create vibration devices with an asymmetry coefficient greater than
kac ≥ 4.0 are not presented in [49].

The design methodology for a vibration device with asymmetric oscillations, which
follows from [49], is artificially cumbersome for engineering calculations, since the static
moments of the imbalances are intermediate parameters between the initial conditions and
the value of the total driving force.

From the analysis of the methods of calculation and design of vibration devices with
asymmetric oscillations, it is evident that in the considered sources of information related
to mechanical oscillations, the term ‘asymmetric’ oscillations or vibration devices with
‘asymmetric’ oscillations are not actually used. The works considered above, which by the
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nature of the problems can be attributed to works connected with asymmetric oscillations
of vibration machines, do not contain a unified methodology either from the point of
view of the formulation of terminology or from the point of view of the formulation of
the initial statement of problems and the sequence of their solution. Thus, there is a
need to distinguish asymmetric oscillations in mechanical systems into an independent
class and the need to obtain a general equation of the total driving force with a given
asymmetry coefficient.

An important stage in the development of a methodology for designing vibration
devices with asymmetric oscillations is associated with work, devoted to obtaining the
parameters of real vibration devices using coefficients, obtained by expanding functions
into a Fourier series [31].

The main theoretical basis is the works [31,40], in which the question of the formation
of asymmetric oscillations has been determined using the coefficients of the Fourier series
obtained by decomposing piecewise smooth or continuous monotone functions. It was
assumed that, by successively accepting the coefficients of the terms under the summation
sign as multipliers to the corresponding component forces, it is possible to establish a
rational relationship of such components of elementary forces, which in sum makes it
possible to obtain an asymmetric value of the total driving force.

The conducted studies on the expansion of piecewise smooth and monotone functions
in a Fourier series in a wide range of possible variants established that the method of using
the coefficients of the Fourier series has certain limitations [49,50]. These limitations are
in the fact that the method allows obtaining the total driving force with the value of the
asymmetry coefficient within the limits kac = kd = 1 . . . 4. The numerical analysis of the use
of coefficients, terms of the Fourier series, is considered using the example of a function:

y = cos2m(x/2), (11)

and the corresponding series:

y(x) =
(2m)!

22m(m!)2 +
1

22m−1

m−1

∑
k=0

(2m)!
k!·(2m − k)!

cos(m − k)x (12)

Let us consider the problem of changing the value of the asymmetry coefficient of
the total oscillation obtained by using, respectively, 1. . .6 terms of the Fourier series in the
expansion of the function y = cos12 x

2 .
There is the following series:

cos12 x
2
= 0.226 + 0.387·cosx + 0.242·cos2x + 0.107·cos3x + 0.032·cos4x + 0.006·cos5x + 0.0005·cos6x (13)

where the variable x = ωt; ω is the angular velocity of the first unbalanced shaft;
ω = 52.3 rad/s is taken; the oscillation frequency is f = 8.33 Hz; and the oscillation period
is T = 0.12 s. As a result, a sequence of the value of the asymmetry coefficient of the total
driving force (kasn) is obtained, depending on the number (n) of terms of the series with the
corresponding coefficients used, as shown in Figure 4.

It is obvious that for the first two or three components of the vibration device stages,
the value of the asymmetry coefficient increases, practically, by one. At four stages, the
growth of the asymmetry coefficient decreases, and at five and six stages, the growth of the
asymmetry coefficient stops. This happens because the subsequent numerical values of the
Fourier series coefficients decrease, tend to zero and become insignificant.
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The main parameter determining the effect of asymmetric mechanical vibrations of a
vibration device with asymmetric vibrations is the value of the total driving force obtained
by adding two or more symmetric driving forces directed along a common straight line.
Such components of driving forces are generated by separate vibrators called vibration
stages. Thus, the value of the total asymmetric driving force, Fsum, is the sum of several
elementary symmetric forces, Fi, directed along a common straight line, i.e.,:

Fsum = ∑n
i=1 Fi = F1 + F2 + . . . + Fn (14)

where i is the serial number of the driving force, the number of the stage of the vibration
device with asymmetric oscillations; i = 1, 2, . . . , n; n is the number of received compo-
nents, the number of stages of the vibration device with asymmetric oscillations; ni is the
i-th stage of the vibration device with asymmetric oscillations, consisting of n stages; and Fi

are forces that make up the total driving force.
A vibration device with asymmetric oscillations can be formed on the basis of a

sequential connection into a single mechanism of paired vibrators with circular oscillations,
each pair of which forms a stage of the vibration device, or on the basis of planetary
vibrators with directional oscillations.

The following problems are of scientific interest:

- The procedure for determining the rational number of stages, and therefore the rational
coefficient of asymmetry of the driving force of a vibration device with asymmetric
oscillations, for the use of asymmetric oscillations in specific conditions [37];

- What ratio of driving forces of each stage in the value of the total driving force is rational;
- How to achieve the greatest coefficient of asymmetry of the total driving force and,

therefore, the coefficient of dynamism of a mechanism with asymmetric oscillations;

A vibration mechanism is considered, consisting of n pairs of vibrators with circular
oscillations, each equivalent pair, the stage of which generates a directed driving force
corresponding to its parameters, as shown in Figure 5.

In Figure 5, φk is the angle of deviation of the k-th eccentric weight from the horizontal.
The following designations are used for the k-th vibrator where mk is the mass of the
eccentric weight, Rk is the radius of the guide circle, φk0 is the initial angle of deviation
of the eccentric weight (initial phase), and ωk is the angular velocity of rotation of the
eccentric weight.
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Let us introduce the inertial forces Ri
k, applied to the eccentric weight, and the compo-

nents of the support reaction Xr and Yr. The total horizontal component of the support
reaction of the mechanism, due to the mirror arrangement of the vibrators, is equal to zero.
Neglecting the weight of the guide circles and eccentric weight due to their smallness in
comparison with the inertial forces (at sufficiently large values of the angular velocities ωk),
based on d’Alembert’s principle [22,37], the following equilibrium equation in projection
onto the Oy axis is obtained:

Yr + 2∑n
k=1 Ri

ksinφk = 0, (15)

where
Ri

k = mkRkω2
k , φk = ωkt + φk0. (16)

Thus, the value of the vertical component of the support reaction can be calculated
using the following equation:

Yr = −2
n

∑
k=1

Ri
ksinφk, (17)

or

Yr =
n

∑
k=1

(
−2mkRkω2

k

)
sin(ωkt + φk0), (18)

Considering further only pairs of vibrators, the angular velocities of rotation of the
eccentric weight that are related by the relation:

ωk = kω1 (19)
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where ω1 is the angular velocity of rotation of the pair of the first stage of eccentric weight,
Equation (8) is written as shown below:

Yr =
n

∑
k=1

aksin(kφ + φk0), ωk = kω1 (20)

where φ = ω1t, and parameters ak can take any values (due to the choice of the value of
the radii of the guide circles Rk and the mass of the eccentric weight mk).

The minimum absolute value of Yr, as a function of the angle φ, denoted by Yri, is the
dynamic force acting in the direction of idle stroke. The maximum absolute value of Yr,
denoted by Yra, is the immersion force acting in the direction of performing useful work.

The ratio of these forces
(
− Yri

−Yra

)
is less than one.

kd = − Yri
−Yra

≤ 1.0 (21)

If the inverse ratio
(
−−Yra

Yri

)
is used, then its value is greater than one.

kd = −−Yra

Yri
≥ 1.0 (22)

It is called the coefficient of dynamism of the vibration system or the coefficient of
asymmetry (kas = kd) of the driving force of the vibration mechanism (the minus sign in
Equations (21) and (22) is introduced due to the fact that one of these quantities is negative,
opposite in the direction of action to the other).

The task is to achieve the maximum value of the dynamic coefficient of the vibration
mechanism kd at a given immersion force Yra, which is further denoted as A, by combining
several pairs of planetary vibrators and varying their parameters.

As follows from Equation (20), the minimum value of the function is achieved in the
case when for all k:

sin(kφ + φk0) = −1 (23)

The maximum immersion force A in this case is determined with the equation:

A =
n

∑
k=1

ak (24)

Condition (23) is satisfied if:

kφ + φk0 =
3π

2
+ 2πm (25)

where m can take any values.
From Equation (25) for the value of the initial phase φk0, the following equation is

obtained:
φk0 =

π

2
(k − 1) (26)

As an illustration, Figure 6 shows support reactions of each of the seven pairs of
vibrators with coefficients ak equal to one and initial phases φk0 equal to zero. The maximum
immersion force of the first pair of vibrators is achieved at φ = 270◦. At this angle, the
immersion forces of the second and fourth pairs of vibrators are equal to zero, and the third
pair of vibrators at this angle has the maximum value of the lifting force.
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phases φk0 = 0.

The sum of support reactions of all seven pairs of vibrators is shown in Figure 7. The
amplitude value of the immersion force and the lifting force are equal to each other and are
Yra = Yri = 5.3, and the dynamic coefficient is 1, kd = 1.0.
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initial phases φk0 = 0.

Figure 8 shows the support reactions of each of the five pairs of vibrators with coeffi-
cients ak equal to one and initial phases φk0 calculated using Equation (26). The maximum
values of the immersion forces of all pairs of vibrators are achieved at φ = 270◦.

The sum of support reactions of all five pairs of vibrators is shown in Figure 9. The
immersion force in this case is equal to 7.002, the lifting force is equal to 2.119, and the
dynamic coefficient is equal to kd = 3.3.

It is evident from the graph in Figure 9 that in the direction of useful work, the vibration
device with asymmetric oscillations generates a total driving force of Fuw = |6.99| kN. In the
direction of idle stroke, a total value is equal to Fis = 1.93 kN. The asymmetry coefficient of
the total driving force is kas =

6.99
1.93 = 3.62. On the graph of the obtained function Yr = f (φ),

there are two values that practically reduce the asymmetry coefficient from 7.0 to 3.62.
In the works [40], a problem is formulated related to the useful use of a directing or

polyharmonic pulse. It is assumed that the mathematical model of a polyharmonic pulse is
a trigonometric polynomial:

fn(t, λ) = ∑n
k=0 λkcos(kt), t ∈ [0, π],

λk = (λ0, λ1, . . . , λn)
(27)



Vibration 2025, 8, 3 14 of 25

and related functionality:

Kn(λ) =
mas fn(t, λ)t
min f (t, λ)t

(28)

called the ’asymmetry coefficient’.
In this case, the problem of maximizing the functional Kn(λ) over variations of λ is set:

Kn(λ) → supλ, (29)

under the following conditions:∫ π

0
fn(t, λ)dt = 0, ∑n

i=0 λi = c > 0 (30)Vibration 2025, 8, x FOR PEER REVIEW 14 of 26 
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As a result, in [40], the following is given:

Theorem 1. A polynomial [40] is optimal if, up to a constant factor, it has the form of a Fejér sum

fn(t) =
n

∑
k=1

(n + 1 − k)cos(kt) (31)
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In this case, there is equality:

maxKn(λ)λ = n (32)

In addition, in [40], theorems on the properties of the optimal Maxwell–Fejer poly-
nomials defining the optimal (in the sense of the asymmetry coefficient) impulse—the
Maxwell–Fejer impulse have been formulated and proven. The graph of the Maxwell–Fejer
impulse, which is important for engineering and technical problems, is shown in Figure 10.
It is noted that a characteristic property of the Maxwell–Fejer impulse is the location of the
minima at the same level.
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It is obvious that the behavior of the graphs in Figures 9 and 10, reflecting the general
trends of the calculation and design methods of vibration devices with asymmetric oscilla-
tions and the optimal value of the functional (maxKn(λ)λ = maxkd(λ)λ = n), do not ensure
complete coincidence of the results.

The research must return to the previously calculated vertical support reaction Yr (20)
Yr = ∑n

k=1 aksin( kφ + φk0), where φ = ω1t. Thus, only pairs of vibrators are considered,
angular velocities of rotation of the guide circles, which are related by the relation (26),
φk0 = π

2 (k − 1). The conditions when the minimum value of Equation (30) is achieved, the
maximum immersion force, A, which is determined with Equation (24), are considered.

For two pairs of vibrators in [31,37,40], it is theoretically proven that the maximum
dynamic coefficient of the vibration mechanism kd = 2 for a given immersion force A is
achieved with coefficients: {

a1 = 2m1R1ω2 = 2
3 A

a2 = 8m2R2ω2 = 1
3 A

(33)

For a vibration mechanism consisting of more than two pairs of planetary vibrators, the
determination of the optimal values of the parameters ak, at which the maximum dynamic
coefficient kd is achieved (for a given immersion force A), was carried out numerically. The
simplex search method (S2-method) proposed in [47,50] was used. This method has no
relation to the simplex method of linear programming, and the similarity of the names
is accidental.

The implementation of the optimum search algorithm consists of two types of calcula-
tions: the construction of a regular simplex for a given base point and scale factor and the
calculation of the coordinates of the reflected point.
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The calculation of the coordinates of the vertices of the simplices for a given initial
(base) point a(0) is performed using the following equations [51]:

a(i) =

a(0)j + δ1, i f j ̸= i,

a(0)j + δ2, i f j = i,
(34)

where the increments δ1 and δ2 depend on the dimension N of the problem and are
determined with the equations:

δ1 =

(√
N + 1 + N − 1

N
√

2

)
α (35)

δ2 =

(√
N + 1 − 1

N
√

2

)
α (36)

where α is the scale factor (reduction coefficient).
Calculations of the second type are related to the reflection of a point relative to the

center of gravity of the simplex. If a(j) is the point to be reflected, then the center of gravity
of the remaining points of the simplex ac is calculated using the following equation:

a(j)
n = 2ac − a(j) (37)

For calculations of a three-pair unbalanced vibrator, the immersion force A = 6 has
been set, and the point with coordinates a1 = 1.0, a2 = 1.0 has been chosen as the base point.
The coefficient a3, in accordance with (24), has been calculated using the following equation:

a3 = A − a1 − a2 (38)

Since in the problem under consideration N = 2 (two variable parameters are a1

and a2), and the scale factor α has been chosen equal to one, the increments in this case
are δ1 = 0.9659, δ2 = 0.2588. As the objective function, since the method used allows
calculating the minimum of the function, the function 1/kd has been used.

The calculation of the objective function values has been performed as follows. For
the given values of the coefficients a1 and a2 and the coefficient a3 calculated using
Equation (38), the values of the function Yr(φ) have been calculated when the angle φ

changed from 0◦ to 360◦ with a step of 1◦, the minimum Yri and maximum Yra values of
the function have been determined, and the dynamic coefficient (1) has been calculated

kd = − Yri
Yra

and then the value 1/kd has been used.
Figure 11 graphically presents the calculated simplices in the process of determining

the optimal values of the parameters a1 and a2. Table 2 shows the coordinates of the
vertices of the simplices. Figure 12 shows the values of the parameters at the vertices of the
simplices and the corresponding values of the dynamic coefficient kd.
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Table 2. Coordinates of the vertices of the simplices.

Vertices 1 2 3 4 5 6 7 8 9 10

a1 1.00 1.26 1.97 2.22 2.93 3.19 2.35 2.71 2.58 3.06
a2 1.00 1.97 1.26 2.22 1.52 2.48 2.71 2.35 1.87 2.00

< a3 > 4.00 2.78 2.78 1.55 1.55 0.33 0.94 0.94 1.55 0.94
kd 1.47 1.72 1.72 2.42 2.02 2.18 2.21 2.55 2.66 2.99
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On the simplex ‘4’, there was a coincidence in the minimum point, since the value of
the objective function 1/kd at the following iteration steps with a change of simplex vertices
(they are not shown in the figures and in the table) turned out to be greater than the values
at the vertices of the simplex of the previous iteration. The value of the reduction coefficient
α was reduced to 0.5. Vertex ‘4’ was taken as the base point, as having the minimum value
of the objective function in the simplex. In Figure 11, it is marked with the symbol (*).

At the vertex ‘10’ of the simplex ‘7’, also marked with the symbol (*), a1 = 3.06,
a2 = 2.00 (marked with a dot in Figure 11), the minimum of the objective function 1/kd has
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been reached. The construction of further simplices, even with a decrease in the value of
the reduction coefficient a, did not lead to a decrease in the objective function.

The results of the calculations led to the following conclusions: for a given immersion
force A, the maximum value of the dynamic coefficient 1/kd is achieved with the following
values of the coefficients ak: 

a1 = 1
2 A = 3

6 A

a2 = 1
3 A = 2

6 A

a3 = 1
6 A

(39)

Figure 12 and (39) show the results of calculating the support reaction Yr(φ) and the
contribution of each of the three stages of unbalanced vibration blocks with directional
vibrations for the above values of the input parameters.

Thus, for a given total immersion force A, the maximum possible dynamic coeffi-
cient for a two-stage unbalanced vibration mechanism with asymmetric oscillations is
equal to two and is achieved with coefficients (33). For a three-stage unbalanced vibration
mechanism with asymmetric oscillations, it is equal to three and is achieved with coeffi-
cients (39). For a four-stage unbalanced vibration mechanism with asymmetric oscillations,
the dynamic coefficient can be equal to four and is achieved with coefficients (40)

a1 = 4
10 A,

a2 = 3
10 A

a3 = 2
10 A

a4 = 1
10 A

(40)

Based on the results obtained and presented in this article, for a vibration mechanism
consisting of n vibration stages, for example, n planetary vibrators with directional oscil-
lations or n pairs of vibrators with circular oscillations, each pair generating directional
driving forces, it follows that in order to obtain a total asymmetric oscillation, the following
conditions must be met:

1. The maximum value of the total driving force acting in the direction of performing
useful work is achieved when (26):

φk0 =
π

2
(k − 1)

in this case, the magnitude of the total driving force acting in the direction of performing
useful work, for example, immersion, is determined with Equation (24):

A =
n

∑
k=1

ak

2. The maximum value of the asymmetry coefficient of the total driving force, or the
dynamic coefficient of the oscillatory system (kas, kd), is equal to n and is achieved at the
following values of the coefficients of a number of vibration stages

ai =
n + 1 − i
∑n

k=1 k
·A (41)

where kd is the dynamic coefficient of the oscillatory system (the asymmetry coefficient
of the total driving force, kas); k is the serial number of the vibration stage generating the
directed oscillations (the directed driving force); n is the number of vibration stages in the
vibration device with asymmetric oscillations; i is the serial number of the term of the total
driving force included in the total driving force of the vibration device with asymmetric
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oscillations; A is the specified value of the total driving force acting in the direction of
performing useful work; and ai is the part of the value of the total driving force that falls
on the i-th stage of the vibration device. When considering Equation (24), the sum of the
values of ai is always: ∑n

i=1 ai = 1.0.
Using Equation (41), ak = (a1, a2, . . . , an), the general equation of oscillations of a

vibration device asymmetric with a total driving force can be written in the form:

Fsum =
n

∑
i=1

ai·Fi = a1·Fsum + a2·Fsum + · · ·+ an·Fsum (42)

where ai are the coefficients of the terms of the series of the total driving force of a vibration
device with asymmetric oscillations when using the value A = 1.0 in Equation (42), and
then Fsum = 1.0.

4. Discussion
The behavior of the total driving force Fsum = A for an arbitrary value of its magnitude

and a given asymmetry coefficient, using the equations obtained (24,26,41,42) as an example,
have been considered. For comparison, the number of stages of the vibration device to
be seven, n = 7.0, has been taken. The rotation frequency of the eccentric weight shafts,
rpm, is, respectively, 500, 1000, 1500, 2000, 2500, 3000, and 3500. The total value of the
driving force Fsum = 10 kN. The given asymmetry coefficient of the driving force is equal to
kas = kd = 7.0. The graph of the change in Fsum = f (φ) has the form shown in Figure 13.

As the calculation result and the behavior of the graph in Figure 13d show, the obtained
method for designing vibration devices with asymmetric oscillations fully corresponds to
the optimality condition of the Maxwell–Feuillere polynomial, which assigns the optimal
(in the sense of the asymmetry coefficient) impulse to the functional (28).

When using Equations (24), (26), (41) and (42) in designing a vibration device with
asymmetric oscillations and a given coefficient of asymmetry of the total driving force,
there is no need to calculate and plot graphs in Figure 13a–c, since the calculation provides
for obtaining graph Figure 13d directly.
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of vibrators with the initial phases 𝜑 = 0; (c) is the support reactions of each of the seven pairs of 
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Figure 13. Calculation graphs of the magnitude of the driving forces of a vibration device with
asymmetric oscillations with the total driving force Fsum = 10 kN and the specified asymmetry
coefficient kas = 7.0. (a) is support reactions of each of the seven pairs of vibrators with the value
Fsum = 1 kN and the initial phases φk0 = 0; (b) is the sum of the support reactions of all seven pairs
of vibrators with the initial phases φk0 = 0; (c) is the support reactions of each of the seven pairs of
vibrators with the initial phases φk0 = π

2 (k − 1), (d) is the sum of the support reactions of all seven
pairs of vibrators with the initial phases φk0 = π

2 (k − 1).

5. Conclusions
The design methodology, in this case, comes down to the following actions.

1. Determination of the coefficients ai for the terms of a series of seven members of the
total driving force of a vibration device with asymmetric oscillations when used in
Equation (24): A = 1.0;

2. Determination of the terms of forces of a series of seven members from the expression:
ai·Fsum;

3. Checking the obtained value of the total driving force using Equation (42);
4. Assignment of the mass and eccentricity of the eccentric weight of each stage using

known engineering methods based on the limitations associated with the dimensions
of the specific area of application of the product.

miriω
2
i = ai·Fsum (43)

where mi is the total mass of the eccentric weight of the i-th stage of the vibration
device; ri is the eccentricity of the eccentric weight of the i-th stage of the vibration
device; and ωi is the angular velocity of the unbalanced shaft of the i-th stage, related
to the angular velocity of rotation of the unbalanced shaft of the first stage by a
multiple ratio.
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As a comparative example, a numerical example of the initial data is given: Fsum = 10 kN
is the total value of the driving force with asymmetric oscillations and an asymmetry
coefficient kas = 10.

1. Calculation (41) of coefficients ai for components of the total driving force Fsum = 1 kN
is performed;

2. Rotation frequencies of unbalanced shafts of ten stages of the vibration device with
asymmetric oscillations are assigned, ωi = n·ω1;

3. Calculation of the value of components (Fi) of the total driving force Fi = 10 kN
is calculated;

4. Based on design considerations and process kinetics features, masses (mi) and eccentricity
(ri) of imbalances of the corresponding stages of the vibration device are assigned;

5. A general table of parameters is compiled, as shown in Table 3;
6. Calculation and control graphs of changes in the driving force value within the

oscillation period are performed, as shown in Figure 14.

Table 3. The method of determining the parameters of a vibration device with asymmetric oscillations
with the value of the total driving force Fsum = 10 kN and the asymmetry coefficient kas =10.

Parameter Name Unit of
Measurement

Vibration Device Stage Sum
ai

1 2 3 4 5 6 7 8 9 10

Coefficient ai at Fsum= 1 kN - 0.18 0.16 0.146 0.127 0.11 0.091 0.073 0.055 0.036 0.018 1.0
Magnitude of the component

Fi at Fsum = 10 kN kN 1.82 1.64 1.46 1.27 1.09 0.91 0.73 0.55 0.36 0.18 10

Angular velocity of imbalance
of the i-th stage s−1 52.36 104.72 157.08 209.44 261.8 314.16 366.52 418.88 471.24 523.6 -

Moment of imbalance, mi ·ri kg·m 3.14 4.19 3.14 2.09 2.62 3.14 3.67 2.09 1.41 1.05 -
Mass imbalance, mi kg 5.52 1.86 1.47 1.45 0.8 0.46 0.27 0.32 0.27 0.17 -

Eccentricity, ri m 0.06 0.04 0.02 0.01 0.01 0.01 .0.01 0.005 0.003 0.002 -
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Figure 14. Graph of change in total driving force Fsum = f (t).

Based on the calculation results, a graph of the total driving force Fsum = f (t) is
constructed within one oscillation period (T = 0.12 s).

Thus, the magnitude of the driving force Fsum = 10 kN is obtained, acting in the
direction of performing useful work with the asymmetry coefficient kas = 10, which is
generated by ten stages of the vibration device with directed oscillations with matched
oscillation frequencies. The magnitude of the total driving force in the direction of the idle
stroke is 1 kN.

In accordance with the stated objective of the research, a methodology and technique
for calculating and designing the parameters of vibration devices with asymmetric oscilla-
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tions for a given value of the total driving force and a given asymmetry coefficient have
been developed.

A general equation for the total driving force of a vibration device with asymmet-
ric oscillations, ensuring any asymmetry coefficient specified from the point of view of
technological feasibility, is obtained and proposed.

The proposed method of calculating and designing vibration devices with asymmetric
oscillations using a generalized equation of the total driving force allows for the conversion
of existing models of vibration machines from uniform oscillations to asymmetric ones,
thereby increasing their operating efficiency with improved specific parameters.

The authors have developed and created a test bench, shown in Figure 15, consisting
of 6 pairs of steps. The bench allows for the replacement of pairs of imbalances, changing
and selecting the corresponding moments of inertia, masses of imbalances, eccentricity, and
angular velocities. It allows for the obtaining of an asymmetric driving force with a given
asymmetry coefficient according to the developed methodology. For the presented test
bench, consisting of 6 steps, the asymmetry coefficient in the range of 2.0. . .6.0 is realized.
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asymmetric oscillations: 1 is a base, 2 is a body, 3 is a guide rod, 4 is the sliders, 5 is the imbalances, 
6 is a driving force sensor. (b) A driving force magnitude recording sensor. 
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