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Abstract: Several protocols have been developed with the aim of characterizing glial and immune cells
from the central and peripheral nervous systems. However, a small number of these protocols have
demonstrated the ability to yield satisfactory results following conventional isolation. Considering
this necessity and the difficulties encountered in enzymatic and bead isolation, our work proposes a
method for the isolation of glial and immune cells from the spinal cord utilizing a Percoll gradient. For
this purpose, C57BL/6J spinal cords were dissected, and the lumbar intumescence was dissociated
and subjected to a Percoll gradient centrifugation (70%, 50%, 37%, and 10%). Each layer was
then separated and labeled for astrocytes (anti-GFAP, TNF-α, IFN-γ, IL-10, IL-4), microglia (anti-
CD45, CD11b, CD206, CD68, TNF-α, IFN-γ), and lymphocytes (anti-CD3, CD4, IFN-γ, IL-4). The
gate detections were mathematically performed by computational analysis utilizing the K-means
clustering algorithm. The results demonstrated that astrocytes were concentrated at the Percoll
10/37 interface, microglia at the Percoll 37/50 layer, and lymphocytes at the Percoll 50/70 layer. Our
findings indicate that astrocytes in healthy animals are putative of the A1 profile, while microglia and
lymphocytes are more frequently labeled with M1 and Th1 markers, suggesting a propensity towards
inflammatory responses. The computational method enabled the semi-autonomous gate detection of
flow cytometry data, which might facilitate and expedite the processing of large amounts of data.
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1. Introduction

The homeostasis of the nervous system depends on the interplay between glial cells
and neurons [1–3]. Astrocytes, which constitute up to 40% of all cells in the CNS, play
important roles in synaptic regulation and plasticity, which are fundamental for the stability
of the nervous system microenvironment. In addition, they maintain the homeostasis of
extracellular fluids, ions, and transmitters [4], provide glucose for neurons [5], modulate
blood flow [6], contribute to synaptic plasticity [7], and thus, influence neuronal circuit
function and animal behavior [8]. Several variants have been described, as well as subtypes
found only in humans [9]. Different areas of the brain and spinal cord have specialized
astrocytes that develop specific functions. In the spinal cord, for example, fibrous astrocytes
are found in the white matter, protoplasmic astrocytes populate the gray matter, and
perivascular astrocytes are fundamental to the establishment of the blood–brain barrier [2].
There is a polarization gradient in the profile of these glial cells, and concerns have been
raised about the oversimplification of binary classifications [10]. However, in the context
of a lesion or disease, astrocytes can develop neurotoxic or neuroprotective roles and
are, therefore, classified as A1 when pro-inflammatory and A2 when anti-inflammatory.
A1 astrocytes secrete IL-1α, TNF, and C1q, thus contributing to the exacerbation of an
inflammatory process that can lead to tissue remodeling but also to neuronal death. In
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contrast, A2 astrocytes are protective, secreting neurotrophic factors and anti-inflammatory
cytokines [11,12]. Depending on the inflammatory process that triggers A1 astrocyte
activation, the NFkB pathway may induce the secretion of neurotoxic molecules, leading to
neuronal damage and apoptosis. In contrast, A2 polarization can be controlled by the Stat3
pathway, allowing neuronal survival and tissue repair [11,13–15].

In this context, microglia can also polarize into pro- and anti-inflammatory profiles,
namely M1 and M2. These two phenotypes are known as the classical (M1) and alternative
phenotype (M2), where M1 activation is induced by IFN-gamma and LPS, producing
classical cytokines such as TNF-alpha, IL-6, IL-1b, IL-12, and CCL2. In addition, M1
microglia express NADPH, MHC-II, key integrins such as CD11b and CD11c, and cos-
timulatory molecules such as CD36, CD45, and CD47. Alternative activation upregulates
anti-inflammatory cytokines such as IL-4 and IL-13 and produces IL-10 and TGF-β along
with the growth factors IGF-1, CSF-1, NGF, BDNF, and GDNF. In addition, M2 macrophages
express CD206, FIZZ1, Chil3, and Arg1 [16–20].

Microglial activation occurs after infection, disease, or trauma and leads to mor-
phological and physiological changes, including increased motility, phagocytosis, and
cytokine secretion. Furthermore, the mixed profile of M1/M2 and intermediate states has
been found in different cases [21–24]. On the one hand, M1 microglia represents a pro-
inflammatory profile in response to TNF-α and IFN-γ, which has a role in phagocytosis, its
response to pathogens, and ROS release [25]. On the other hand, M2 microglia have an anti-
inflammatory profile that acts to downregulate inflammation and has a neuroprotective
profile in the CNS [25,26].

Glial and immune responses are hallmarks after CNS and PNS lesions or diseases,
including spinal cord injury (SCI), multiple sclerosis (MS), and amyotrophic lateral sclerosis
(ALS). Recent studies in patients have shown that the acute phase after SCI is predominantly
pro-inflammatory, containing IBA-1- and CD68+-expressing cells corresponding to M1
microglia and macrophages at the lesion site [27,28]. Astrocytes (GFAP+) polarized to
a pro-inflammatory state have also been observed in ALS patients following microglial
activation, contributing to neuronal death [29,30]. In MS patients, glial responses are critical
for disease progression once microglia exacerbate T-cell antigen presentation and contribute
to disease progression [31–33].

The reactive profile after SCI increases scarring at the site of injury and, in some cases,
inhibits plasticity and regeneration. Activated A1 astrocytes induce apoptosis, destabilize
the synapses, and exhibit reduced phagocytic properties. They also prevent oligodendrocyte
differentiation, even leading to the apoptosis of such myelinating cells, which may contribute
to further axonal degeneration [11]. A2 astrocytes show the opposite role by increasing the
availability of neurotrophic factors, resulting in neuroprotection [11,13].

Importantly, the astroglial reaction is closely influenced by prior microglial activa-
tion and its response to damage. Thus, as fundamentally the first responders to injury,
microglial cells quickly perceive alterations in the CNS milieu [34]. The phagocytic activity
of such cells correlates with the strong upregulation of lysosome-associated glycoprotein
CD68, which can be used as a marker of activation. Upon pro-inflammatory polarization
(M1 profile), they contribute to the build, mostly by astrocytes, of a physical barrier around
the lesion site, thus hampering axonal regrowth and contributing to the permanent loss
of function and perpetuation of the inflammatory process [35–39]. The M2 profile, on the
contrary, contributes to the resolution of the lesion and inflammatory response. Thus, the
phenotyping of microglial cells and their polarization is an important tool for prospect-
ing new treatments following CNS injury. Following microglial activation, the release of
damage-associated molecular patterns (DAMPs) further recruits immune cells, such as
neutrophils, monocytes, and other adaptive immune cells, to the site of injury [40]. Spe-
cially, macrophages have an important role in the resolution of the inflammation process,
alongside with the phagocytic function, as they produce growth factors, cytokines, and
chemokines [41,42]. Lymphocytes are also at play after injury, as they regulate macrophage
function [43,44].
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The identification and characterization of glial and immune cell polarization in situ
is a challenging endeavor due to the need to assess multiple markers. In addition, high-
throughput evaluation in tissue sections is not possible due to the limited volume of tissue
and cells that can be evaluated. Furthermore, the evaluation of the interaction of microglia
with astrocytes is crucial for the best understanding of the inflammatory process, but for
this to occur simultaneously, multiple evaluations are required.

High-throughput methods that provide the refined profiling of glial and lymphocyte
polarization could help to identify new therapeutic agents, such as neuroprotective, anti-
inflammatory, and antioxidant drugs. Reactive glial cells were found after the SCI, crush,
and avulsion of spinal nerves, which is a frequent event after brachial and lumbosacral
plexus trauma caused by high-energy accidents [26,45]. Such lesions lead to permanent
changes in motor, sensory, and autonomic functions of the spinal cord [46]. They also result
in motoneuron degeneration and astroglial and microglial persistent activation, leading to
chronic pain [26,45,47,48].

Herein, we propose a new approach based on flow cytometry to thoroughly evaluate
the polarization of astrocytes, microglial cells, and lymphocytes in health and disease.
The results demonstrate a natural predisposition of such cell types to polarize towards a
pro-inflammatory profile, which, in turn, may be useful for evaluating new approaches to
treat injury and neurodegenerative diseases. In addition, to facilitate the analysis of large
datasets, we propose a computational method to semi-automatically find appropriate gates
based on the machine learning algorithm K-means [49,50]. The goal of this algorithm is
to partition the data into k clusters of equal variances, where each observation belongs
to the cluster with the closest mean. The proposed new mathematical method shows
comparable accuracy (86% of events) to the manual conventional software gating process. In
addition, it offers greater scalability and computational efficiency due to its semi-automatic
nature [49,50].

2. Materials and Methods

Animals

Eight-to-twelve-week-old female C57BL/6J and CX3CR1-EGFP mice were used for
the flow cytometry analysis (n = 3 each strain). All experiments followed the standards
for ethics in animal experimentation preconized by the National Council for Animal
Experimentation Control (CONCEA—Brazil) and were approved by the Institutional
Ethics Committee on the Use of Animals (CEUA/IB/UNICAMP, protocol n◦5327-1/2019).
Animals were maintained at the animal facility of the Laboratory of Nerve Regeneration—
LRN, Institute of Biology, University of Campinas, under 12 h light–dark cycles, with water
and food ad libitum.

Spinal cords from CXCR-EGFP animals [51] were also used in part of the experiments
to confirm the efficiency of the cell separation method, which was analyzed by immunoflu-
orescence microscopy (Leica DMB5500, Leica, Wetzlar, Germany). For flow cytometry and
immunofluorescence analysis, we considered n = 3 for each analysis as a reproducible
standard. In this case, a control group was not necessary since we utilized healthy animals
in our method.

Flow cytometry

Animals were euthanized with xylazine (König, Argentina, 15 mg/kg) and ketamine
(Fort Dodge, IA, USA, 300 mg/kg) according to humane endpoints to avoid pain and
suffering. Then, they were perfused with phosphate-buffered saline (PBS), and their
spinal cords were dissected out under a surgical microscope (DFV Vasconcelos, São Paulo,
Brazil); the lumbar intumescence was obtained for analysis. The tissue was mechanically
dissociated and passed through stainless-steel meshes of 140 µm and 70 µm. The cell
suspension was centrifuged at 400× g for 5 min at 4 ◦C, followed by resuspension in 70%
Percoll solution (Sigma, Livonia, MI, USA). Also, 50%, 37%, and 10% Percoll solutions were
carefully added in layers. Another centrifugation at 400× g for 30 min at 4 ◦C without
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brake was carried out. The myelin was removed, and every layer interface was collected in
separate tubes, i.e., 10/37, 37/50, and 50/70.

Ex vivo stimulation with PMA (Phorbol 12-myristate 13-acetate), brefeldin A, and
ionomycin (Sigma, USA) was carried out in each fraction for intracellular labeling. For
this, each tube with a different layer interface was centrifuged at 400× g for 10 min at 4 ◦C
for pellet obtention. Then, the pellet was resuspended in 1 mL of supplemented DMEM
(10% heat-inactivated fetal bovine serum) containing penicillin/streptomycin (1 mg/mL,
Vitrocell, Campinas, Brazil) in 24 well plates and 5 µL of PMA (50 ng/mL), 5 µL of brefeldin
A (1 ug/mL) and 5 µL of ionomycin (250 ng/mL) were added to the cell medium to block
cytokine secretion and allow intracellular labeling for 3 h at 37 ◦C (5% CO2). In sequence,
the cells were centrifuged at 400× g for 10 min at 4 ◦C for pellet obtention. The supernatants
were removed, and the pellet was resuspended in 200 µL of PBS-BSA-A (PBS—Bovine
Serum Albumin 0.1%—Sodium Azide 0.5%). According to the antibody panel (Table 1),
50 µL of each layer was added to the 96-well plate, which was divided into wells 1–3 for
the 10/37 layer interface, wells 4–6 for the 37/50 layer, and wells 7–8 for the 50/70 layer.

Table 1. Antibody panels used to analyze the cell phenotypes.

SAMPLE FITC PE PERCP PE-CY7 APC APC-CY7

1 - - - - - -
2 GFAP IL-10 IL-4
3 GFAP TNF-α IFN-γ
4 - - - - - -
5 CD45 IL-10 CD206 CD11b
6 CD45 TNF-α CD68 CD11b
7 - - - - - -
8 CD4 IFN-γ IL-4 CD3

Cells were incubated with the extracellular antibodies anti-CD45-FITC, anti-CD206-
PE-Cy7, anti-CD68-APC, anti-CD11 b-APC-Cy7, anti-CD4-FITC and anti-CD3-APC-Cy7
(Biolegend, San Diego, CA, USA) and labeled with 0.5 uL live/dead for 30 min at 4 ◦C
(Invitrogen, Life, Waltham, MA, USA) diluted in PBS-BSA-A. Each layer was labeled with
the respective antibodies for phenotype analysis, and a cell without labeling was performed
for each layer. Next, the cells were washed with 150 µL of PBS-BSA-A at 400× g for
10 min at 4 ◦C, followed by fixation for 20 min at 4 ◦C with 150 uL of a fixed buffer (kit
True-Nuclear Transcription Buffer Set; Biolegend, San Diego, CA, USA), following the
manufacturer’s instructions.

Cells were then washed with 150 µL of PBS-BSA-A to initiate the intracellular labeling,
in which the cells were permeabilized with 120 µL of a permeabilization buffer for 20 min
at 4 ◦C, followed by intracellular labeling with anti-GFAP-FITC, anti-IL-10-PE, anti-TNF-α-
PE-Cy5, anti-IL-4-APC, and anti-IFN-γ-PE-Cy7 (Biolegend, San Diego, CA, USA) diluted
in a permeabilization buffer. Then, the cells were incubated at 4 ◦C overnight.

Afterward, cells were washed twice with a permeabilization buffer with 400× g—
10 min—4 ◦C centrifugation and fixed with 200 µL of a fixed buffer (Biolegend, San Diego,
CA, USA) for 20 min at 4 ◦C. Cells were examined with the NovoCyte Flow Cytometer
(ACEA biosciences, San Diego, CA, USA) and the data were analyzed by the NovoExpress
software (version 1.6.2) considering a minimum of 10,000 events (Figure 1). Samples
without labeling were used to set the position of each quadrant to determine the positive
percentage of each marker. Also, a single-cell analysis was performed to eliminate the
doublets before the analysis of cell phenotype (Figure 2). All experiments were carried out
in triplicate.
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Figure 1. Protocol design. C57BL/6J animals were euthanized, and the spinal cord was extracted.
The lumbar intumescence was dissected for tissue dissociation using mechanical methods (1). The
resulting cell suspension was passed through stainless-steel meshes (140 and 70 µm) to remove
myelin debris. Subsequently, different concentrations of Percoll solution were added to the cell
suspension to separate glial and immune cells and centrifuge for 30 min—400× g—4 ◦C (without
a break) (2). Ex vivo stimulation was performed at previously separated layers at the interface
using PMA, ionomicin, and brefeldin A for 3 h at 37 ◦C—5% CO2 (3). Following stimulation, each
layer interface was resuspended in a Wash B buffer for flow cytometry. The cell suspension was
transferred from the cell culture to a 96-well plate, according to the specific antibody panel (4).
For cell labeling, a combination of extracellular and intracellular antibodies was added to the cell
suspension of each layer interface. Permeabilization and fixation were performed using the True-
Nuclear Transcription Buffer Set (Biolegend), following the manufacturer’s recommendations (5).
Cell acquisition was conducted using the NovoCyte flow cytometer (ACEA—Biosciences), ensuring
a minimum of 10,000 events per tube. A cell blank tube was used as a control (6).

Computational analysis—gate detection

Reliable data management is the groundwork of successful analysis, improving the
reproducibility of experimental findings. In this way, we used k-means, a machine learning
tool, to reduce the data dimension and semi-automatically detect the gate (see the compu-
tational schematic in Figure 3 after the elimination of doublets by NovoExpress software
(version 1.6.2).
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Figure 2. Determination of control gate: The time gate was set to start the analysis, following
removing doublets at the single-cell gating. To analyze the cell phenotype, we established a control
gate using unlabeled cells. Doublets were eliminated by segregating events based on FSC-A and
FSC-H parameters. A two-dimensional plot of FSC-A vs. FSC-H was employed to visualize the
doublet-free events, defining the “single cells” population. Subsequently, a dotplot combining
complexity and size (FSC-A vs. SCA-A) was generated to determine the cell population. Cell viability
was analyzed by negative cells from live/dead markers. To assess marker fluorescence, a quadrant
was placed immediately after the final events of the population, ensuring all subsequent events
exhibited positive marker signals. This strategy was applied at each layer interface.

The k-means clustering algorithm uses Voronoi diagrams, which are compounded
by Voronoi cells, to group similar data points (cytometry events). For each Voronoi cell,
the variance was computed, and the centroids were the mean of each geometric space
present inside the original dataset. Debris was removed in Python by the single ellipse gate
method implementation. A linear regression (Figures 3 and 4, blue lines) for five centroids
was required to define the shape and position of the ellipse, which was defined by the
following four parameters: width, height, angle, and coordinates of the center. Our method
set the width as the Euclidean distance between the first and third centroids and the height
as the Euclidean distance between the first and last centroid in the x and y coordinates.
A 5% factor was applied to both width and height to include events close to the edge of
the centroids. The angle of the ellipse was defined by the angular coefficient of the linear
regression of the centroids. The center of the ellipse was set as the midpoint of the line
segment formed by the linear regression function applied to the x-coordinate of the first
and last centroids.

The computational method was tested for three cytometry datasets to reinforce the
method’s applicability to semi-autonomous gates. Specifically, for the parameterization
step, only 5 clusters (Figure 4A, red dot points) were enough to fit a manual gate determined
by an expert in cytometry. We chose two more complex event distribution cytometry
datasets for the validation step. The mathematical method implemented for the two
validation datasets involved finding 10 (Figure 4B, red dot points) and 30 (Figure 4C,
red dot points) clusters, respectively. The specific number of clusters was distinctive as
a result of complex event distribution inside both datasets (Dataset 2–3). From these
numbers of clusters, five were selected to apply to the method. This included centroids
1, 3, 6, 7, and 8 and 1, 14, 17, 21, and 23 for datasets 2 and 3, respectively. This interaction
turned the mathematical method semi-automatic. We considered a valid result if the semi-
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autonomous gate comprised at least 86% of the events of a manual gate determined by a
specialist in cytometry.
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Figure 4. Parameterization and validation steps. Cytometry dataset 1 used for parameterization
(A). Cytometry datasets 2 and 3 were used to validate the mathematical method Panels (B,C). Red
dots indicate centroids; red ellipses are the gates; the blue lines represent the linear regression of the
centroids; and the clusters are the event groups with different colors.

3. Results
3.1. Isolation and Characterization of Glial and Immune Cells

The use of the Percoll gradient in different concentrations allows the isolation of glial
and immune cells from the spinal cord. The first Percoll concentration (10%) concentrates
myelin, avoiding the contamination of other layers. Following this, Percoll’s concentrations
were used to isolate each cell type based on their size and complexity.

Thus, the 10/37 Percoll layer was enriched with astrocytes, the 37/50 Percoll layer
presented a greater concentration of microglial cells, and the 50/70 Percoll layer had
isolated lymphocytes.
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The analysis was initiated by setting the gates in time vs. SSC-A to isolate the cells
without air or bumbles that could alter the flow analysis, following single cells to exclude
the doublets. Next, we gated FSC-A (size) vs. SSC-A (granularity, Figure 5A) to determine
the population, following the selection of just the live cells from live/dead markers. With a
rather simple antibody panel, it was possible for phenotype A1 and A2 astrocyte profiles.
Astrocytes were considered A1 by presenting as the concomitant expression of GFAP+TNF-
α+IFN-γ+ markers, while A2 was positive for GFAP+IL-10+IL-4+, as demonstrated in
Figure 5. Cells isolated in the Percoll 10/37 layer showed more than 70% viability, as seen
by the live/dead analysis (Figure 5A) [11,52].

Neuroglia 2024, 6, FOR PEER REVIEW  8 
 

 

The use of the Percoll gradient in different concentrations allows the isolation of glial 
and immune cells from the spinal cord. The first Percoll concentration (10%) concentrates 
myelin, avoiding the contamination of other layers. Following this, Percoll’s concentra-
tions were used to isolate each cell type based on their size and complexity. 

Thus, the 10/37 Percoll layer was enriched with astrocytes, the 37/50 Percoll layer pre-
sented a greater concentration of microglial cells, and the 50/70 Percoll layer had isolated 
lymphocytes. 

The analysis was initiated by setting the gates in time vs. SSC-A to isolate the cells 
without air or bumbles that could alter the flow analysis, following single cells to exclude 
the doublets. Next, we gated FSC-A (size) vs. SSC-A (granularity, Figure 5A) to determine 
the population, following the selection of just the live cells from live/dead markers. With 
a rather simple antibody panel, it was possible for phenotype A1 and A2 astrocyte profiles. 
Astrocytes were considered A1 by presenting as the concomitant expression of 
GFAP+TNF-α+IFN-γ+ markers, while A2 was positive for GFAP+IL-10+IL-4+, as demon-
strated in Figure 5. Cells isolated in the Percoll 10/37 layer showed more than 70% viability, 
as seen by the live/dead analysis (Figure 5A) [11,52]. 

 
Figure 5. Astrocyte isolation in a triplicate experiment to show the reproducibility of the method. 
First, we removed the readings of cells mixed with air bubbles for SSC-A vs. time, following dou-
blets removal by single cell analysis. Cell viability was set as live/dead vs. SSC-A so that a negative 
marker for cell death was used to further analyze the cell phenotype. Cells were separated with FSC-
A vs. SCA-A to delimit the population to be further analyzed as A1, and A2 astrocytes. A1 astrocytes 
were phenotyped as GFAP+TNF-α+ or GFAP+IFN-γ+ and, A2 astrocytes were phenotyped by pre-
senting GFAP+IL-10+ or GFAP+IL-4+ (A). The percentage of astrocytes in different subsets is de-
picted (B). One-way ANOVA, Bonferroni post-test, p < 0.005 (**), p < 0.0001 (****). 

An interesting finding is that at basal levels, astrocytes have a pro-inflammatory pre-
set, especially by secreting IFN-γ, which is found in 70% of GFAP-positive cells (Figure 
5A,B). In contrast, the A2 profile presents a low percentage of cells at basal levels, at 
around 10% (Figure 5A,B) (Table S2—Supplementary Section). A viability test was per-
formed using a cell death marker (live/dead kit) so that in the 10/37 interface, more than 
70% of cells were viable, demonstrating the effectiveness of the separation technique (Fig-
ure 5B) (Supplementary Table S1). 

Next, at the 37/50 layer, we isolated macrophage and microglial cells. To further sep-
arate them for the phenotyping analyses, microglia were considered to present the 
CD11b+CD45low profile, while resident macrophages were CD11b+CD45high. Thus, M1 mi-
croglia were labeled with the CD11b+CD45lowCD68+TNF-α+ marker combination and M2 
microglia with the CD11b+CD45lowCD206+IL-4+ profile (Figure 6A). 

Figure 5. Astrocyte isolation in a triplicate experiment to show the reproducibility of the method.
First, we removed the readings of cells mixed with air bubbles for SSC-A vs. time, following doublets
removal by single cell analysis. Cell viability was set as live/dead vs. SSC-A so that a negative marker
for cell death was used to further analyze the cell phenotype. Cells were separated with FSC-A vs.
SCA-A to delimit the population to be further analyzed as A1, and A2 astrocytes. A1 astrocytes were
phenotyped as GFAP+TNF-α+ or GFAP+IFN-γ+ and, A2 astrocytes were phenotyped by presenting
GFAP+IL-10+ or GFAP+IL-4+ (A). The percentage of astrocytes in different subsets is depicted (B).
One-way ANOVA, Bonferroni post-test, p < 0.005 (**), p < 0.0001 (****).

An interesting finding is that at basal levels, astrocytes have a pro-inflammatory preset,
especially by secreting IFN-γ, which is found in 70% of GFAP-positive cells (Figure 5A,B).
In contrast, the A2 profile presents a low percentage of cells at basal levels, at around
10% (Figure 5A,B) (Table S2—Supplementary Section). A viability test was performed
using a cell death marker (live/dead kit) so that in the 10/37 interface, more than 70% of
cells were viable, demonstrating the effectiveness of the separation technique (Figure 5B)
(Supplementary Table S1).

Next, at the 37/50 layer, we isolated macrophage and microglial cells. To further
separate them for the phenotyping analyses, microglia were considered to present the
CD11b+CD45low profile, while resident macrophages were CD11b+CD45high. Thus, M1
microglia were labeled with the CD11b+CD45lowCD68+TNF-α+ marker combination and
M2 microglia with the CD11b+CD45lowCD206+IL-4+ profile (Figure 6A).
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Figure 6. Microglia isolation in a triplicate experiment to show the reproducibility of the method.
First, we removed readings of cells mixed with air bumbles through SSC-A vs. time, following
the removal of doublets by single-cell analysis. Cell viability was set by live/dead vs. SSC-A so
that a negative marker for cell death was used to further analyze the cell phenotype. Cells were
separated in FSC-A vs. SCA-A to delimit the population for further analysis. Then, CD11b+CD45low

was considered to analyze the microglial cells. The M1 profile was considered CD68+TNF-α+, and
M2 was CD206+IL-4+ (A). The percentage of M1 and M2 subsets at the non-lesioned lumbar spinal
cord (B). Unpaired t test, p < 0.005 (**).

Isolating microglia from the normal spinal cord demonstrated pro-inflammatory prompt-
ness by secreting TNF-α, a hallmark of the M1 profile (Figure 6A,B). Of note, the number of
CD11b+CD45low cells was about 50% in the 37/50 layer, which is considered as resting-state
microglia (Figure 6A) (Supplementary Table S2). The viability test, using a live/dead method
in the 37/50 layer, was greater than 80% (Figure 6B) (Supplementary Table S1).

Lastly, in the 50/70 layer, we isolated lymphocytes; then, they were separated into
CD3+CD4+ positive cells to differentiate CD4+ T from CD8+ T lymphocytes, then Th1 and
Th2 cells were analyzed by CD4+IFN-γ and CD4+IL-4+ expression, respectively (Figure 7A).
In this case, we also observed a pro-inflammatory preset by the higher percentage of Th1
cells at basal levels (Figure 7A,B) (Supplementary Table S2). The viability test, by using a
live/dead method in the 50/70 layer, showed results greater than 50% after the isolation
(Figure 7B) (Supplementary Table S1).
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Then, T CD4 lymphocytes were phenotyped by expressing CD3+CD4+, and Th1 and Th2 lymphocytes
were separated by the expression of IFN-γ and IL-4, respectively (A). The percentage of Th1 and Th2
lymphocytes after the isolation (B). Unpaired t test, p < 0.05 (*).

3.2. Microglia Labeling from CX3CR1-EGFP Animals

To confirm the isolation protocol, we utilized CX3CR1-EGFP animals, which have
fluorescent microglia. Frozen 12 µm thick slides from the lumbar spinal cord were obtained
and analyzed by immunofluorescence microscopy (Figure 8A). Transgenic EGFP fluores-
cence was detected and revealed an even distribution of microglial cells in the spinal cord
gray matter (Figure 8A).

For the flow cytometry evaluation, Percoll gradient isolation was carried out, and cells
from different layers were separated by the expression of EGFP. The results demonstrated
that the highest frequency of positive cells was found in the 37/50 Percoll layer (17, 11%,
Figure 8B). Considering that this value was reduced in comparison to the herein proposed
phenotyping method (CD11b+CD45low), it is possible that the cell separation method
partially depleted EGFP fluorescence. In turn, future experiments may consider the addition
of an anti-EGFP antibody in the case of using transgenic fluorescent mice.
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3.3. Computational Analysis of Gate Strategy

To further improve the flow cytometry evaluation, we confirmed the manual gate
method with a semi-automatic mathematical approach. Table 2 shows the manual (black
dots) and computational (blue dots and red ellipses) gates overlapping. The similarity be-
tween the percentage of events inside the manual and computational gates (7.19% ± 5.27%,
mean ± STD) indicates that the present method is reliable and could be replicated in
later studies.

Table 2. Experimental (black dots) and computational (blue dots and red ellipses) gate overlap. The
difference between the percentages of events inside the semi-autonomous and manual (determined
by an expert in flow cytometry) gates was 7.19% ± 5.27% (mean ± STD).

Steps Parameterization Validation

Datasets 1
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gate (%)

59.47% 46.92% 62.14%

Experimental
gate (%)
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To enhance flow cytometry evaluation, we validated the manual gating method using
a semi-automatic mathematical approach. This involved employing the K-means algorithm
to partition cytometry data into k clusters of equal variances, with each observation as-
signed to the cluster with the nearest mean. This process minimized the within-cluster
sum-of-squares, also known as inertia or distortion, which gauges the compactness of the
clusters. The K-means algorithm operates as follows:

1. Initialization: k initial cluster centroids are randomly selected from the cytome-
try dataset.

2. Assignment: each data point is assigned to the nearest cluster centroid based on a
distance metric, usually the Euclidean distance.

3. Update Centroids: the centroids of the clusters are recalculated by computing the
mean of all data points assigned to each cluster.

4. Repeat: steps 2 and 3 are iterated until convergence is achieved, meaning the clus-
ter assignments no longer change significantly or a specified number of iterations
is reached.

5. Finalization: upon convergence, the algorithm produces the final cluster assignments
and centroids.

Table 2 shows the overlap between manual gates (depicted as black dots) and compu-
tational gates (represented by blue dots and red ellipses). The similarity in the percentage
of events inside the manual and computational gates (7.19% ± 5.27%, mean ± standard
deviation) suggests the reliability of the present method, which can be replicated in fu-
ture studies.

The computational gates are entirely open-source, developed in Python 3.5, leveraging
scikit-learn libraries built on NumPy, SciPy, and matplotlib. For a comprehensive under-
standing of gate detection, refer to the “Computational analysis—gate detection” section of
the Methodology.
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4. Discussion

Aging, injury, and disease trigger inflammatory responses in the CNS microenviron-
ment that may result in neuronal loss and maladaptive plasticity, leading to dysfunction
and irreversible conditions [9,53,54]. Pro-inflammatory cytokines released by astrocytes
trigger transcriptional shifts, which may alter synaptic activity, resulting in behavioral and
cognitive alterations [55–57]. Furthermore, microglia also play a pivotal role, developing
the first immune response acutely after injury and disease [34]. Thus, understanding the
cellular changes in the CNS is key to the development of new approaches to treatments
that can be more successful than those currently available.

Glial and immune activation in response to injury is a complex process that involves
the interplay of a myriad of molecules [34]. Cytokines, in particular, are of great importance
to signal cell polarization towards a pro- or anti-inflammatory profile [34]. Herein, we
demonstrate a flow cytometry protocol to analyze glial and immune cells from the spinal
cord. Such a straightforward approach may facilitate the upscaling of cell profiling in
the CNS, allowing a wider view of inflammatory/infection processes. Furthermore, a
mathematical method for finding the initial gates is proposed to make the cytometric
analysis easier and faster.

The use of Percoll gradient isolation is a powerful technique that has also been used in
other organs, like the blood, spleen, and lymph nodes [58–62]. At the spinal cord, we were
able to analyze different cell types, such as microglia, astrocytes, and lymphocytes. One
advantage of Percoll gradient isolation is that it is a gentle and non-destructive technique
that can preserve the viability and function of isolated cells. Several articles present different
protocols for spinal cord flow cytometry; therefore, there is no unique protocol to isolate
glial and immune cells from the spinal cord.

Bergmann and colleagues (1999) described how the mononuclear cells from CNS
could be separated by the Percoll density gradient. They observed that CD8 T lymphocytes
were isolated from the Percoll 30/70 interface [63]. Furthermore, Becher et al. described
the separation of CNS-resident cells, such as microglia and macrophages, in the Percoll
37/70 layer [64,65]. In the same way, Cardona et al. also described microglia separation
utilizing the Percoll 37/70 layer [66]. Also, utilizing mononuclear cells as the cell of interest,
Pino and colleagues (2011) utilized Percoll 30/70 to analyze the cells from the spinal cord.
In all cases, the use of enzymatic procedures was avoided to minimize cell death and,
consequently, result in a greater number of viable cells, which can be utilized for further
characterization [67,68]. Juedes & Ruddle (2001) utilized the digestion enzymatic protocol
with collagenase II and the discontinuous Percoll gradient to isolate mononuclear cells [69].
Agalave et al. (2020) demonstrated that by utilizing Percoll 37/50 and 50/70, it was possible
to separate astrocytes and microglia from the spinal cord [68].

The present protocol is optimized to separate astrocytes, microglia, and lymphocytes
from the spinal cord at the same time by adding Percoll 10% to separate myelin from
the glial and immune cells. Thus, we isolated astrocytes from the Percoll 10/37 layer,
microglia from the Percoll 37/50 layer, and lymphocytes from the Percoll 50/70 layer. We
also certified that our separation was reliable by demonstrating that most of the microglia
in CX3CR1 animals were found in the Percoll 37/50 layer.

In the present study, unlesioned spinal cord tissue was used so that cells were iso-
lated in basal conditions without priming or polarization. Nevertheless, an important
observation is that microglial cells, astrocytes, and lymphocytes displayed, in greater per-
centages, markers of pro-inflammatory response. Such pre-inflammatory stages can be
useful to maintain the homeostasis of the CNS as they can facilitate the response to injury
or disease [70,71]. A recent study from our group employed flow cytometry phenotyp-
ing in SOD1G93A animals (an ALS experimental model), observing a shift towards an
anti-inflammatory response in microglial cells (M2 profile) after IFN-beta treatment [72],
demonstrating that the above-mentioned pre-inflammatory stage in basal levels can be
changed upon pharmacological therapy [72].
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In addition to the cell separation method proposed, a mathematical method is sug-
gested to facilitate the manual gate selection during cytometric analysis. Despite other
efforts in the computational cytometry area [49,50], our mathematical method involves
a relatively simple strategy, using the Euclidean distance of points (K-means centroids
of the clusters), which implies the absence of the need for extremely powerful computa-
tional power.

The proposed cell separation method is complemented by a mathematical approach
aimed at streamlining manual gate selection in cytometric analysis. Despite other efforts in
the computational cytometry area [49,50], our method relies on a relatively simple strategy:
utilizing the K-means centroids of clusters and the Euclidean distance of points, eliminating
the need for high computational power. Two critical factors significantly contributed to
enhancing the accuracy of semi-autonomous gate detection. Firstly, K-means effectively
reduced the dimensionality of cytometry data, which was similarly proposed by [50].
Nevertheless, our mathematical method involved human interactions for the selection of a
correct and concise set of centroids for the Euclidean distance calculation, which is different
from the autonomous gate detection proposed by [49]. Secondly, the straightforward
Euclidean distance calculation played a crucial and original advantage in the process of
defining the elliptical gate parameters. This approach achieved an 86% accuracy rate
compared to the manual gate detection performed using NovoExpress software (version
1.6.2). Notably, this level of accuracy was attained within 28 s on a Dell XPS 13 9360
notebook, featuring an Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz, with two cores and
four logical processors. The adoption of semi-autonomous gating not only expedites the
analysis but also lays the groundwork for integrating gate selection methods into freely
accessible cytometry software in the future. This improvement ensures the reproducibility
and reliability of flow cytometry analysis.

In conclusion, the present cell isolation protocol allows for a more comprehensive
study of the glial and immune response. It is easier and less expensive to isolate glial cells
and lymphocytes from the spinal cord using this method. The broad screening potential
of flow cytometry allows for the phenotyping of cells, which may facilitate advances in
the understanding of many diseases and injuries, as well as the identification of specific
therapeutic targets that may be translated into the clinic in the future.
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