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Abstract: Studies have revealed the dependence of glioma cells on iron, making them sensitive to
ferroptosis. Ferroptosis can be triggered by inhibition of the xc- system, resulting in redox imbalance
and membrane lipid peroxidation. The xc- system is composed of two coupled proteins, xCT and
CD98hc. The control of transporters, such as xCT, by the CD98hc glycoprotein suggests that molecules
targeting glycans may have an impact on the treatment of glioma. This study evaluated the effect of
the Canavalia brasiliensis (ConBr) lectin on C6 glioma cells and compared it with erastin, an xc- system
inhibitor. Both induced dose-dependent cell death, accompanied by an increase in the production of
reactive oxygen species and a decrease in reduced glutathione. However, co-treatment did not show
an additive effect. The analysis was updated by molecular dynamics assessments of the xc- system
interacting with ConBr or erastin. The interaction of erastin with the xc- system affects its interaction
with ConBr, reducing the antagonistic effect when both are in the protein complex. The data show
that ConBr is effective in inducing cell death in glioma cells and regulates the xc system through
interaction with CD98hc glycans, showing that lectins have the potential to promote ferroptosis in
glioma cells.
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1. Introduction

Primary tumors of the central nervous system (CNS), which include gliomas, em-
bryonal tumors, and meningiomas, originate from the nervous system itself and are char-
acterized by high morbidity and mortality [1,2]. Gliomas, despite representing around
30% of primary brain tumors, make up 80% of malignant tumors, being responsible for
most deaths from primary brain neoplasms. Glioblastoma multiforme (GBM) is the most
common and most aggressive type of glioma. GBM cells are characterized by being very in-
filtrative, with the ability to self-renew, and with characteristics of undifferentiated cells [2].
Furthermore, they present mechanisms of resistance to temozolomide (TMZ—the main
chemotherapy drug of choice against GBM), as well as other chemotherapy drugs and
radiotherapy [3,4]. In addition to changes in the expression and activity of several proteins
involved in cell signaling, glioma cells present changes in the glycosylation pattern, which
can activate signaling pathways involved in differentiation, intercellular and extracellular
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matrix interactions, migration, invasion, and proliferation [5,6]. All these glioma charac-
teristics, associated with the limited efficiency of available chemotherapy drugs and their
side effects, make the clinical prognosis of GBM very unfavorable, with a mean survival of
14–16 months [2,7].

Lectins are proteins that specifically recognize and reversibly bind to glycans, whether
in their free form or conjugated with proteins or lipids. This type of interaction between
lectins and cell-surface glycoproteins or glycolipids can trigger numerous biological effects.
In recent years, there has been an increasing number of studies on lectins obtained from
plants and their properties for identifying and modulating specific cell types, with special
emphasis on antitumor properties [8–12].

We have demonstrated the antiglioma activity of several lectins from leguminous
plants with different degrees of potency and without apparent toxicity for the primary
culture of astrocytes [13,14], suggesting a selective action of the lectins studied on tumor
cells. The main activities include cytostatic effects, caspase activation, and stimulation of au-
tophagy in C6 and U87 glioma cell lines. Therefore, the antiglioma potential of leguminous
lectins has been demonstrated for Diocleinae subtribe including that purified from seeds
of Canavalia brasiliensis (ConBr) [13], Canavalia grandiflora (ConGF) [14], Dioclea lasiophylla
(DlyL) [15], Dioclea violacea (DvL) [16] and Dioclea sclerocarpa (DSL) [17].

Despite all these findings, specific lectin targets have yet to be well characterized,
and this issue needs to be improved. Alteration of the glycosylation pattern in gliomas,
as well as the secretion of certain glycoproteins, is recognized as favoring their ability to
interact with the tumor microenvironment, as well as their response to the various signals
that coordinate tumor proliferation and migration [5,6]. Within this paradigm, several
glycoproteins have been identified as potential targets for the treatment of gliomas, includ-
ing thrombospondin [18], metabotropic [19], and ionotropic (e.g., AMPA) glutamatergic
receptors [20,21], and metalloproteinases [14,22,23].

The xc- system is a membrane antiporter amino acid transporter that performs cys-
tine/glutamate exchange. It is composed of a light transmembrane subunit (xCT), also
known as SLC7A11, responsible for transport, and a heavy subunit, represented by the gly-
coprotein CD98hc (also known SLC3A2; 4Fh2c) linked to xCT by one disulfide bond [24,25].
Hence, via the xc- system, cystine is incorporated into the intracellular environment, while
glutamate is exported to the extracellular space. Cystine is then reduced to cysteine which
will be used for the synthesis of glutathione (GSH)—the most abundant intracellular an-
tioxidant [26,27]. This system is positively regulated in gliomas, and several studies have
shown that its overexpression confers a tumor growth advantage [27]. This occurs both
by increasing extracellular glutamate levels, which facilitates tumor expansion, and by
increasing glutathione (GSH) production, which maintains redox potential and neutralizes
reactive oxygen species (ROS) in the intracellular environment [28]. Importantly, GSH acts
as a reducing agent to suppress ferroptosis, which is a consequence of ROS production and
lipoperoxidation when the xc- system is inhibited [25,26,29,30]. Thus, the maintenance of
intracellular GSH, as a ROS buffering mechanism, is essential for the survival, proliferation,
and resistance of tumor cells [27,29,31].

Notably, the CD98hc (SLC3A2) regulatory subunit is highly glycosylated and, via
interaction with the transmembrane xCT subunit, plays a role in the regulatory activity
of the Xc-antiporter system [24,32–34]. Importantly, a recent study by Hasegawa et al.
demonstrated that the glycans present in CD98hc can be altered in tumor cells, as they
demonstrated that monoclonal antibodies directed against the CD98hc glycans of myeloma
multiple cells promoted the selective death of the tumor cells [35].

Considering the antiglioma properties of legume lectins, as well as their ability to
recognize certain glycans with high selectivity [36], in the present study we evaluate the
capability of ConBr to modulate the xc- system. ConBr was demonstrated previously
to act on C6 glioma cells, inhibiting cell migration and inducing cell death mainly via
autophagy [13]. Hence, we perform a set of experiments to demonstrate the cytotoxic
activity of ConBr on C6 glioma cells and measure reactive oxidant species (RS) production,
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as well as the level of intracellular non-protein thiols (mainly glutathione) in response
to ConBr. In addition, we compare the ConBr effects with erastin, a well-known xCT
inhibitor that reduces intracellular glutathione, promoting lipid peroxidation and cell death
by a mechanism known as ferroptosis [25,27,29,37]. Moreover, applying bioinformatics
tools, we move to evaluate the plausibility that ConBr could modulate the xc- system via
interaction with glycans present on the CD98hc regulatory subunit, using docking and
molecular dynamics. Our data demonstrate the antiglioma activity of ConBr and indicate
the potential of this lectin to inhibit the Xc-antiporter via CD98hc glycan interaction. As a
consequence, by decreasing the level of GSH and elevating the level of RS, ConBr might
promote glioma cell death, possibly via the ferroptosis mechanism.

2. Materials and Methods
2.1. Cell Culture of Rat Glioblastoma C6 and Treatment

C6 cells from Wistar rat (Rattus norvegicus) glioblastoma (ATCC-CCL-107) were ob-
tained from the cell bank in Rio de Janeiro (Brazil). Cells were grown in culture bot-
tles having 25 cm2 of growth area with Dulbecco’s Modified Eagle’s Medium (DMEM)
supplemented with 10% (v/v) fetal bovine serum (FBS) (Gibco®, Waltham, MA, USA),
100 units/mL penicillin, and 100 mg/mL streptomycin (Gibco®) at 37 ◦C in a humidified
atmosphere of 95% air and 5% CO2. The medium was changed every two days until the
cells reached confluence. To carry out the experiments, cells were washed with phosphate-
buffered saline (PBS) (140 mM NaCl, 3 mM KCl, 10 mM Na2HPO4, and 2 mM KH2PO4,
pH 7.4) and chemically dissociated by trypsin. C6 cells were seeded in plates of 96-well
with DMEM medium supplemented with 10% (v/v) FBS (Gibco®), 100 units/mL penicillin,
and 100 mg/mL streptomycin (Gibco®) for 24 h at 37 ◦C in a humidified atmosphere of
95% air and 5% CO2. Prior to treatments, the plates were observed under an inverted
microscope to assess adherence and confluence. Hence, the culture media were replaced
with fresh media containing vehicle or ConBr at concentrations of 5–100 µg/mL (as in-
dicated in the figure legends) and incubated for 24 h. Alternatively, cells were treated
with erastin (xCT inhibitor) at concentrations from 0.5 up to 50 µM (as indicated in the
figure legends) and incubated for 24 h. For combined treatments, ConBr 30 µg/mL and
erastin 10 µM were used for 24 h. The lectin was diluted with HEPES–saline buffer without
glucose composed of NaCl 124 mM, KCl 4 mM, MgSO4 1.2 mM, HEPES 25 mM, and
CaCl2 1 mM, pH 7.4. For all assays, the control cell cultures were incubated with a vehicle
(HEPES–saline buffer without glucose). To evaluate whether the action of ConBr was de-
pendent on its carbohydrate-recognition domain, ConBr was blocked (iConBr) by diluting
the lectin in glucose-free HEPES-saline buffer containing 0.1 M of its specific binding sugar
(α-methyl-D-mannoside) and maintained for 30 min at 37 ◦C before treating cells.

2.2. Cell Viability

Cell viability was estimated by MTT [30-(4,5-dimethylthiazol-2yl) 2,5-diphenyltetrazolium
bromide] reduction assay as previously described by Mosmann [38]. Briefly, C6 glioma cells
were seeded in 96-well plates at 104 cells/well and incubated for 24 h with the treatments.
After treatments, the medium was removed, and cells were incubated for 1 h at 37 ◦C
with 0.5 mg/mL MTT. Reduced MTT formazan crystals were dissolved with 100 mL
dimethylsulfoxide (DMSO) for 30 min at 37 ◦C, and the absorbance was evaluated at
540 nm using a Tecan® (Männedorf, Switzerland) Microplate Reader Infinite M200 reader,
equipment at the Laboratório Multiusuário de Estudos em Biologia at the Universidade
Federal de Santa Catarina (LAMEB/UFSC). The results were expressed as a percentage of
the control/vehicle group (considered as 100% viable).

2.3. Reactive Species Production

Reactive species (RS) production was evaluated by using the 2,7-dichlorodihydrofluorescein
diacetate (H2DCF-DA, Sigma®, Waltham, MA, USA) fluorescent probe. Briefly, C6 cells
were plated in a 96-well plate at 104 cells/well for 24 h and then treated. The culture
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medium was removed, and the cells were washed with PBS and incubated at 37 ◦C for
30 min with 10 µM H2DCF-DA. The H2DCF-DA solution was discarded, the cells were
washed with PBS, and 100 mL PBS was added for fluorescence reading at 485/520 nm
(excitation/emission) using a Tecan® Microplate Reader Infinite M200 reader, equipment
at the Laboratório Multiusuário de Estudos em Biologia at the Universidade Federal de
Santa Catarina (LAMEB/UFSC).

2.4. Non-Protein Thiol (NPSH) Content Quantification

GSH content was measured as non-protein thiols (NPSH) according to a method
previously described (Ellman, 1959) [39]. C6 cells were seeded in 6-well plates at a density
of 5 × 105 cells/well. Twenty-four hours after seeding, cells were exposed to the treatments
for 24 h. After treatments, cells were rinsed and harvested in 150 mL of PBS-Triton
buffer (PBS buffer pH 7.4 containing 0.05% Triton X-100) and mixed with 180 µL of 10%
cold trichloroacetic acid (TCA), followed by centrifugation at 5000× g for 10 min. After
centrifugation, the supernatant was incubated with DTNB (10 mM), and the absorbance
was measured at 412 nm using a Tecan® Microplate Reader Infinite M200 reader, equipment
at the Laboratório Multiusuário de Estudos em Biologia at the Universidade Federal de
Santa Catarina (LAMEB/UFSC). A GSH curve was used to calculate the NPSH content
(nmol NPSH), and the data were expressed as a percentage of the control group.

2.5. Statistical Analysis

Four independent experiments were performed in triplicate, and the results were
analyzed using GraphPad Prism version 5.0 (La Jolla, CA, USA). The data presented
normal distribution according to the Shapiro–Wilk test (p < 0.05) and, therefore, were
evaluated using Analysis of Variance (One-way ANOVA) followed by the Tukey post-hoc
test. p values less than 0.05 (p < 0.05) were considered statistically significant.

2.6. Molecular Docking of ConBr with N-glycans Present in CD98hc and Construction of the
ConBr-Xc- System Complex

Glycans have been selected based on the work of Powlesland et al. (2009) [40], which
described the N-glycans present in the CD98hc protein using mass spectrometry.

Selected glycan structures were drawn using the GLYCAM-web server (https://
glycam.org/, accessed on 1 August 2022), and their structures were minimized using
the GLYCAM_06 force field [41]. The designed glycan structures have been applied in
combination with the ConBr structure (PDB ID: 1AZD) [42] to perform molecular docking
simulations. For this purpose, the GOLD v2023.2 software was used (CCDC, Cambridge,
UK), with default settings. The simulation utilized the following parameters: a population
size of 100, selection pressure of 1.1, number of operations of 10,000, number of islands of 5,
niche size of 2, crossover frequency of 0.95, and number of poses of 100. The carbohydrate
recognition domain of ConBr (CRD, centered around the amino acid Asp208) and all
atoms in a 12 Å radius were defined as the application point of the program algorithm.
The PLANTSPLP scoring function was used to calculate the docking score [43]. The
best model was selected considering the combination of score values, hydrogen bonds,
geometric penalties, and nonpolar interactions [44]. After docking between ConBr and the
glycoconjugates individually, the one that showed the best interaction with the protein was
chosen for the following steps.

The next step consisted of inserting glycans into the CD98hc (or 4F2hc) protein (PDB
ID: 7EPZ) [44] in its four previously described glycosylation sites (365, 381, 424, and 506,
based on the sequence of the Uniprot ID: P08195). The GlcNAc2-Man7 (MAN7) glycan
was chosen to be inserted, as it demonstrated a good interaction with ConBr and, in
addition, presented a good relative abundance among the other potential glycans for
CD98hc [40]. Glycosylated CD98hc was prepared using the Glycoprotein builder tool of
the GLYCAM-Web server (https://glycam.org/, accessed on 1 August 2022). Next, the
ConBr monomer was coupled to the xc- system, more specifically to the MAN7 glycan
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present on CD98hc. As it is a system involving three distinct proteins, the PATCHDOCK
server (https://bioinfo3d.cs.tau.ac.il/PatchDock/, accessed on 10 August 2022) [45] was
used to perform rigid docking, with the glycan anchored to the Asn381 from CD98hc. This
site was selected as the target for interaction with ConBr, as it is the most exposed glycan
and distant from the membrane. Thus, it was considered the most likely to interact with
the lectin. This step was carried out exclusively to establish the ConBr–xc- complex, and
the result obtained was subsequently subjected to preparation for molecular dynamics.
Complexes were created with and without the presence of erastin [25].

2.7. Molecular Dynamics

Molecular dynamics simulations were prepared to evaluate the molecular behavior of
the xc- system in complex with ConBr and/or erastin. Five systems were generated, which
include ConBr, xc- system, xc- system + ConBr, xc- system + erastin, and xc- system + ConBr
+ erastin. The initial coordinates include the monomer crystallographic structure of ConBr
(PDB ID: 1AZD), the structure determined by cryo-EM of the xc- system complexed with
or without erastin (PDB ID: 7EPZ). Finally, the trajectories involving the ConBr complexed
with the xc- system were created based on the coordinates obtained from molecular docking.
Regarding the amino acid sequence of the Uniprot database, it is important to note that
the PDB-derived crystallographic models do not include amino acids 1–168 for CD98hc
(Uniprot ID: P08195) and 1–45 for xCT (Uniprot ID: Q9UPY5).

Inputs were processed using the web-based CHARMM-GUI server [46,47], employing
the coordinates derived from the molecular docking assays. The trajectories were simulated
using the pmemd.cuda module of the AMBER22 package [10], employing the ff19SB force
field parameters for proteins [48], the GLYCAM_06j force field for carbohydrates [41], and
Lipid17 for lipids [49].

For the trajectories, the 4 N-glycosylations of the MAN7 type and the disulfide bond
between the residues Cys212 (CD98hc) and Cys160 (xCT) were included. Furthermore,
the systems included calcium and manganese ions positioned within the metal binding
site of ConBr, TIP3P water molecules (51,146 molecules for xc- system with/without
erastin, and 54,321 molecules for xc- system with ConBr) and Na+ (142 ions for xc- system
and 171 ions for xc- system with ConBr) and Cl− (138 ions for xc- system and 167 ions
for xc- system with ConBr) counterions to neutralize the system charges. The systems
involving the xc- system were embedded into a pure 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC, 429 molecules) membrane. Energy minimization of the systems
was conducted using 10,000 steps of the steepest descent method and 5000 steps of conjugate
gradient, totaling 15,000 minimization cycles, with a convergence criterion of 10 kJ/mol.
After minimization, six equilibration steps followed, following a methodology commonly
adopted for membrane models. The first three steps were performed at 250,000 NVT
steps, while the last three were performed at 500,000 NPT steps. The temperature was
maintained at 300.15 K using a Langevin thermostat, with a friction coefficient of 1 ps−1 [50].
Furthermore, an isotropic Monte Carlo barostat was used to control the pressure at 1 bar [51].
Covalent bonds involving hydrogen atoms were constrained by the SHAKE algorithm [52].
Long-range electrostatic interactions were calculated using the Particle Mesh Ewald (PME)
method with a cutoff radius of 10 Å [53]. All simulations performed in this study lasted
400 ns, with a simulation time interval set at 2 fs.

The trajectories were analyzed concerning the root mean square deviation (RMSD)
values of all atoms to verify system equilibrium and stability. To analyze the pattern of
interactions between ConBr and MAN7 glycosylation from CD98hc, the intermolecular
hydrogen bonds (HB) were evaluated. The analysis was performed using the AmberTools
Cpptraj module on all systems [54]; Xmgrace, Pymol, and VMD have been applied for
graph preparation, contacts analysis, and trajectory visualization, respectively. The last
frame of the trajectories was submitted to cavity evaluation by the CaverWeb v1.2 server
(https://loschmidt.chemi.muni.cz/caverweb/, accessed on 4 August 2023) [55]. Possible
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tunnels and channels in the xCT protein structures were analyzed in different trajectories
around the residues that interact with the substrate glutamate [24].

3. Results
3.1. Effect of ConBr on C6 Glioma Cells via Modulation of Xc- System

Initially, a dose–response curve of the antiglioma activity of ConBr (5–100 µg/mL)
was carried out by assessing cell viability with MTT test, measured after 24 h of treatment.
Figure 1 shows that ConBr decreases cell viability in a concentration-dependent manner.
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Figure 1. ConBr decreases C6 glioma cell viability. The cells were treated for 24 h with increas-
ing concentration of ConBr and afterward incubated for 1 h with 0.5 µg/mL MTT. The data are
expressed as a percentage of control. The data were analyzed with One-Way ANOVA followed
by post-test Tukey. * Represents data statistically significant compared to control, n = 4. ConBr
(Canavalia brasiliensis lectin).

Figure 2 shows a dose–response curve of erastin (0.5–50 µM) on C6 cell viability after
24 h treatment. The result shows that erastin promotes a drop in cell viability. Notably, the
impairment of cell viability produced by erastin (10–20 µM) was of the same magnitude as
that observed for ConBr (30 µg/mL; Figure 1). In the next experiments, concentrations of
30 µg/mL and 10 µM were chosen for ConBr and erastin, respectively.

Figure 3 shows a comparison of the cytotoxic activity of ConBr and erastin alone
or combined. Hence, cell viability was decreased by 40% by ConBr and around 20% by
erastin. However, a combination of ConBr with erastin did not improve the cytotoxicity
since the cell viability impairment was similar to that observed for erastin alone. Moreover,
to characterize if the ConBr effect was dependent on glycan interaction, C6 cell viability
was evaluated utilizing ConBr in which the carbohydrate recognition domain (CRD) was
blocked with α-methyl-mannoside (iConBr). Notable, iConBr did not cause alteration of
cell viability, reinforcing that ConBr cytotoxicity depends on the lectin domain.
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We evaluated reactive species production in C6 cells in response to ConBr treatment
(Figure 4) and compared it with erastin. The results show that native ConBr, but not
iConBr, increases ROS production, and this effect of ConBr was greater than that observed
for erastin. Notably, the combination of ConBr with erastin did not display additive
cytotoxicity. Rather, it was similar to that found with erastin treatment alone.
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24 h and afterward incubated for 30 min with 10 µM DCF-DA. The data are expressed as absolute
values. The data were analyzed with One-Way ANOVA followed by post-test Tukey. * Statistically
significant compared to control. # statistically significant compared to the ConBr group, n = 4. Era
(erastin), ConBr (Canavalia brasiliensis lectin), and iConBr (ConBr blocked with α-methyl-mannoside).

In order to characterize a possible inhibition of the xc- system by ConBr, we measured
the non-protein thiols (NPSH) in response to ConBr treatment (Figure 5). NPSH levels
represent mainly the intracellular content of glutathione. The results showed that ConBr
(30 µg/mL) causes a robust decrease in NPSH levels, and this effect was partially abrogated
by blockage of CRD (iConBr). Erastin 10 µM, as expected, significantly decreased NPSH lev-
els. However, combined treatment of ConBr with erastin did not improve NPSH decrease;
rather, intracellular NPSH content was similar to that observed for erastin alone. Taken
together, the results indicate that ConBr cytotoxicity on C6 glioma cells was dependent on
lectin–glycan interaction since CRD blockage abrogated the detrimental effect of ConBr
on cell viability, as well as prevented the lectin-dependent increment of RS levels and the
decreasing of NPSH. These observations allow us to postulate that part of the cytotoxic
mechanism of ConBr against C6 glioma cells might be due to an inhibitory interaction of
ConBr with the xc- system. This possibility may be reinforced considering that (i) CD98hc is
a glycoprotein with a high content of glycans; (ii) the magnitude of the ConBr effects were
similar to that observed with the erastin, a classical xCT inhibitor; (iii) previous studies
suggest ConA capability to inhibit the xc- system; (iv) CD98hc is recognized as a xCT
modulator and monoclonal antibodies against CD98hc inhibited the xc- system. Hence,
applying bioinformatics techniques, we moved to evaluate the plausibility that ConBr could
modulate the xc- system via interaction with glycans present on the CD98hc regulatory
subunit, using docking and molecular dynamics.
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Figure 5. ConBr decreases NPSH content. The cells were treated for 24 h with the drugs, and
afterward, the cells were rinsed. The non-protein total thiol quantification (NPSH) was performed
by Ellmann’s reaction. The data are expressed as a percentage of control. The data were analyzed
with One-Way ANOVA followed by post-test Tukey. * Statistically significant compared to control.
+ statistically significant compared to the ConBr group, n = 4. Era (erastin), ConBr (Canavalia brasiliensis
lectin), and iConBr (ConBr blocked with α-methyl-mannoside).

3.2. Molecular Docking

The score values obtained (in arbitrary units) by molecular docking between ConBr
and CD98hc N-glycans are presented in Table 1, mainly GlcNAc2Man7 (MAN7), with a
score of −58.42. ConBr demonstrated favorable affinity with high mannose N-glycans
and lower affinity with complex N-glycans with one terminal fucosyl. No favorable
interaction results were observed with complex N-glycans double terminal fucosylation
or with fucosylation simultaneously at the terminal and core. Subsequently, MAN7 was
inserted into the four glycosylation sites of CD98hc, and ConBr was fixed in interaction
with one of these sites using the PatchDock v. 1.3 software using rigid docking [45,56]. The
interaction involved residues present in the carbohydrate recognition domain (CRD) of the
lectin, forming a network of hydrogen bonds that included the amino acids Tyr12, Asn14,
Thr15, Asp16, Leu99, Tyr100, Ser168, Asp208, and Arg228.

Table 1. Molecular docking scores of the interactions between ConBr and N-glycans present in
CD98hc (according to Powlesland et al. (2009) [40]. In glycan structure diagrams is N-acetyl-D-
glucosamine (GlcNAc), mannose (Man), galactose (Gal), and fucose (Fuc).

Glycan Structure Docking Score
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3.3. Molecular Dynamics

Regarding the molecular dynamics trajectories, a total of five trajectories were per-
formed to evaluate the behavior of ConBr, CD98hc, and xCT in different conditions. All
trajectories were run for 400 ns (20,000 frames) under a pressure of 1 bar, temperature of
300.15 K, pH 7.0, and in the presence of 0.15 M NaCl. All trajectories occurred as expected,
without artifacts. In all simulations involving the xc- system, the complex remained sur-
rounded by the lipid bilayer through the xCT protein. In the simulation involving the xc-
system and erastin, the drug remained interacting with the complex until the end of the
trajectory. The ConBr + xc- system + erastin system can be observed in Figure 6A, where
the interaction of ConBr with MAN7 via CRD is evident (Figure 6B), while erastin is com-
plexed between the xCT transmembrane helices (Figure 6C). In the simulation involving
the ConBr + xc- system, ConBr remained interacting with CD98hc until the end of the
trajectory through interaction with MAN7 (Figure 7A). However, it was not possible to
obtain a stable trajectory with ConBr in the xc- system in the simulation involving ConBr +
xc- system + erastin, as ConBr always disconnected from the complex at some point in the
trajectory. In the presented trajectory, ConBr releases between 100–120 ns (Figure 7B).
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Figure 7. The number of hydrogen interactions between ConBr and MAN7 N-glycan present in 
CD98hc. (A) ConBr + xc- system trajectory; (B) ConBr + xc- system + erastin trajectory. 

Through the RMSD graphs, we can observe that ConBr reached equilibrium in all 
trajectories, presenting higher deviations when in complex with the xc- system than in 
the lectin trajectory (Figure 8A). This demonstrates that the interaction with MAN7 and 
CD98hc has an impact on the lectin structure. It is important to highlight that in the sim-
ulation containing ConBr + xc system- + erastin, ConBr detached from the complex 
around 100–120 ns and then showed non-specific interactions on the surface of the sys-
tem and with the aqueous medium. CD98hc reached equilibrium easily in three systems, 
and it was only in the presence of erastin that the protein was more unstable, although it 

Figure 6. Complex formed by ConBr with the xc- and erastin system: (A) System composed of the xc-
system formed by the extracellular protein CD98hc and the transmembrane protein xCT inserted
into the lipid bilayer formed by POPC. ConBr interacts with the CD98hc protein via N-glycosylation;
(B) Interaction of ConBr with MAN7 glycan anchored on CD98hc; (C) Erastin molecule complexed
between the xCT transmembrane helices. The proteins are represented in cartoon format, with
the xc- system in rainbow and ConBr in red. The four N-glycans molecules of MAN7 (carbons
in yellow), erastin (carbons in purple), and POPC molecules (carbons in gray) are represented in
stick representation.
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Figure 7. The number of hydrogen interactions between ConBr and MAN7 N-glycan present in
CD98hc. (A) ConBr + xc- system trajectory; (B) ConBr + xc- system + erastin trajectory.

Through the RMSD graphs, we can observe that ConBr reached equilibrium in all
trajectories, presenting higher deviations when in complex with the xc- system than in
the lectin trajectory (Figure 8A). This demonstrates that the interaction with MAN7 and
CD98hc has an impact on the lectin structure. It is important to highlight that in the
simulation containing ConBr + xc system- + erastin, ConBr detached from the complex
around 100–120 ns and then showed non-specific interactions on the surface of the system
and with the aqueous medium. CD98hc reached equilibrium easily in three systems, and it
was only in the presence of erastin that the protein was more unstable, although it showed
constant behavior throughout the trajectory (Figure 8B). ConBr resulted in slightly higher
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deviation values for CD98hc but was able to stabilize the protein throughout the simulation.
Given that the interaction of erastin occurs with the xCT protein, drug complexation
stabilizes xCT, but causes instability in CD98hc, probably by affecting the intermolecular
interactions that regulate the complex. In the ConBr + xc- system + erastin trajectory, a
deviation of around 100–120 ns was observed at the moment when ConBr disconnected
from the complex. However, CD98hc continues to behave in a similar way to the native
protein for the remainder of the simulation, even with erastin in a complex with xCT
(Figure 8C). In the ConBr + xc- system + erastin trajectory, the ConBr interaction time was
able to stabilize CD98hc without impacts on xCT (Figure 8B), as the transporter showed
similar behavior to the system in the presence of erastin alone (Figure 8C). In the case of xCT,
the protein reached equilibrium quickly in all systems. However, clearly larger deviations
were observed when ConBr was present in the trajectory without erastin. Therefore, it can
be noted that the interaction of ConBr with CD98hc has a greater influence on the structure
of xCT than the interaction with erastin. When evaluating the xc- system as a whole, it was
observed that in the trajectory in the presence of ConBr and erastin, there is a low impact
on the structure of the system (Figure 8D). On the other hand, isolated erastin presents high
deviations, mainly due to the unstable behavior of CD98hc in this trajectory. Finally, ConBr
alone has an impact on CD98hc and xCT, suggesting that ConBr modifies the way CD98hc
regulates xCT.
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Differences in conformations can be observed through snapshots of the trajectories.
Figure 9A–C correspond to times 0, 200, and 400 ns of the xc- system, while Figure 9D–F
depict the xc- system complexed with erastin. Furthermore, Figure 10A–C represent the xc-
system complexed with ConBr, and finally, Figure 10D–F show the xc- system complexed
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with ConBr and erastin. It is important to highlight that, in the latter case, it is possible to
observe the ConBr disconnecting from the receiver during the trajectory. In trajectories in
the presence of erastin, interactions at the interface between the two proteins are smaller.
In Figure 9D–F, the distance of the interfaces between the two proteins increases, and a
decrease in the number of contacts was observed (Figure 11A,B). In the trajectories with the
presence of ConBr, there was more contact in the interface region (Figures 10A–C and 11C).
However, in the trajectory where there is ConBr and erastin, ConBr interacts with the
receptor until about 100 ns, but the effect of intensifying interactions in the interface region
remains. This greater contact may be associated with an intensified regulation of CD98hc
on xCT, causing conformational changes in the transmembrane helices of xCT and altering
the transport activity.
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Figure 9. Snapshots from molecular dynamics trajectories. (A) 0 ns interval of the xc- system trajectory;
(B) 200 ns interval of the xc- system trajectory; (C) 400 ns interval of the xc- system trajectory; (D) 0 ns
interval of xc- system + erastin trajectory; (E) 200 ns interval of the trajectory of xc- system + erastin;
(F) 400 ns interval of the trajectory of xc- system + erastin. Proteins are in cartoon representation
colored in a rainbow, while erastin is in stick representation with carbon colored in purple.
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Figure 10. Snapshots from molecular dynamics trajectories. (A) 0 ns interval of the ConBr + xc-
system trajectory; (B) 200 ns interval of the ConBr + xc- system trajectory; (C) 400 ns interval of the
ConBr + xc- system trajectory; (D) 0 ns interval of ConBr + xc- system + erastin trajectory; (E) 200 ns
interval of the trajectory of ConBr + xc- system + erastin; (F) 400 ns interval of the trajectory of ConBr
+ xc- system + erastin. ConBr (in blue) and xc- system (in rainbow) are in cartoon representation,
while erastin is in stick representation with carbon colored in purple.

When evaluating the final frames by the CaverWeb server and using the input cavity
and glutamate interaction residues (Arg135, Tyr244, Phe250, Tyr251, Gly334, and Arg396)
as a reference, a length change in the transporter tunnels was observed (Figure 12). The
native xCT has a length of 156.3 Å, while in complex with erastin, it has 112.6 Å; in complex
with ConBr, it has a length of 62.8 Å, and in the presence of ConBr and erastin, it has a
length of 136 Å.
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Figure 11. The number of hydrogen bonds between the CD98hc and xCT interface in the trajectories:
(A) xc- system; (B) xc- system + erastin and (C) xc- system + ConBr.
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4. Discussion

Lectins, one of the main groups of carbohydrate-binding proteins, have been shown
to be interesting anticancer agents, particularly in glioma. ConBr, a ConA-like lectin,
is one of the lectins demonstrating anticancer effects against glioma cells [13]. ConBr
significantly reduced the viability of C6 glioma cells at doses as low as 50 µg/mL, and the
data revealed the antiglioma effect elicited by the lectin is mediated through controlled
cell death mechanisms dependent on the binding between ConBr and glycoconjugates
on the cell surface. The primary mechanism behind the observed effects is related to the
modulation of the MAPKs and Akt signaling pathways, which leads to the activation
of autophagic mechanisms in a caspase-8-dependent manner [13]. This capacity is not
unique to ConBr, with several other ConA-like lectins displaying similar cytotoxicity
profiles through similar routes, such as lectins from Dioclea lasiophylla and C. grandiflora
seeds [14,15]. Previous data have revealed that ConA modulates the activity and expression
of matrix metalloproteinases (MMPs) in glioma cells, which includes influencing MT1-
MMP. This modulation contributes to various cellular processes crucial in the context of
glioma pathologies—such as cell migration, invasion, and survival—and it appears to be
closely linked to the antiglioma effect demonstrated by the lectin—where it modulates
both the expression and activity of the enzyme, contributing to changes in cell migration,
invasion, and survival [57,58]. Another mechanism of ConA-like lectins has been suggested
by [14]. In a study involving C. grandiflora (ConGF) lectin, the authors suggested a possible
interaction between ConGF and glycan structures of MMP1, a prominent protein found in
gliomas. This binding would lead to the inhibition of MMP1, resulting in a downregulation
of PAR1 and downstream pathways, including ERK1/2 and AKT/mTOR.

Erastin, an inhibitor of the xCT subunit (SLC7A11) of the xc-antiporter, is well known
to promote a cytotoxic effect on tumor cells, mainly due to the reduction of cystine uptake
and consequent glutathione synthesis. This event causes cell redox imbalance, ending with
lipid peroxidation and cell death by a mechanism known as ferroptosis [25,28,29,38].

It has been demonstrated that CD98hc (SLC3A2), the regulatory heavy chain of the xc-
system, is a protein highly glycosylated, which plays an important role in the regulation of
xc-antiporter via interaction with the cystine/glutamate transporter subunit xCT [24,32–34].
As stated previously, via the xc- system, cystine is incorporated into the intracellular
environment, followed by a reduction to cysteine that will be used to synthesize glutathione
(GSH), a powerful intracellular antioxidant [26,27]. This system is positively regulated in
gliomas and confers a tumor growth advantage [27]. Importantly, in myeloma multiple, the
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glycans that decorate the CD98hc surface were demonstrated to be targets for monoclonal
antibodies that promoted selective tumor cell death [35].

Molecular docking results corroborate the documented findings on the specificity
of ConBr for carbohydrates, a lectin that demonstrated an affinity for high-mannose N-
glycans [9]. This pattern has already been widely observed and described in the interaction
between ConA-type lectins and high-mannose N-glycans [59]. The composition of the
glycans present on CD98hc is well reported, showing that CD98hc contains complex-type
N-glycans composed of 5 to 11 hexose residues, 4 to 10 N -acetylhexosamine residues, and
1 to 6 fucose residues, structurally represented with structures bi- and tri-antennary with
terminal fucosylation and sialylation and with high mannose content [40]. ConBr, a ConA-
like lectin, has a preference for diglycoside and dimanoside residues with a preference for
dimanosides with α1,2 and α1,6 linkages and strong binding to the trimmannoside nucleus
of the N-glycans [60]. It opens up several new opportunities for biomedical applications
not only for ConBr but also for a variety of glucose/mannose-specific lectins. CD98hc
could covalently associate with other proteins, called light subunits, as is the case with xCT
itself and large neutral amino acid transporters (LATs). These complexes are closely linked
to various functions, such as cell adhesion, energy metabolism, and hormone transport,
and represent potential targets for therapies against some types of brain cancer, such as
gliomas [26,61–63].

From the molecular dynamics evaluation, it was possible to observe and analyze the
behavior of the xc- system in the presence of ConBr and/or erastin. Studies show that
erastin is a molecule classically used to inhibit the system and induce ferroptosis [64].
Despite being a specific and potent inhibitor, erastin causes fewer changes in cavity length
than ConBr. This is due to the fact that erastin binds to a site other than the glutamate-
binding pocket on the xCT. The chlorophenoxy group in the erastin molecule functionally
interacts with the Phe254 in the TM6b domain of xCT, thereby mediating the inhibitory
effects [25]. Thus, this molecule prevents the system from functioning by sterically blocking
the entry of glutamate into the cavity without necessarily changing the structure of the
tunnel. On the other hand, ConBr is probably capable of altering the tunnel and affecting
glutamate/cystine transport, promoting ferroptosis. CD98hc interacts with xCT at the
interface between the two proteins and in the transmembrane region, mainly through
polar and hydrophobic interactions. CD98hc has a transmembrane helix (TM) and a
short helix called H1′ that interacts with xCT through the H4 helix, which traps xCT on
the intracellular side [25]. In this context, ConBr is capable of interacting with CD98hc,
which intensifies intermolecular contacts with xCT, causing conformational changes in the
transmembrane region and closing the glutamate/cystine transport channel. The presence
of erastin apparently reduces the impact of these effects promoted by ConBr or vice versa.
The results obtained from the evaluation of the tunnels and the inhibition potential of xCT
correlate well with the findings of our in vitro tests with ConBr and erastin concerning the
changes of C6 glioma cell viability, as well as reactive species production and decrease
of NPSH.

Our bioinformatic study indicates that the interaction of lectin with CD98hc glycans
can inhibit the xc- system and thus explain the increment of RS and reduced antioxidant
defense (glutathione) observed. In this direction, a previous study showed ConA mod-
ulating thiol-disulfide balance in C6 glioma cells and triggering oxidative damage [65].
Moreover, ConA was also known as an inducer of ferroptosis, especially in the context of
liver cells [66,67]. In this model, through an unknown mechanism, ConA caused downreg-
ulation of the xCT subunit, reducing GSH synthesis and consequently triggering oxidative
stress, lipid peroxidation, and cell death by ferroptosis. Considering the similarity between
ConBr and ConA, it is not a stretch to assume that the former is able to activate the same
pathways, thus being able to induce ferroptosis. However, these points deserve to be deeply
investigated in the future.

Therefore, our study contributes to the understanding that the mechanism of oxidative
stress and possibly ferroptosis, triggered by ConA-like lectins, may primarily involve
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interaction with the CD98hc glycans. This demonstration is a basic study that suggests a
potential application of this knowledge as a strategy to selectively ascertain tumor cells
and, by disturbing redox pathways, induce glioma cell death. Modification of glycans on
glioma cell surface has been described [5,6]. Nevertheless, there is no description at the
moment of specific alteration of CD98hc glycans in gliomas. Notably, one study showed
selective myeloma multiple tumor cell death by monoclonal antibodies against CD98hc
glycans without disturbing normal cells [35]. Therefore, modification of glycan structure
on CD98hc glycoprotein or increment of its expression on the tumor cell surface could be a
direct target for lectins or, alternatively, for nanostructures containing lectin and antitumor
agents. This strategy could improve selective cell attack and cell death.

5. Conclusions

The glucose/mannose-specific lectin from Canavalia brasiliensis seeds, called ConBr,
was able to induce cell death in C6 glioma cells, increasing reactive oxygen species and
decreasing thiol groups. The effect promoted by the lectin was dependent on the activity of
the carbohydrate recognition domain and was more intense than that observed for erastin.
However, when tested together, an antagonistic effect was observed. This finding was
supported by bioinformatics data, which demonstrated that ConBr could regulate the
xCT transporter through interaction with glycans present on CD98hc. This was the first
study in which the regulation of the xc- system by lectins was structurally demonstrated.
Furthermore, they suggest the potential of lectins to promote ferroptosis through regulation
of the xc- system in glioma cells.
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