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Abstract: Electroconvulsive therapy (ECT) is an effective treatment for severe and drug-resistant
depression, yet its mode of action remains poorly understood. This study aimed to evaluate
the effects of ECT on neurometabolism using ex vivo 1H-[13C]-NMR spectroscopy in conjunc-
tion with intravenous infusion of [1,6-13C2]glucose in a chronic variable mild stress (CVMS)
model of depression. Both CVMS and control mice were subjected to seven sessions of elec-
troconvulsive shock under mild isoflurane anesthesia. The CVMS mice exhibited a reduction
in sucrose preference (CVMS 67.1 ± 14.9%, n = 5; CON 86.5 ± 0.6%, n = 5; p = 0.007), and an
increase in immobility duration (175.9 ± 22.6 vs. 92.0 ± 23.0 s, p < 0.001) in the forced-swim
test. The cerebral metabolic rates of glucose oxidation in glutamatergic (CMRGlc(Glu)) (CVMS
0.134 ± 0.015 µmol/g/min, n = 5; CON 0.201 ± 0.045 µmol/g/min, n = 5; padj = 0.04) and GABAer-
gic neurons (CMRGlc(GABA)) (0.030 ± 0.002 vs. 0.046 ± 0.011 µmol/g/min, padj = 0.04) were reduced
in the prefrontal cortex (PFC) of CVMS mice. ECT treatment in CVMS mice normalized sucrose
preference [F(1,27) = 0.0024, p = 0.961] and immobility duration [F(1,28) = 0.434, p = 0.515], but not
the time spent in the center zone (CVMS + ECT 10.4 ± 5.5 s, CON + sham 22.3 ± 11.4 s, padj = 0.0006)
in the open field test. The ECT-treated CVMS mice exhibited reduced (padj = 0.021) CMRGlc(Glu) in
PFC (0.169 ± 0.026 µmol/g/min, n = 8) when compared with CVMS mice, which underwent the
sham procedure (0.226 ± 0.030 µmol/g/min, n = 8). These observations are consistent with ECT’s
anticonvulsant hypothesis for its anti-depressive action.

Keywords: neurometabolism; 1H-[13C]-NMR spectroscopy; depression; glutamate; GABA; glycolysis;
TCA cycle; electroconvulsive therapy

1. Introduction

Major depressive disorder (MDD) is a leading cause of global distress and disabil-
ity, and it is characterized by low mood, anhedonia, cognitive impairment, and suicidal
ideation [1,2]. The predominant hypothesis posits that depression originates due to a deficit
in monoaminergic neurotransmission [3]. Hence, most antidepressants are targeted to
modulate the levels of these neurotransmitters. However, these medications often have
delayed positive effects, and many patients do not respond to them, and are categorized
as treatment-resistant [4]. Electroconvulsive therapy (ECT) is considered as a rapid and
effective treatment for drug-resistant depression [5]. Although the clinical efficacy of ECT
is well-established, its mechanism of action is not very clear. Various mechanisms, includ-
ing changes in neurotransmitter levels [6,7], increased levels of neurotrophic factors like
brain derived neurotrophic factor (BDNF) and vascular endothelial growth factor in the
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hippocampus [8], and an improvement in functional connectivity and neuroplasticity have
been proposed for the anti-depressive action of ECT [9].

Although the pathophysiology of depression is not fully understood [1], many studies
suggest a crucial role of brain energy metabolism in psychiatric disorders, including
depression [10,11]. Glutamatergic and GABAergic neurons, the major excitatory and
inhibitory neurons in the mammalian central nervous system, respectively, account for
75–80% of the total brain energy demand [12]. Recent clinical and preclinical studies
suggest the involvement of glutamatergic and GABAergic neurons in the pathophysiology
of depression [13,14]. A 13C magnetic resonance spectroscopic (MRS) study has reported a
reduced metabolic activity of glutamatergic neurons in the occipital cortex of depressed
subjects [15]. Furthermore, reduced TCA cycle rates of glutamatergic and GABAergic
neurons have been reported in the PFC of mice subjected to chronic unpredictable mild
stress (CUMS) [16] and chronic social defeat stress (CSDS) models of depression [17].

Typical antidepressants such as paroxetine and fluoxetine were shown to restore the
regional cerebral glucose metabolism to healthy levels in the prefrontal and parietal regions
of the brain in depressed subjects assessed using positron emission tomography (PET)
with [18F]fluorodeoxyglucose (18FDG) administration [18–20]. Moreover, the metabolic
deficits of prefrontal glutamatergic and GABAergic neurons in depression were found
to be normalized in clinical and preclinical studies involving fast-acting antidepressant
interventions like ketamine [21,22]. The impacts of ECT on regional cerebral blood flow
(rCBF) and cerebral metabolism are complex, and differ drastically in the brain regions
and in a time-dependent manner [23–25]. The rCBF was reported to be reduced in the
dorsolateral PFC after a week of ECT but increased in the left hippocampus [25]. Moreover,
ECT was found to reduce glucose metabolism consistently in the frontal, parietal, and
temporal brain regions in depressed subjects after 4–5 days of the last ECT session in PET
studies [23,24]. Prefrontal hypometabolism post-ECT was found to be correlated with
clinical improvement [23], indicating the association of anticonvulsive properties of ECT
with the clinical effects [26,27]. However, there are reports of increased glucose metabolism
after ECT in the basal ganglia, occipital and parietal regions, and hippocampus [28–30],
confusing the understanding of ECT on brain metabolism. As PET measures cerebral
glucose uptake, the impact of ECT on oxidative glucose metabolism, the major ATP-
producing pathway in the brain, remains elusive. Most importantly, the impact of ECT on
excitatory and inhibitory neuronal activity has not been evaluated quantitatively.

The use of proton-observed carbon-edited nuclear magnetic resonance (1H-[13C]-
NMR) spectroscopy along with an intravenous infusion of 13C-labeled substrates offers a
unique approach to monitor the energy requirement of glutamatergic and GABAergic neu-
rons [31,32]. The metabolism of [1,6-13C2]glucose via the TCA cycle in glutamatergic and
GABAergic neurons labels glutamate-C4 (GluC4) [33,34]. In GABAergic neurons, GluC4 is
further decarboxylated to γ-aminobutyric acid-C2 (GABAC2) by glutamate decarboxylase.
The labeling of glutamine-C4 (GlnC4) occurs through the release and uptake of GluC4 and
GABAC2 in astrocytes, followed by transamination by glutamine synthetase (GS). Further
metabolism of GluC4 and GABAC2 transfers the label into aspartate-C2/C3 (AspC2/C3). The
incorporation of the 13C-label into different carbon positions of these neurometabolites pro-
vides a functional measure of neurometabolic activity [35]. In this study, we evaluated the
impact of ECT on depression-like phenotypes and neurometabolic activity of glutamatergic
and GABAergic neurons in the PFC and hippocampus in a chronic variable mild stress
(CVMS) mouse model of depression using 1H-[13C]-NMR spectroscopy in conjunction with
an intravenous infusion of [1,6-13C2]glucose.

2. Materials and Methods
2.1. Animal Preparation

All procedures with animals were approved by the Institutional Animal Ethics Com-
mittee (IAEC #67/2022), Centre for Cellular and Molecular Biology (CCMB), Hyder-
abad. ARRIVE guidelines were followed in the preparation of the manuscript. Two-
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month-old C57BL/6N male mice were used for the study. Mice were maintained in open
cages at ~23 ◦C with 50–70% humidity and a 12 h/12 h light/dark cycle that started at
6:00 am/6:00 pm, respectively, in the CCMB Animal House Facility. Mice were provided
with a standard chow diet and water ad libitum.

2.2. Chronic Variable Mild Stress (CVMS) Paradigm

Two major experiments were carried out. In the first experiment, the impact of CVMS
on behavioral phenotype and neurometabolism was evaluated. For this measurement, mice
were divided into two groups: the control group (n = 5) and the CVMS (n = 5) group, using
the chit-based randomization method. The sample size was based on previous studies from
our laboratory in the CSDS and CUMS models of depression [16,17,21]. CVMS mice were
kept socially isolated for the entire experimental period, while control mice were housed in
groups. The CVMS group of mice was given mild stress for 21 days, while control mice
were handled daily [16,36]. After 21 days of the CVMS paradigm, behavioral tests followed
by an infusion of [1,6-13C2]glucose were carried out for neurometabolic analysis. Another
group of animals was used to assess the therapeutic effects of ECT on depression-like
phenotypes and neurometabolic activity. In this experiment, mice were divided into CVMS
(n = 16) and control (n = 16) groups. The CVMS group of mice was subjected to mild stress
for 28 days (Table S1). Mice were given the choice of 2% sucrose solution and water for
drinking throughout the experiment to assess the sucrose preference with the progress of
the CVMS paradigm.

2.3. Electroconvulsive Therapy (ECT) Procedure

To assess the impact of ECT on behavioral and metabolic activity in depression,
CVMS and control groups of mice were randomly divided into four groups: Group I.
CON + sham (n = 8); Group II. CON + ECT (n = 8); Group III. CVMS + sham (n = 8); Group
IV. CVMS + ECT Group (n = 8). The mice in the ECT group received one electroconvulsive
shock (ECS) daily for seven consecutive days using an ECS pulse generator (ECT Unit
57800 device, Ugo Basile, Comerio, Italy). For ECS, mice were anesthetized using isoflurane
(~3.0% for 90 s) mixed in oxygen, and shock was delivered via corneal electrodes (model
#57800-001, Ugo Basile, Comerio, Italy) using the following parameters: current 50 mA,
shock duration 1 s, frequency 100 Hz, and pulse width 0.5 ms [8,37]. The sham mice were
anesthetized, and electrodes were placed without any ECS.

2.4. Behavioral Analysis

The following behavioral tests were conducted to assess the depression-like pheno-
types in mice before and after ECT.

2.4.1. Sucrose Preference Test (SPT)

In this test, animals were habituated to two bottles of 2% sucrose solution for 48 h. After
the habituation period, one of the sucrose bottles was exchanged with a water bottle [17,38],
and fluid consumption in each bottle was monitored daily by weighing. The position of
the bottles was interchanged daily to eliminate positional preference. Sucrose preference,
a measure for anhedonia, was calculated as 100 × {volume of sucrose consumed ÷ total
(sucrose + water) volume of fluid consumed}.

2.4.2. Elevated-Plus Maze (EPM) Test

EPM was used to evaluate anxiety-like phenotypes in mice [39]. In brief, mice
were placed in the center of a plus-shaped maze with two open and two closed arms
(20 cm × 5 cm each) elevated 50 cm above the ground. The arena was thoroughly cleaned
at the end of each trial using 70% ethanol. The movement of the animal was recorded for
5 min using an overhead camera, and the preference of animals staying in the open arms
over the closed arms was used as a measure of the anxious phenotype.
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2.4.3. Open Field Test (OFT)

This test was utilized to assess the basal locomotor activity and anxiety-like phenotypes
in mice [40]. In brief, mice were placed in the center zone (20 × 20 cm) of a square-shaped
box (40 × 40 × 40 cm) for 5 min under dim light conditions. The mouse activity was
recorded using an overhead camera, and the video was analyzed with the help of the
Ethovision-XT ver 17 (Noldus, Wageningen, the Netherlands) tracking system. The time
spent in the center versus the periphery zone was measured for the anxiety phenotype.

2.4.4. Forced-Swim Test (FST)

In this test, mice were placed in a 10-liter glass beaker (20 cm diameter, 35 cm height)
filled to 2/3rd volume with water (23 ± 2 ◦C) to assess behavioral despair [41]. The activity
of mice was recorded for 5 min. The immobility duration of each mouse was determined
by setting a threshold of 5% for the change in pixels between two adjacent frames of the
recorded videos with the help of the Ethovision software.

2.5. Infusion of [1,6-13C2]Glucose

Mice were fasted for 4–5 h before metabolic measurement. Mice were anesthetized
with urethane (1.5 g/kg, intraperitoneal), and the lateral tail vein was catheterized for the
infusion of 13C-labeled glucose [42]. The body temperature was maintained at ~37 ◦C with
a heating pad warmed by a temperature-regulated re-circulating water bath. Next, [1,6-
13C2]glucose (99% atom, Cambridge Isotope Laboratories, Andover, MA, USA) dissolved
in water (0.225 mol/L) was administered using a bolus variable rate infusion protocol
schedule for 10 min using a programmable syringe pump (PHD 4400 Hpsi Syringe Pump,
Harvard Apparatus Inc., Holliston, MA, USA). In brief, a bolus of 1012.5 µmol/kg of
[1,6-13C2]glucose was administered for the initial 15 s; thereafter, the infusion rate was
stepped down exponentially every 30 s to achieve 51 µmol/kg/min at 8.15 min [43]. The
brain metabolism was arrested at the end of the 10 min of the infusion with a focused-
beam microwave irradiation system (3 KW, 1.2 s; MMW-05, Muromachi Kikai Co., Ltd.,
Tokyo, Japan) [44]. The PFC and hippocampus were dissected immediately from the brain,
snap-frozen in liquid nitrogen, and stored at −80 ◦C until further processing.

2.6. Preparation of Brain Sample for NMR Analysis

The brain metabolites were extracted from the PFC and hippocampus using the
ethanol extraction protocol [45]. In brief, brain tissues were weighed, and homogenized
in 0.1 N HCL in methanol (2:1 vol/wt) using a battery-operated tissue homogenizer.
Next, [2-13C]glycine (50 µL, 2 mmol/L) (99% atom, Cambridge Isotope Laboratories,
Andover, MA, USA) was added as an internal concentration reference. Tissues were
further homogenized with 90% ethanol-phosphate buffer (6:1 vol/wt). The homogenate
was centrifuged at 16,000× g for 45 min at 4 ◦C. The supernatant was collected, pH
adjusted to 7, and lyophilized. The freeze-dried powder was dissolved in 550 µL in
phosphate buffer (25 mmol/L, pH 7.0) prepared in 80% D2O containing 0.25 mmol/L
sodium 3-(trimethylsilyl)propionate (TSP) (Sigma-Aldrich Inc., St. Louis, MO, USA) for
NMR analysis.

2.7. NMR Analysis of Brain Samples

The concentration and 13C labeling of brain metabolites were measured using
1H-[13C]-NMR spectroscopy of brain tissue extracts at 600 MHz using an NMR micro-
imager/spectrometer (Bruker Biospin, Ettlingen, Germany) [33,46]. The 1H-[13C]-NMR
spectroscopy involves the acquisition of two spin-echo NMR spectra with and without
13C inversion pulse during spin echo. The 13C-edited NMR spectrum was obtained
by subtracting the 13C inverted spectrum from those acquired without an inversion
pulse. The concentrations of metabolites were determined relative to [2-13C]glycine
added during the tissue extraction. The isotopic 13C enrichments of amino acids at
different carbon positions were calculated from the ratio of the 13C resonances in the



Neuroglia 2024, 5 310

1H-[13C]-NMR difference spectrum to the non-edited spectrum, and were corrected for
natural abundance by subtracting 1.1% from the calculated value.

2.8. Determination of Rates of Glucose Oxidation

The cerebral metabolic rates of glucose oxidation (CMRGlc(Ox)) in the PFC and hip-
pocampus were calculated using trapping pool approximation of 13C-label incorporated
into different amino acids from the metabolism of [1,6-13C2]glucose in 10 min as described
previously [21,47]. The total CMRGlc(Ox) was calculated as follows:

CMRGlc(Total) =
1
10

× {GluC4 + GABAC2 + GlnC4 + 2 × (GluC3 + GABAC4 + AspC3)} (1)

where GluC4/C3, GABAC2/C4, and AspC3 represent the concentrations of 13C amino acids at
a particular carbon position. The term ‘2’ before the parenthesis represents equal incorpora-
tion of 13C at carbon 2 and 3 for aspartate and glutamate. Similarly, the labeling of GABA
at carbon 3 and 4 was assumed to be similar.

The rate of glucose oxidation in GABAergic neurons (CMRGlc(GABA)) was calculated
as follows:

CMRGlc(GABA) =
1

10
× {0.02 × (GluC4 + 2 × GluC3) + (GABA C2 + 2 × GABAC4) + 0.42 × (2 × AspC3)} (2)

where 0.02 and 0.42 represent the glutamate and aspartate pool in GABAergic neurons.
Similarly, the rate of glucose oxidation in glutamatergic neurons (CMRGlc(Glu)) was

estimated as follows:

CMRGlc(Glu) =
1

10
×

{
0.82 × (GluC4 + 2 × GluC3) + 0.42 × (2 × AspC3) (3)

The fractions 0.82 and 0.42 represent glutamate and aspartate pools in glutamatergic
neurons [42].

2.9. Statistical Analysis

All the statistical analyses were carried out using GraphPad Prism software (ver 8.0.2,
San Diego, CA, USA). The normal distribution of each data set was evaluated using the
Shapiro–Wilk and Kolmogorov–Smirnov test. The significance of the difference of normally
distributed datasets was evaluated using Student’s t-tests along with the Holm–Sidak
method to correct for multiple comparisons. For a few datasets that do not follow a
normal distribution, the Mann–Whitney test was used to assess the statistical significance
of differences between groups. The two-way ANOVA with Tukey’s corrections for multiple
comparisons was utilized to understand the statistical significance of the impact of ECS
on various behavioral and metabolic measures. The analysis resulting in an adjusted
p-value less than 0.05 was considered statistically significant. All values are presented as
mean ± standard deviation (SD).

3. Results and Discussion
3.1. Impact of CVMS on Behavior and Metabolite Homeostasis

The CVMS mice were subjected to 21 days of stress paradigm (Figure 1a). These
mice showed significantly (p = 0.007) reduced sucrose preference (67.1 ± 14.9%, n = 5)
as compared to controls (86.5 ± 0.6%, n = 5), suggesting the development of anhedonia
(Figure 1b), a clinical hallmark of depression [36]. Moreover, CVMS mice exhibited a
significant (p < 0.001) increase in immobility duration (175.9 ± 22.6 s) as compared to
controls (92.0 ± 23.0 s) in FST (Figure 1c). The increased immobility duration in CVMS mice
represents a behavioral despair-like symptom, commonly seen in depressed subjects [48].
Furthermore, CVMS mice (25.6 ± 14.4 s) exhibited a trend (p = 0.07) of reduction for the
time spent in the open arms of EPM as compared with CON mice (44.9 ± 15.8 s) (Figure 1d).
These behavioral measures suggest a depression-like phenotype in CVMS mice.
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Figure 1. Experimental paradigm and behavioral measures in CVMS mice. (a) Timeline depicting
different interventions and assessment of depression phenotype. (b) Sucrose preference, (c) Immobil-
ity duration in the forced-swim test (FST), and (d) Time spent in the open arms of the elevated-plus
maze (EPM) test. The vertical bar represents the mean ± SD of the group, while the symbols depict
individual values.

The typical 1H-[13C]-NMR spectra from PFC extracts are presented in Figure 2a,b. The
upper panel of these spectra represents the total concentration of the neurometabolites,
while the lower depicts the level of 13C-labeled amino acids. The levels of neurometabolites
were measured in the non-edited 1H-[13C]-NMR spectra (top panel Figure 2a,b). There
was no significant (p ≥ 0.45) change in the levels of neurometabolites in the PFC and
hippocampus of CVMS mice when compared with controls (Table S2). Previous 1H-MRS
studies on neurometabolite levels in depression have shown inconsistent results [13]. Some
reports suggested a decrease in the levels of glutamate [49,50] and GABA [21,51] in the PFC
of depressed subjects, while others reported no significant change [52,53]. It is noteworthy
that 1H-MRS measures the sum of intracellular and extracellular pools of glutamate and
GABA within neurons and glia. Additionally, the intracellular neurotransmitter pool
overwhelmingly dominates the extracellular with a ratio of 2000–5000:1 [54]. Consequently,
changes in glutamate and GABA levels detected by 1H-MRS may not accurately represent
abnormalities in synaptic activity.

3.2. Labeling of Neurometabolites from [1,6-13C2]Glucose in CVMS Mice

The labeling of different amino acids is seen in the 13C-edited spectra presented in
the lower panel of Figure 2a,b. The percent 13C enrichment of glucoseC1 in the brain was
not significantly (p = 0.43) different between the CVMS (39.2 ± 1.8%) and control mice
(40.7 ± 3.2%). The concentration of 13C-labeled neurometabolites was measured in the
1H-[13C]-NMR spectra from PFC (lower panel Figure 2a,b) and hippocampal tissue extracts.
The analysis of 13C-labeled metabolites indicated a significant (padj = 0.040) reduction in
the concentrations of GABAC2 (CVMS 0.12 ± 0.02 µmol/g, n = 5; CON 0.18 ± 0.03 µmol/g,
n = 5), and GluC3 (0.14 ± 0.03 vs. 0.27 ± 0.08 µmol/g, padj = 0.040) in PFC of CVMS
mice when compared with controls (Figure 2c). Although there was a reduction in the
concentrations of GluC4, GlnC4, and AspC3 in PFC of CVMC mice, it did not reach statistical
significance (padj ≥ 0.06) (Figure 2c). Similarly, while the concentrations of 13C-labeled
amino acids were lower in the hippocampus (Figure 2d), they did not reach statistical
significance (padj ≥ 0.06), potentially due to the small sample size. The decreased 13C-
labeling of TCA cycle-linked amino acids from [1,6-13C2]glucose suggests reduced glucose
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oxidation in the TCA cycle of glutamatergic and GABAergic neurons in the PFC of CVMS
mice [17].
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Figure 2. Measurement of 13C labeling of brain metabolites. Representative 1H-[13C]-NMR spectra
from prefrontal cortex (PFC) extracts of (a) Control, and (b) CVMS mice. Concentrations of 13C-labeled
metabolites in (c) PFC, and (d) Hippocampus of CVMS and control mice. The [1,6-13C2]glucose was
administered in mice for 10 min, and 1H-[13C]-NMR spectra were recorded in the brain tissue extracts.
The spectra in the topmost panel 1H-[12C+13C] represent the total concentration of neurometabolites,
whereas the lower panel depicts 13C-labeled neurometabolites. The concentrations of 13C-labeled
neurometabolites were measured in 1H-[13C]-NMR spectra using [2-13C]glycine. Abbreviations:
AlaC3, alanine-C3; AspC3, aspartate-C3; Cre, creatine; GABAC2, γ-aminobutyric acid-C2; GABAC4,
γ-aminobutyric acid-C4; GluC4, glutamate-C4; GluC3, glutamate-C3; GlnC4, glutamine-C4; LacC3,
lactate-C3; NAA, N-acetyl aspartate.

3.3. Oxidative Glucose Metabolism in Glutamatergic and GABAergic Neurons in CVMS Mice

Cerebral metabolic rates of glucose oxidation (CMRGlc(Ox)) were calculated from con-
centrations of 13C-labeledamino acids using Equations (1)–(3). The rate of total glucose
oxidation (CMRGlc(Total)) was reduced significantly (padj = 0.04) in the PFC of CVMS mice
(0.210 ± 0.022 µmol/g/min, n = 5) when compared with controls (0.319 ± 0.075 µmol/g/min,
n = 5) (Figure 3a). Although there was a reduction in CMRGlc(Total) in the hippocampus of
CVMS mice (0.206 ± 0.024 vs. 0.265 ± 0.046 µmol/g/min, padj = 0.078) (Figure 3b), it did not
reach statistical significance.
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The metabolic analysis at the sub-neuronal level indicated a significant (padj = 0.04)
reduction in CMRGlc(Glu) in the PFC of CVMS mice (0.134 ± 0.015 µmol/g/min, n = 5)
when compared with controls (0.201 ± 0.045 µmol/g/min, n = 5) (Figure 3a). Moreover,
the CMRGlc(GABA) showed a significant (padj = 0.04) reduction in the PFC (0.030 ± 0.002
vs. 0.046 ± 0.011 µmol/g/min) (Figure 3a) of CVMS mice. There was no significant
change in CMRGlc(Ox) for glutamatergic and GABAergic neurons in the hippocampus of
CVMS mice (Figure 3b). The findings of hypo-glucose metabolism in PFC are in agree-
ment with previous studies from our laboratory, reporting the reduced glucose oxidation
in glutamatergic and GABAergic neurons in the PFC of the CSDS rodent model of de-
pression [17,21]. Moreover, the reduced metabolic activity of prefrontal glutamatergic
and GABAergic neurons was found to be positively correlated with the reduced sucrose
preference in social interaction in CSDS mice [21]. Glucose metabolism assessed using
PET with [18F]fluorodeoxyglucose (18FDG) has shown a reduction in the rates of glucose
consumption in different brain regions, including the PFC, parietal cortex, and dorsal
anterior cingulate in depressed subjects [10,11,19]. Additionally, regional cerebral blood
flood (rCBF), a surrogate measure of brain activity, was found to be reduced in the gray
matter of depressed subjects [55,56]. Most importantly, the dynamic 13C MRS measurement
revealed a 26% reduction in mitochondrial energy production of glutamatergic neurons in
the occipital cortex of depressed human subjects [15].

Previous 13C MRS measurements have revealed a stoichiometric (1:1) coupling be-
tween rates of neuronal oxidative glucose metabolism and neurotransmitter cycling [57,58].
Hence, the finding of reduced glucose oxidation rates in glutamatergic and GABAergic
neurons in PFC of CVMS mice suggests decreased synaptic transmission in depression. The
impaired synaptic transmission has been suggested in several previous studies reporting
reduced expression of excitatory amino acid transporter (EAAT2) and glial glutamine
synthetase (GS) transcripts in preclinical studies [17,59]. Our data, together with previous
reports, suggest that impairment in glutamatergic and GABAergic transmission plays a
significant role in the pathophysiology of depression.

3.4. Effects of ECT on Depression- and Anxiety-like Phenotypes

To understand the impact of ECT on depression-like phenotypes, a new cohort of animals
was subjected to a 28-day CVMS paradigm (Figure 4a). The two-way ANOVA analysis of
sucrose preference revealed a significant difference [F(1,120) = 37.88, p < 0.0001] between
CVMS and control mice (Figure 4b). The sucrose preference in CVMS mice was significantly
(padj = 0.0048) reduced (67.4 ± 8.4%, n = 16) compared to controls (77.5 ± 8.2%, n = 16) from the
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second week of the CVMS, and remained lower until the fourth week (67.6 ± 7.4 vs. 77.8 ± 4.4%,
padj = 0.0045) of the stress paradigm (Figure 4b). Additionally, CVMS mice exhibited a significant
increase in immobility duration (CVMS 185.3 ± 31.9 s, CON 108.9 ± 33.0 s, p < 0.001) in FST
(Figure 4c), and reduced time in the open arms plus center zone (CVMS 43.7 ± 15.9 s, CON
63.7 ± 21.2 s, p = 0.0049) in the EPM test as compared to controls (Figure 4d).
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Figure 4. Assessment of ECT’s impact on depression-like phenotypes. (a) Experimental timeline,
(b) Sucrose preference during CVMS paradigm, (c) Time spent in the immobile state in forced-swim
test (FST), (d) Duration in the center plus open arms of the elevated plus maze (EPM) after CVMS.
CVMS mice were subjected to a combination of variable stressors for 28 days and were given the
choice of 2% sucrose solution and water throughout the experiment to measure the sucrose preference.
EPM and FST were conducted after the completion of the CVMS paradigm. The impact of ECT
on (e) Sucrose preference, (f) Immobility duration, and (g) Time spent in the center zone of OFT in
CVMS and control mice. The ECT group of mice was given one electroconvulsive shock daily for
seven consecutive days under mild isoflurane anesthesia, while the sham mice were subjected to
isoflurane anesthesia but no electric shock. The unpaired two-tailed T-test was performed to assess
the statistical significance of the difference for FST and EPM tests following CVMS. The statistical
analysis for other measures was carried out using a Two-Way ANOVA along with Tukey’s method
for multiple comparisons.
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The CVMS and control groups of mice were subjected to seven ECS sessions, and its
impact on depression-like phenotypes was assessed four days after the last ECT session.
The two-way ANOVA analysis indicated no significant difference for the sucrose preference
[F(1,27) = 0.0024, p = 0.961] (Figure 4e), and immobility duration [F(1,28) = 0.434, p = 0.515]
in FST among different groups of mice (Figure 4f). However, a significant stress x ECT
interaction was seen for the time spent in the center zone [F(1,25) = 9.327, p = 0.005]
in OFT. The post hoc analysis indicated that the time spent in the center zone by the
CVMS + sham group of mice (10.1 ± 3.8 s) was significantly (padj = 0.002) lower compared
to the CON + sham group (22.3 ± 11.4 s). ECT intervention in CVMS mice (10.4 ± 5.5 s,
padj = 0.0006) failed to restore the time spent in the center zone to the CON + sham level
(Figure 4g). It is noteworthy that there is no significant difference (padj ≥ 0.85) among
CON + ECT, CVMS + sham, and CVMS + ECT groups of mice.

The finding of no significant (padj = 0.99) difference for sucrose preference between
CVMS + sham mice (79.3 ± 7.7%) and CON + sham (81.0 ± 13.1%) group of mice (Figure 4e)
could be due to the putative antidepressive properties of isoflurane, given seven days for
the sham procedure (Figure 4a). Recent studies have indicated that isoflurane produces
antidepressant-like behavioral effects by restoring BDNF levels and activating TrKB signaling
in PFC and hippocampus [60], and restoring the synaptic density in the CA1, CA3, and
dentate gyrus region of CUMS mice [61]. Rapid antidepressant effects of isoflurane have been
reported in clinical settings as well [62], possibly linked to its ability to induce a cortical burst
suppression phase [63].

3.5. Impact of ECT on Neurometabolites Homeostasis

The levels of neurometabolites were measured in the non-edited 1H-[13C]-NMR spec-
tra of PFC extracts (Figure 5). The two-way ANOVA revealed significant differences
[F(1,27) = 10.67, p = 0.0030] for glutamate levels among different groups in PFC. The post
hoc Tukey honest analysis indicated a significant (padj = 0.009) reduction in the level of
glutamate in CVMS + ECT mice (11.7 ± 0.9 µmol/g, n = 8) when compared with the
CON + ECT (13.5 ± 1.2 µmol/g, n = 8) group of mice (Table 1). The effects of ECT on gluta-
mate levels are unclear. A few reports suggest a decrease in the levels of glutamate [64],
while others show an increase [6,65,66] in the different brain areas of depressed subjects
after ECT treatment. There was no significant change [F(1,27) ≤ 3.42, p ≥ 0.076] in the
levels of other PFC neurometabolites. Moreover, there was a significant reduction in the
levels of GABA (CVMS + sham 3.2 ± 0.1 µmol/g, n = 8; CON + sham 3.6 ± 0.2 µmol/g,
n = 7; padj = 0.008) and myo-inositol (9.1 ± 0.4 vs. 9.8 ± 0.7 µmol/g, padj = 0.037) in the
hippocampus of CVMS + sham mice when compared with CON + sham mice (Table 1).
Interestingly, the deficits in the levels of GABA (padj = 0.999) and myo-inositol (padj = 0.254)
were restored to the control levels following ECT treatment in CVMS mice (Table 1).

Table 1. Concentration (µmol/g) of neurometabolites in the prefrontal cortex and hippocampus of
control and CVMS mice.

Glu GABA Gln Asp NAA Lac m-Ino Tau GPC Cre

PF
C CON

Sham (n = 7) 13.2 ± 0.8 3.6 ± 0.3 6.3 ± 0.3 3.0 ± 0.2 7.4 ± 0.4 1.8 ± 0.5 8.4 ± 0.4 12.9 ± 0.7 1.4 ± 0.1 14.0 ± 0.7
ECT (n = 8) 13.5 ± 1.2 3.6 ± 0.2 6.2 ± 0.6 2.9 ± 0.3 7.4 ± 0.6 1.9 ± 0.4 8.7 ± 0.5 12.9 ± 0.9 1.4 ± 0.0 14.2 ± 1.0

CVMS
Sham (n = 8) 12.5 ± 1.1 3.5 ± 0.1 5.8 ± 0.4 2.9 ± 0.2 7.1 ± 0.5 1.8 ± 0.6 8.2 ± 0.3 12.9 ± 0.4 1.4 ± 0.1 13.5 ± 0.6
ECT (n = 8) 11.7 ± 0.9 ## 3.6 ± 0.2 5.8 ± 0.3 2.7 ± 0.2 6.8 ± 0.4 1.3 ± 0.1 8.4 ± 0.6 12.9 ± 0.6 1.4 ± 0.1 13.3 ± 0.6

H
IP

CON
Sham (n = 7) 12.2 ± 0.7 3.6 ± 0.2 5.7 ± 0.5 2.8 ± 0.2 6.7 ± 0.5 1.6 ± 0.2 9.8 ± 0.7 10.0 ± 0.6 1.4 ± 0.1 15.3 ± 0.6
ECT (n = 8) 12.5 ± 0.5 3.4 ± 0.1 5.7 ± 0.4 2.6 ± 0.1 6.6 ± 0.2 1.6 ± 0.2 10.0 ± 0.4 9.9 ± 0.4 1.4 ± 0.1 15.2 ± 0.6

CVMS
Sham (n = 8) 12.1 ± 0.5 3.2 ± 0.1 * 5.5 ± 0.4 2.8 ± 0.2 6.5 ± 0.3 1.5 ± 0.1 9.1 ± 0.4 * 10.1 ± 0.2 1.4 ± 0.1 14.9 ± 0.4
ECT (n = 8) 11.8 ± 0.6 3.4 ± 0.3 5.6 ± 0.2 2.7 ± 0.2 6.8 ± 0.3 1.3 ± 0.2 # 9.6 ± 0.5 10.0 ± 0.4 1.4 ± 0.1 15.2 ± 0.8

The concentration of metabolites was calculated from non-edited 1H-[13C]-NMR spectra using [2-13C]glycine
added during extraction as an internal concentration reference. Values are presented as mean ± SD. * padj < 0.05
when CVMS + sham mice were compared with CON + sham mice, # padj < 0.05, ## padj < 0.01 when CVMS + ECT
mice were compared with CON + ECT. Abbreviations: Asp, aspartate; Cre, creatine, GABA, γ-aminobutyric
acid; Gln, glutamine; Glu, glutamate; GPC, glycerophosphocholine; HIP, hippocampus; Lac, lactate; m-Ino,
myo-inositol; NAA, N-acetyl aspartate; PFC, prefrontal cortex; Tau, taurine.
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Mice were anesthetized using urethane and infused with [1,6-13C2]glucose using tail-vein for 10 min,
and 1H-[13C]-NMR spectra were recorded in brain tissue extracts at 600 MHz NMR spectrometer. The
spectra in the uppermost panel (1H-[12C+13C]) represent the total concentration of neurometabolites,
while those in the lower panel depict the level of 13C-labeled neurometabolites. Abbreviations:
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The findings of the restoration of GABA and myo-inositol in the current study are
consistent with the previous studies reporting ECT-induced increases in GABA in the
occipital cortex after 1–5 days [67], and myo-inositol in the fronto-limbic regions [68] in
post-ECT measurements in depressed subjects. The increased GABA levels following ECT
reinforce the anticonvulsant hypothesis of its mechanism of action [26], while an increased
myo-inositol level indicates the role of gliogenesis in ECT’s mechanism of action [68]. An
ECT-induced increase in the microglial population in the dentate gyrus region of chronic
unpredictable stressed mice has been reported recently [69], strengthening the role of glial
cells in the mechanism of ECT.

There was a significant (padj = 0.01) reduction in the level of hippocampal lactate
in CVMS + ECT mice (1.3 ± 0.2 µmol/g) when compared with the CON + ECT group
(1.6 ± 0.2 µmol/g). The ECT-induced decrease in the level of hippocampal lactate is a
novel finding of the current study. There was no significant change in the levels of NAA
in PFC (CVMS + ECT 6.8 ± 0.4 µmol/g, CVMS + sham 7.1 ± 0.5 µmol/g, padj = 0.59)
and hippocampus (6.8 ± 0.3 vs. 6.5 ± 0.3 µmol/g, padj = 0.67) of CVMS mice after ECT
treatment. These results contradict a large number of earlier studies reporting ECT-induced
reduction in NAA levels [6,70] but align with others depicting no significant impact of ECT
on the NAA [66,71].

3.6. Effects of ECT on 13C-Labeling of Neurometabolites from [1,6-13C2]Glucose

The concentrations of 13C-labeled metabolites were calculated from the 13C-edited
NMR spectra (shown in the lower panels of Figure 5) in different groups of mice. The
two-way ANOVA revealed a significant CVMS × ECT interaction for 13C-labeled GluC4
[F(1,27) = 8.601, p = 0.0068] and LacC3 [F(1,25) = 8.454, p = 0.008] in PFC. The post hoc
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analysis revealed that prefrontal GluC4 level was significantly (padj = 0.022) reduced in
the CVMS + ECT mice (1.59 ± 0.20 µmol/g, n = 8) when compared with CON + ECT
(2.08 ± 0.40 µmol/g, n = 8), and CVMS + sham mice (2.06 ± 0.27 µmol/g, n = 8, padj = 0.031)
(Table 2). Additionally, the concentration of LacC3 was significantly reduced in the PFC
(0.23 ± 0.11 vs. 0.44 ± 0.14 µmol/g, padj = 0.027) and hippocampus (0.26 ± 0.05 vs.
0.39 ± 0.09 µmol/g µmol/g, padj = 0.0035) of ECT-treated CVMS mice when compared
with controls subjected to ECT (Table 2). A decrease in the labeling of GluC4 in CVMS + ECT
mice indicates reduced glucose oxidation in the TCA cycle of glutamatergic neurons [31].
The reduced labeling of LacC3 from [1,6-13C2]glucose metabolism in PFC and hippocampus
suggests a reduction in lactate dehydrogenase activity post-ECT in CVMS mice. Hence,
reduced oxidative glucose metabolism in CVMS mice following ECT may be linked with
reduced glycolytic flux as reported in PET studies [23,24].

Table 2. Concentration (µmol/g) of 13C-labeled neurometabolites in the prefrontal cortex and
hippocampus of control and CVMS mice.

GluC4 GABAC2 GlnC4 AspC3 GluC3 GABAC4 AlaC3 LacC3

PF
C CON

Sham (n = 7) 1.88 ± 0.38 0.17 ± 0.06 0.27 ± 0.11 0.16 ± 0.06 0.25 ± 0.12 0.04 ± 0.02 0.16 ± 0.05 0.38 ± 0.20
ECT (n = 8) 2.08 ± 0.40 0.20 ± 0.04 0.29 ± 0.04 0.18 ± 0.05 0.28 ± 0.06 0.03 ± 0.01 0.16 ± 0.02 0.44 ± 0.14

CVMS
Sham (n = 8) 2.06 ± 0.27 0.18 ± 0.03 0.30 ± 0.05 0.17 ± 0.03 0.28 ± 0.06 0.05 ± 0.01 0.13 ± 0.02 0.40 ± 0.12
ECT (n = 8) 1.59 ± 0.20 #$ 0.15 ± 0.01 0.24 ± 0.04 0.13 ± 0.03 0.20 ± 0.05 0.04 ± 0.01 0.11 ± 0.05 0.23 ± 0.11 #

H
IP

CON
Sham (n = 7) 1.58 ± 0.30 0.21 ± 0.06 0.27 ± 0.08 0.16 ± 0.05 0.23 ± 0.08 0.05 ± 0.01 0.13 ± 0.01 0.30 ± 0.08
ECT (n = 8) 1.72 ± 0.20 0.23 ± 0.03 0.31 ± 0.05 0.18 ± 0.03 0.25 ± 0.03 0.05 ± 0.01 0.15 ± 0.01 0.39 ± 0.09

CVMS
Sham (n = 8) 1.77 ± 0.16 0.24 ± 0.03 0.31 ± 0.05 0.18 ± 0.02 0.28 ± 0.05 0.05 ± 0.01 0.13 ± 0.01 0.34 ± 0.05
ECT (n = 8) 1.53 ± 0.20 0.20 ± 0.01 0.28 ± 0.04 0.16 ± 0.04 0.23 ± 0.02 0.06 ± 0.04 0.13 ± 0.02 0.26 ± 0.05 ##

Mice were infused with [1,6-13C2]glucose, and the 13C concentrations of neurometabolites were measured in the
brain tissue extracts from edited 1H-[13C]-NMR spectrum using [2-13C]glycine as a reference. Values are presented
as mean ± SD. # padj < 0.05 and ## padj < 0.005 when CVMS + ECT mice were compared with CON + ECT mice,
$ padj < 0.05 when CVMS + ECT mice were compared with CVMS + sham. Abbreviations: AspC3, aspartate-C3;
GABAC2, γ-aminobutyric acid-C2; GABAC4, γ-aminobutyric acid-C4; GluC4, glutamate-C4; GluC3, glutamate-C3;
GlnC4, glutamine-C4; HIP, hippocampus; LacC3, lactate-C3; PFC, prefrontal cortex.

3.7. Effects of ECT on Metabolic Activity of Glutamatergic and GABAergic Neurons

There was a significant CVMS x ECT interaction for total glucose oxidation (CMRGlc(Total))
[F(1,26) = 5.543, p = 0.0264] in PFC. The post hoc analysis revealed a significant (padj = 0.0418)
reduction in the CVMS + ECT mice (0.265 ± 0.041 µmol/g/min, n = 8) when compared
with CVMS + sham mice (0.348 ± 0.048 µmol/g/min; n = 8) PFC (Figure 6a). These results
are in agreement with previous studies reporting reduced glucose metabolism in the frontal
and parietal cortex [24], and decreased CBF in the dorsolateral-prefrontal regions [25,72]
in depressed subjects following ECT. Our results, along with these reports, support the
anticonvulsant hypothesis of ECT that posits that a postictal GABAergic inhibitory surge in
the brain mediates the antidepressant effects of ECT [27]. The anticonvulsive hypothesis is
supported by the increased seizure threshold [73] and increased aperiodic activity in EEG
acquired after ECT treatment [74] in depressed subjects.

We further analyzed the metabolic activity of excitatory and inhibitory neurons individ-
ually post-ECT in CVMS mice. The two-way ANOVA showed a significant CVMS × ECT
interaction [F(1,26) = 7.008, p = 0.0136] for glucose oxidation in glutamatergic neurons
(CMRGlc(Glu)) of PFC. The post hoc analysis revealed a significant (padj = 0.021) reduc-
tion in CMRGlc(Glu) of CVMS + ECT mice (0.169 ± 0.026 µmol/g/min, n = 8) when com-
pared with CVMS + sham mice (0.226 ± 0.030 µmol/g/min; n = 8) (Figure 6a). Addi-
tionally, there was a reduction in CMRGlc(Glu) of CVMS + ECT mice (0.173 ± 0.020 vs.
0.205 ± 0.021 µmol/g/min, n = 8) in the hippocampus (Figure 6b). However, it could not
reach the level of statistical significance (padj = 0.076). There was no significant change
in the glucose oxidation in GABAergic neurons (CMRGlc(GABA)) in PFC [F(1,26) = 1.616,
p = 0.214] and hippocampus [F(1,26) = 4.010, p = 0.056] among different groups of mice
(Figure 6). To the best of our knowledge, this is the first quantitative study to assess the im-
pact of ECT on the neurometabolic activity of glutamatergic and GABAergic neurons. The
finding of reduced CMRGlc(Glu) after ECT is consistent with the previous reports describing
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a reduction in glucose consumption in the bilateral anterior and posterior frontal areas in
depressed subjects following ECT treatment [75]. These findings, together with established
stoichiometric coupling between neuronal glucose oxidation and neurotransmitter cycling
fluxes [57], suggest reduced glutamatergic neurotransmission with ECT in the PFC of
CVMS mice.
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It is noteworthy that CMRGlc(Glu) in CVMS + sham mice (0.226 ± 0.030 µmol/g/min, n = 8)
was not significantly (padj = 0.66) different than CON + sham mice (0.204 ± 0.054 µmol/g/min,
n = 7) in PFC (Figure 6a). Similarly, there was no difference in CMRGlc(GABA) (0.046 ± 0.007 vs.
0.043 ± 0.015 µmol/g/min; padj = 0.99) in PFC. The restoration in the neurometabolic activity in
CVMS + sham mice might be due to the anticipated antidepressive action of isoflurane [61,63]
that was provided during the sham procedure or due to a progressive dilution of depression-like
phenotypes with time. This could be tested by including an additional group of mice without
isoflurane or ECT intervention in future studies.

4. Summary

In summary, the current study showed that the CVMS paradigm induced depression-
like phenotypes and hypometabolic activity of glutamatergic and GABAergic neurons in
the PFC of CVMS mice. There was no difference in the depression-like phenotypes between
CVMS and control mice after ECT treatment; however, the anxiety measure persisted
post-ECT. Moreover, ECT intervention in CVMS mice restored the GABA and myo-inositol
levels to the control values in the hippocampus, while it imparted a negative impact on
hippocampal lactate and PFC glutamate levels. Furthermore, ECT-induced reductions in
the levels of GluC4 and LacC3 in PFC suggest a glucose metabolic deficit in CVMS mice after
ECT intervention, supporting the anticonvulsant hypothesis of ECT’s mechanism of action.
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