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Abstract: We discuss the bulk viscosity of hot and dense npeµ matter arising from weak-interaction
direct Urca processes. We consider two regimes of interest: (a) the neutrino-transparent regime
with T ≤ Ttr (Ttr ' 5÷ 10 MeV is the neutrino-trapping temperature); and (b) the neutrino-trapped
regime with T ≥ Ttr. Nuclear matter is modeled in relativistic density functional approach with
density-dependent parametrization DDME2. The maximum of the bulk viscosity is achieved at
temperatures T ' 5÷ 6 MeV in the neutrino-transparent regime, then it drops rapidly at higher
temperatures where neutrino-trapping occurs. As an astrophysical application, we estimate the
damping timescales of density oscillations by the bulk viscosity in neutron star mergers and find
that, e.g., at the oscillation frequency f = 10 kHz, the damping will be very efficient at temperatures
4 ≤ T ≤ 7 MeV where the bulk viscosity might affect the evolution of the post-merger object.

Keywords: bulk viscosity; weak processes; npeµ matter; binary neutron star mergers; damping of
density oscillations

1. Introduction

The recent detections of gravitational waves from binary neutron-star (BNS) mergers
by the LIGO-Virgo collaboration motivate studies of the transport properties of hot and
dense nuclear matter. Numerical simulations of BNS mergers predict intense emission
of gravitational waves during the first tens of milliseconds after the merger in the kHz
frequency range (see, e.g., Refs. [1–4] for recent simulations). The dissipation of matter flows
in the post-merger object might affect the gravitational wave spectra emitted during this
stage of BNS merger evolution. In particular, indications of bulk viscous dissipation were
seen in a recent BNS simulation incorporating beta equilibrating processes [5], confirming
earlier estimates of its likely importance.

There exist extensive studies of the bulk viscosity of neutron–proton–electron (here-
after npe) and npeµ (where µ stands for muons) matters in low-temperature (cold) neutron
stars [6–16]. The bulk viscosity of the dense matter at high temperatures (up to tens of MeV)
was computed in recent works which covered various regimes of temperature and density,
as well as neutrino trapping/un-trapping, in strongly interacting hadronic matter [17–20].

In this contribution, we review briefly the results of Ref. [20] for the bulk viscos-
ity of the neutrino-trapped, relativistic npeµ matter, as well as complement them with
novel results for the neutrino-transparent regime. The impact of purely leptonic weak
processes on the bulk viscosity is discussed. We use the DDME2 parametrization [21]
of relativistic density functional theory with density-dependent couplings to model the
background nuclear matter. It provides very reasonable values of such characteristics of
symmetric nuclear matter, as the energy per nucleon Esat = −16.14 MeV and compressibil-
ity Ksat = 251.15 MeV at saturation density n0 = 0.152 fm−3, as well as characteristics of
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asymmetric nuclear matter such as the symmetry energy Esym = 32.31 MeV and its slope
Lsym = 51.27 MeV. In our previous work [18,20] we used the NL3 parameterization (along
with the DDME2) where the couplings are density-independent but meson fields acquire
additional self-interactions terms. This functional differs significantly from the DDME2
functional used in this study in the properties of asymmetric matter with Esym = 37.4
and Lsym = 118.9 MeV. Specifically, these two functionals cover well the range for the
parameters Esym and Lsym that have been inferred from the PREX-II experiment by two
alternative analysis [22,23]. Thus, using our previous results one can assess the impact of
the variations of the important characteristics of nuclear matter on the various quantities of
interest, such as bulk viscosity and damping time scales. A full analysis of the sensitivity of
the results on the input of various density functionals goes beyond the present study.

With the results obtained for the bulk viscosity, we estimate the bulk viscous dissipa-
tion timescales of density oscillations in BNS mergers. For typical oscillation frequencies
1 ≤ f ≤ 10 kHz the bulk viscous damping timescales reach down to tens of milliseconds
(at nB ' 3n0) or milliseconds (at nB ' n0) at temperatures 4 ≤ T ≤ 7 MeV. Here the bulk
viscous damping can have a significant impact on the initial phase of post-merger dynamics
with a typical timescale ∼10 ms. At high temperatures above the neutrino-trapping, the
bulk viscosity falls rapidly by orders of magnitude, and the damping timescales become
too long to affect the dynamics of BNS mergers.

This paper is organized as follows. In Section 2, we discuss the weak processes in
nuclear matter. In Section 3, we discuss the bulk viscosity produced by the Urca processes.
Section 4 collects the numerical results for the equilibration rates, the bulk viscosity, and
the dissipation damping timescales in the regimes of neutrino-transparent and neutrino-
trapped matter. Section 5 provides a brief summary of our results. We work with natural
(Gaussian) units where h̄ = c = kB = 1.

2. Weak Processes in Neutron Star Matter

We consider relativistic npeµ matter in the range of densities 0.5n0 ≤ nB ≤ 5n0,
where n0 ' 0.152 fm−3 is the nuclear saturation density and temperatures 1 ≤ T '
100 MeV. Neutrinos are trapped in the matter above the neutrino-trapping temperature
Ttr ' 5÷ 10 MeV and un-trapped (free-streaming) below this temperature [24].

Consider now the simplest semi-baryonic β-equilibration processes—the direct Urca
processes of neutron decay and lepton capture, respectively

n� p + l− + ν̄l , (1)

p + l− � n + νl , (2)

where l = {e, µ} is electron or muon, νl is the corresponding neutrino. In the ν-transparent
regime, these processes proceed only in one direction from left to right as neutrinos/anti-
neutrinos can appear only in the final state.

If muons are present in matter, the following leptonic processes of muon decay, neu-
trino absorption and antineutrino absorption, respectively, may occur additionally

µ− � e− + ν̄e + νµ, (3)

µ− + νe � e− + νµ, (4)

µ− + ν̄µ � e− + ν̄e. (5)

In the ν-transparent regime, (4) and (5) are not possible, and (3) can only occur in the
forward direction when the temperature is high enough to open up enough phase space
around the muon and electron Fermi surfaces. We neglect modified-Urca-type processes
involving electromagnetic interaction with a spectator particle [15]; these are suppressed
by a factor of α2.

In npeµ matter the baryon number given by nB = nn + np is conserved. The matter
is also charge neutral, i.e., np = ne + nµ. In the neutrino-trapped case the lepton numbers
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nLl = nl + nνl = YLl nB (with YLl being the lepton fractions) are also conserved. In neutron
star mergers one can adopt the values YLe = YLµ = 0.1 for the neutrino-trapped case [25].

The β-equilibration rates of the processes (1) and (2) are given, respectively, by

Γn→plν̄ =
∫

dΩp ∑ |MUrca|2 f̄ (k) f̄ (p) f̄ (k′) f (p′)(2π)4δ(4)(k + p + k′ − p′), (6)

Γpl→nν =
∫

dΩp ∑ |MUrca|2 f (k) f (p) f̄ (k′) f̄ (p′)(2π)4δ(k + p− k′ − p′). (7)

where ∫
dΩp =

∫ d3 p
(2π)32p0

∫ d3 p′

(2π)32p′0

∫ d3k
(2π)32k0

∫ d3k′

(2π)32k′0
(8)

is the Lorentz-invariant momentum phase-space element, f (p) is the Fermi distribution
of particles, and f̄ (p) = 1− f (p). The particles are assigned momenta as follows: (l)→ k,
(νl/ν̄l)→ k′, (p)→ p, and (n)→ p′. Note that in neutrino-transparent matter one should
replace f̄ (k′)→ 1 in these expressions.

The spin-averaged relativistic matrix element of the Urca processes reads [26]

∑ |MUrca|2 = 32G2
F cos2 θc

[
(1 + gA)

2(k · p)(k′ · p′)

+(1− gA)
2(k · p′)(k′ · p) + (g2

A − 1)m∗2(k · k′)
]
, (9)

where GF = 1.166 · 10−5 GeV−2 is the Fermi coupling constant, θc is the Cabibbo angle
with cos θc = 0.974, gA = 1.26 is the axial-vector coupling constant, and m∗ is the effective
nucleon mass. We will keep only the first term of this expression in the following as
the second and the third terms are negligible for gA values close to the vacuum value
quoted above. The twelve-dimensional phase-space integrals in Equations (6) and (7)
can be reduced to the following four-dimensional integrals which are then computed
numerically [20]

Γn→plν̄(µ∆l ) = − G2T4

(2π)5

∫ ∞

−∞
dy
∫ ∞

0
dx
[
(µνl + µ∗n + yT)2 −m∗2n − x2T2

]
×
[
(µl + µ∗p + ȳlT)2 −m2

l −m∗2p − x2T2
]

×
∫ αp+ȳl

ml/T−αl

dz f̄ (z) f (z− ȳl) θx

∫ ∞

ανl

dz′ f (z′ + y) f̄ (z′) θy, (10)

Γpl→nν(µ∆l ) =
G2T4

(2π)5

∫ ∞

−∞
dy
∫ ∞

0
dx
[
(µνl + µ∗n + yT)2 −m∗2n − x2T2

]
×
[
(µl + µ∗p + ȳlT)2 −m2

l −m∗2p − x2T2
]

×
∫ αp+ȳl

ml/T−αl

dz f (z) f (ȳl − z) θx

∫ αn+y

−ανl

dz′ f (z′ − y) f̄ (z′) θz, (11)

where G = GF cos θc(1+ gA), ml is the lepton mass, αl = µl/T, αN = µ∗N/T for N = {n, p}
with µ∗N being the nucleon effective chemical potential, see Section 4.1. Here ȳl = y+ µ∆l /T
with µ∆l = µn + µνl − µp − µl and f (x) ≡ [1 + ex]−1. The θ-functions in Equations (10)
and (11) imply

θx : (zk − x)2 ≤
(
z− αp − ȳl

)2 −m∗2p /T2 ≤ (zk + x)2, (12)

θy : (z′k − x)2 ≤
(
z′ + αn + y

)2 −m∗2n /T2 ≤ (z′k + x)2, (13)

θz : (z′k − x)2 ≤
(
z′ − αn − y

)2 −m∗2n /T2 ≤ (z′k + x)2. (14)
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The integration variables y and x are the transferred energy and momentum, re-
spectively, normalized by the temperature; the variables z and z′ are the normalized-by-
temperature lepton and neutrino energies, respectively, computed from their chemical po-

tentials, zk =
√
(z + αl)2 −m2

l /T2 and z′k = z′∓ ανl are the normalized-by-temperature mo-
menta of the lepton and the antineutrino/neutrino, respectively. In the case of
neutrino-trapped matter, the rates of the inverse processes are obtained from
Equations (10) and (11) by replacing f (pi) → f̄ (pi) for all particles. In the case of ν-
transparent matter the inverse processes are not allowed, and one should replace µνl = 0
and f̄ (z′)→ 1 in the direct processes.

We will work in the low-temperature approximation where beta equilibrium corre-
sponds to µ∆l = 0. In the case of deviations from β-equilibrium, there is a net rate of
proton production/annihilation due to each of the processes (1) and (2), which in the
linear-response regime µ∆l � T can be written as Γn→plν̄ − Γplν̄→n = λn↔plν̄ µ∆l , and
Γnν→pl − Γpl→nν = λpl↔nν µ∆l , with the coefficients λn↔plν̄ and λpl↔nν given by [20]

λn↔plν̄ =

(
∂Γn→plν̄

∂µ∆l

−
∂Γplν̄→n

∂µ∆l

)∣∣∣∣
µ∆l

=0
=

Γn↔plν̄

T
, (15)

λpl↔nν =

(
∂Γnν→pl

∂µ∆l

−
∂Γpl→nν

∂µ∆l

)∣∣∣∣
µ∆l

=0
=

Γpl↔nν

T
. (16)

Note that at temperatures T & 1 MeV and at densities where direct Urca would
be forbidden at T = 0, the neutron decay and lepton capture processes are Boltzmann-
suppressed by different factors, arising from their different phase spaces [24]. This means
that the coefficients should be evaluated at a nonzero µ∆l = µ

eq
∆l

, but we work in the

approximation µ
eq
∆l

= 0: this is discussed in Section 4.
Similar to the Urca reaction rates, the lepton reaction rates can be written in the

following form

Γµ→eν̄ν =
∫

dΩk ∑ |Mlep|2 f (kµ) f̄ (ke) f̄ (kν̄e) f̄ (kνµ)(2π)4δ(4)(ke + kν̄e + kνµ − kµ), (17)

Γµν→eν =
∫

dΩk ∑ |Mlep|2 f (kµ) f (kνe) f̄ (ke) f̄ (kνµ)(2π)4δ(4)(ke + kνµ − kνe − kµ), (18)

Γµν̄→eν̄ =
∫

dΩk ∑ |Mlep|2 f (kµ) f (kν̄µ) f̄ (ke) f̄ (kν̄e)(2π)4δ(4)(ke + kν̄e − kν̄µ − kµ), (19)

where dΩk is defined analogously to Equation (8). The spin-averaged relativistic matrix
element of lepton reactions reads [27]

∑ |Mlep|2 = 128G2
F

(
ke · kνµ/ν̄µ

)(
kνe/ν̄e · kµ

)
. (20)

The final expressions for the lepton reaction rates are very similar to the Urca process
rates (10) and (11) and are given in Ref. [20].

3. Bulk Viscosity of npeµ Matter

In this section, we briefly review the bulk viscosity of relativistic npeµ matter arising
from the Urca processes (1) and (2). For this, we consider small-amplitude density oscilla-
tions with frequency ω. Separating the oscillating parts from the static equilibrium values of
particle densities we can write nj(t) = nj0 + δnj(t), where δnj(t) ∼ eiωt with j = {n, p, l, νl}.
Oscillations drive the system out of chemical equilibrium leading to nonzero chemical
imbalances µ∆l = δµn + δµνl − δµp − δµl , which can be written as

µ∆l = Anδnn + Aνe δnνe − Apδnp − Alδnl , (21)
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where the particle susceptibilites are defined as An = Ann − Apn, Ap = App − Anp, and
Al = All , Aνl = Aνlνl with

Aij =
∂µi
∂nj

, (22)

where the derivatives are computed in β-equilibrium state.
If the weak processes were switched off, then the number of all particle species would

conserve separately, which implies

∂

∂t
δn0

j (t) + θnj0 = 0 ⇒ δn0
j (t) = −

θ

iω
nj0, (23)

where θ = ∂ivi is the fluid expansion rate. Once the weak reactions are switched on, there is
a net production of particles which should be included in the balance equations. To linear
order in chemical imbalances, these equations read

∂

∂t
δnn(t) + θnn0 = −λeµ∆e(t)− λµµ∆µ

(t), (24)

∂

∂t
δnp(t) + θnp0 = λeµ∆e(t) + λµµ∆µ

(t), (25)

∂

∂t
δne(t) + θne0 = λeµ∆e(t) + λLµL

∆(t), (26)

∂

∂t
δnµ(t) + θnµ0 = λµµ∆µ

(t)− λLµL
∆(t), (27)

where µL
∆ ≡ µµ + µνe − µe − µνµ = µ∆e − µ∆µ

is the chemical imbalance for leptons, and
λl = λn↔plν̄ + λpl↔nν. The coefficient λL is the purely leptonic analog to λl .

Solving the system of Equations (24)–(27) is generally quite cumbersome. However,
as shown in Section 4.1, the lepton processes proceed typically much slower than the
Urca processes in both regimes of neutrino-transparent and neutrino-trapped matter, i.e.,
λL � λl (slow lepton-equilibration limit). As a result, the terms ∝ λL can be dropped from
the balance Equations (24)–(27). In other words, the Urca-process-driven bulk viscosity can
be computed by assuming that the weak leptonic processes are frozen.

Substituting now Equation (21) in Equations (24) and (26) and putting λL = 0 we find

iωδnn = −nn0θ − (λe + λµ)Anδnn + (λe + λµ)Apδnp + λe Aeδne

+ λµ Aµδnµ − λe Aνe δnνe − λµ Aνµ δnνµ , (28)

iωδne = −ne0θ + λe Anδnn − λe Apδnp − λe Aeδne + λe Aνe δnνe . (29)

Using the relations δnp + δnn = δnB, δne + δnµ = δnp, δnLe = δne + δnνe , and δnLµ =
δnµ + δnνµ and solving the coupled Equations (28) and (29) we find (λ ≡ λe + λµ)
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Dδnn = − θ

iω

{
iω
[
nn0(iω + λe Ae + λe Aνe) + ne0(λe Ae + λe Aνe − λµ Aµ − λµ Aνµ)

]
+

[
iω(λAp + λµ Aµ + λµ Aνµ) + λeλµ((A1 − An)(A2 − An)− A2

p)
]
nB0

− λe Aνe

[
iω + λµ(Aµ + Aνµ)

]
nLe0 − λµ Aνµ [iω + λe(Ae + Aνe)]nLµ0

}
, (30)

Dδne = − θ

iω

{
iωne0

[
iω + λµ A2 + λe(An + Ap)

]
− λenB0

[
Ap(iω + λµ A2)− λµ(An + Ap)(A2 − An)

]
+ λenLe0 Aνe(iω + λµ A2) + λe(An + Ap)iωnn0

− λeλµ(An + Ap)Aνµ nLµ0

}
, (31)

where we used the baryon and lepton number conservation δnB = −nB0(θ/iω) and
δnLl = −nLl0(θ/iω), and defined

D = (iω + λe A1)(iω + λµ A2)− λeλµ(An + Ap)
2 (32)

with

A1 = An + Ap + Ae + Aνe , (33)

A2 = An + Ap + Aµ + Aνµ . (34)

In order to find the bulk viscosity we still need to separate the instantaneous equilib-
rium parts of particle densities from perturbations (30) and (31). Equilibrium shifts can be
obtained from Equations (30) and (31) either in the limit of λl → ∞ (fast equilibration), or in
the limit of λl → 0 (slow equilibration). Both choices lead us to the same result for the bulk
viscosity as the latter vanishes in both limits of fast or slow equilibration. Subtracting thus
the local quasi-equilibrium shifts δn0

j from Equations (30) and (31) we find the required

nonequilibrium parts δn′j = δnj − δn0
j . After this the nonequilibrium part of the pressure,

referred to as bulk viscous pressure, will be given by

Π = ∑
j

cjδn′j, (35)

with

cj ≡
∂p
∂nj

= ∑
i

ni0
∂µi
∂nj

= ∑
i

ni0 Aij. (36)

Here we used the Gibbs–Duhem relation dp = sdT + ∑i nidµi, and recalled the defini-
tions (22). The bulk viscous pressure then reads

Π =
θ

iω
iω(λeC2

1 + λµC2
2) + λeλµ

[
A1C2

2 + A2C2
1 − 2(An + Ap)C1C2

]
(iω + λe A1)(iω + λµ A2)− λeλµ(An + Ap)2 , (37)

where we defined

cn − cp − ce + cνe = nn0 An − np0 Ap − ne0 Ae + nνe0 Aνe ≡ C1, (38)

cn − cp − cµ + cνµ = nn0 An − np0 Ap − nµ0 Aµ + nνµ0 Aνµ ≡ C2. (39)

Extracting the real part of Equation (37) and recalling the definition of the bulk viscosity
ReΠ = −ζθ we find
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ζ =
λeλµ

{
λe
[
(An + Ap)C1 − A1C2

]2
+ λµ

[
(An + Ap)C2 − A2C1

]2}
+ ω2(λeC2

1 + λµC2
2){

λeλµ

[
A1 A2 − (An + Ap)2

]
−ω2

}2
+ ω2(λe A1 + λµ A2)2

. (40)

If we neglect the muonic contribution then we arrive at

ζe =
C2

1
A1

γe

ω2 + γ2
e

, (41)

with γe = λe A1, which coincides with the result of Ref. [18].
In the limit of high frequencies ω � λl Ai we find from Equation (40)

ζ =
λeC2

1 + λµC2
2

ω2 = ζe + ζµ, (42)

where ζe and ζµ are the partial bulk viscosities by electronic and muonic Urca processes,
respectively [10].

In the opposite limit of low frequencies we find

ζ =
λe(C1 − a1C2)

2 + λµ(C2 − a2C1)
2

λeλµ(An + Ap)2(a1a2 − 1)2 , (43)

with a1 = A1/(An + Ap) and a2 = A2/(An + Ap).

4. Numerical Results

The numerical calculations are performed within the framework of covariant den-
sity functional approach to the nuclear matter with density-dependent nucleon–meson
couplings. The Lagrangian density reads

L = ∑
N

ψ̄N

[
γµ

(
i∂µ − gωωµ −

1
2

gρτ · ρµ

)
−m∗N

]
ψN + ∑

λ

ψ̄λ(iγµ∂µ −mλ)ψλ, (44)

+
1
2

∂µσ∂µσ− 1
2

m2
σσ2 − 1

4
ωµνωµν +

1
2

m2
ωωµωµ −

1
4

ρµνρµν +
1
2

m2
ρρµ · ρµ,

where N sums over nucleons, ψN are the nucleonic Dirac fields, m∗N = mN − gσσ are the
nucleon effective masses, with mN being the nucleon mass in vacuum. Next, σ, ωµ, and
ρµ are the scalar-isoscalar, vector-isoscalar, and vector-isovector meson fields, respectively;
ωµν = ∂µων − ∂νωµ and ρµν = ∂µρν − ∂νρµ are the field strength tensors of vector mesons;
mi are the meson masses and gi are the baryon-meson couplings with i = σ, ω, ρ. Finally,
ψλ are the leptonic free Dirac fields with masses mλ. Below we will adopt the DDME2
parametrization of the couplings gi [21] with the numerical implementation given in
Ref. [28].

The composition of beta-equilibrated npeµ matter in two regimes of low and high
temperatures is shown in Figure 1. The proton fraction in the neutrino-transparent matter
remains below the threshold value required for the direct Urca processes to operate in the
low-temperature regime in the whole density range considered here (0.5n0 ≤ nB ≤ 5n0).
The threshold values of the proton fraction for electronic and muonic Urca processes are
Yp ≈ 13% and Yp ≈ 16%, respectively, whereas the proton fraction remains below 12.5%
up to the density nB = 5n0. Note that in this case at very low densities the net neutrino
densities become negative, indicating that the matter contains more antineutrinos than
neutrinos in that regime.
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Figure 1. Composition of neutron star merger matter in the DDME2 model, in neutrino-transparent
regime with T = 5 MeV (a) and neutrino-trapped regime with T = 50 MeV (b). The inset shows
the minima in the electron and µ-on fractions, at which the subsystems of electrons and muons are
scale-invariant, and the corresponding partial bulk viscosities vanish.

4.1. Equilibration Rates of Weak Processes

The electron-producing neutron decay and electron capture rates for neutrino-
transparent matter are shown in Figure 2 as functions of the temperature. The equili-
bration rates rapidly increase with increasing temperature as a result of the fast opening
of the scattering phase space. We see also that the neutron decay rate is suppressed as
compared to the electron capture rate at least by three orders of magnitude, and is expo-
nentially damped at low temperatures and high densities because of diminished scattering
phase space (there are no curves corresponding to nB = 3n0 and nB = 5n0 in panel (a) as
the rate is highly damped in these cases). Similar behavior for the neutron decay rate was
found also for other EoS models in Ref. [29]. As a result, under the condition µn = µp + µe
the neutron decay and electron capture rates do not balance each other, which implies that
the matter is out of β-equilibrium. As noted in the discussion of Equations (15) and (16),
in principle this shows the need for a nonzero isospin chemical potential. However, as
the main focus of this work is to study how the muonic reactions contribute to the bulk
viscosity of npeµ matter, below we will neglect that finite temperature correction, given
that it would not change the value of bulk viscosity at the maximum, and (because the rates
are so sensitive to temperature) would only shift the temperature at which that maximum
is attained by about 1 MeV.
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Figure 2. The rates of neutron e-decay (a) and electron capture (b) processes as functions of the
temperature for various densities for neutrino-transparent matter. The dotted lines show the rates of
the same processes computed in Ref. [18] within the approximation of nonrelativistic nucleons.



Particles 2022, 5 369

We show also the electron-capture rates in Figure 2 which were computed in Ref. [18]
in the approximation of nonrelativistic nucleons by dotted lines. We see that the nonrela-
tivistic approximation underestimates the exact electron capture rates by up to an order of
magnitude (at nB = 5n0). This is not the case for the neutron decay process which shows
finite nonrelativistic rates also at high densities where the exact relativistic calculations
predict their strong suppression by an exponential (Boltzmann-type) factor.

Panel (a) of Figure 3 shows the muon capture rates, the general behavior of which is
similar to the electron capture rates. Quantitatively, the muon capture rate is much smaller
at low temperatures and becomes comparable to the electron capture rate above T ≥ 5
MeV. The rate of the neutron µ-decay is always smaller than those of other processes that
affect muon density by at least three orders of magnitude over the density and temperature
range considered here and is not shown.
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Figure 3. The rates of muon capture (a) and muon decay (b) processes as functions of the temperature
for various densities for neutrino-transparent matter. The neutron µ-decay rate is strongly damped
as compared to the muon capture rate. The dotted lines in panel (b) show the muon capture rates.

Panel (b) of Figure 3 shows the rate of the muon decay (3). The muon decay process
has the same kinematics as the neutron decay. As a result, the temperature dependence of
the muon decay rate is qualitatively very similar to that of neutron decay if it is finite. To
compare the Urca and leptonic reaction rates we show in Figure 3b the muon capture rates
by dotted lines (electron capture rates are much larger than the muon decay rates and are
not shown here). We see, that, typically, the Urca reaction rates are much larger than the
leptonic reaction rates, the only exception being the range of very low temperatures T . 2
MeV, where both processes involving muons are much slower than electron capture process.
In this narrow range of temperatures, the muonic contribution to the bulk viscosity can
be neglected, whereas at higher temperatures both electronic and muonic Urca processes
should be accounted for with leptonic reactions assumed to be frozen, as discussed in
Section 3.

Figure 4 shows the rates of the electron (a) and muon (b) capture processes in the
neutrino-trapped regime. At moderate temperatures T ≤ 10 MeV, the lepton capture
rates follow their low-temperature scaling ∝ T3 [20]. The electron and muon capture rates
are very similar both qualitatively and quantitatively. Panel (a) shows also the electron-
capture rates of nuclear matter in the approximation of nonrelativistic nucleons [18]. As
in the neutrino-transparent case, the non-relativistic approximation underestimates the
exact equilibration rates also in the neutrino-trapped regime by a factor that rises with the
density from 1 to 10. As for the neutron decay processes (1), their rates are many orders
of magnitude smaller than the lepton capture rates as the formers involve antineutrinos
instead of neutrinos. A detailed discussion on the relative importance of the neutron decay
and lepton capture rates can be found in Ref. [20].
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Figure 4. The electron (a) and muon (b) capture rates as functions of the temperature for various
densities for the neutrino-trapped matter. The neutron decay rates are negligible compared to the
lepton capture rates in the whole temperature-density range. The shaded areas show the neutrino
transparent region of temperatures T ≤ 5 MeV. The dotted lines in panel (a) show the nonrelativistic
approximation to the electron capture rates as computed in Ref. [18].

Figure 5 shows the rates of neutrino (a) and antineutrino (b) absorption processes.
The neutrino absorption rates show similar to the lepton capture rates behavior (shown
by dotted lines) but are smaller on average by an order of magnitude. As expected, the
antineutrino absorption rates are much smaller than the neutrino absorption rates. The
muon decay rate is even smaller than the antineutrino absorption process because of the
very small scattering phase space. Thus, we conclude that the leptonic processes are always
much slower than the Urca processes also in the neutrino-trapped matter.
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Figure 5. Rates of the neutrino (a) and antineutrino (b) absorption processes as functions of the
temperature for different values of the density for the neutrino-trapped matter. The electron (Urca)
capture rates are shown by dotted lines for comparison; the muon capture rates are slightly higher
than the electron capture rates and are not shown. The shaded areas show the neutrino transparent
region of temperatures T ≤ 5 MeV.

4.2. Susceptibilities and Urca Relaxation Rates

We have extended our work on the bulk viscosities in the isothermal regime to the case
of isentropic matter. Here among other things we compare the isothermal and isentropic
results leaving the detailed discussion of the latter to a future work [30].

Figure 6 shows the susceptibilities C2
1/A1 and C2

2/A2 (as computed in Ref. [20]) which
enter the formulas of the partial bulk viscosities from electronic (ζe) and muonic (ζµ)
Urca processes (note that ζµ should be obtained from Equation (41) by replacing A1 → A2,
C1 → C2 and γe → γµ = λµ A2). Panels (a) and (b) show the results for neutrino-transparent
and neutrino-trapped matter, respectively. The solid curves correspond to isothermal, and
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the dashed lines—to adiabatic susceptibilities. In the neutrino-transparent regime, the
susceptibilities are sensitive to the density and temperature only in the low-density region,
where the difference between isothermal and adiabatic susceptibilities is the largest (e.g.,
the ratio of adiabatic and isothermal C2

1/A1 is around 1.67 at nB = 0.5n0 and T = 5 MeV).
In the high-temperature regime of neutrino-trapped matter, there are special values of the
density where C2

1/A1 and C2
2/A2, and therefore, also the partial bulk viscosities ζe and ζµ

drop to zero as a result of the subsystems of electrons and muons, respectively becoming
scale-invariant at those points. At those points the electron and muon fractions become
independent of the baryon density, as seen from the inset of Figure 1 (the small shift of the
special point in the electron susceptibility from the minimum of the electron fraction is a
result of the approximations made in the evaluation of the susceptibilities).
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Figure 6. The susceptibilities C2
1/A1 and C2

2/A2 corresponding to electronic and muonic bulk
viscosities as functions of the baryon density for neutrino-transparent matter (a) and neutrino-
trapped matter (b). The solid lines show isothermal susceptibilities, and the dashed lines show the
adiabatic susceptibilities. The dotted lines show the nonrelativistic approximation to the isothermal
C2

1/A1 [18].

In contrast to the low-temperature regime, the difference between isothermal and
adiabatic susceptibilities is significant in the neutrino-trapped matter. Typically, the adia-
baticity shifts the scale-invariant points to lower densities by about one nuclear density
as compared to the isothermal case. The muonic and electronic susceptibilities differ on
average by factors from 2 to 5 in both regimes (except the domain of very low densities
below the muon threshold in the neutrino-transparent matter, and the vicinity of the scale-
invariant point in the case of neutrino-trapped matter). Next, comparing the panels (a) and
(b) of Figure 6, we see that the susceptibilities are roughly an order of magnitude larger
in the neutrino-transparent regime. We see also that the nonrelativistic approximation to
nucleons strongly overestimates the susceptibilities.

The relaxation rates γe = λe A1 and γµ = λµ A2 of electronic and muonic Urca pro-
cesses, respectively, are shown in Figure 7. In the neutrino-transparent regime, γe and γµ

cross the curves of the constant frequencies f ≡ ω/2π = 1 kHz and f ≡ ω/2π = 10 kHz
(1 kHz corresponds to 4.14 · 10−18 MeV) at temperatures in the range 3 ≤ T ≤ 8 MeV.
Around these temperatures, the bulk viscosity of npeµ matter shows a resonant maximum.
In the neutrino-trapped regime, the relaxation rates are always higher than the typical
oscillation frequencies, and the bulk viscosity is independent of the oscillation frequency.



Particles 2022, 5 372

1 2 4 8
T [MeV]

10
-23

10
-21

10
-19

10
-17

10
-15

γ
e
, 
µ
 [

M
e
V

]

n
B
/n

0
 = 1

n
B
/n

0
 = 3

n
B
/n

0
 = 5

(a)

f = 10 kHz

f = 1 kHz

1 10 100
T [MeV]

10
-15

10
-14

10
-13

10
-12

10
-11

γ
e
, 
µ
 [

M
e
V

]

n
B
/n

0
 = 1

n
B
/n

0
 = 3

n
B
/n

0
 = 5

(b)

Figure 7. The relaxation rates γe (solid, dashed, and dash-dotted lines) and γµ (dotted lines) of Urca
processes as functions of the temperature for fixed values of the density for (a) neutrino-transparent
matter; (b) neutrino-trapped matter, where the shaded area shows the extrapolation of the result to
the temperature regime T ≤ 5 MeV, where the trapping assumption fails. The horizontal lines in
panel (a) correspond to the fixed values of oscillation frequency f = 1 kHz (solid line) and f = 10 kHz
(dashed line).

4.3. Bulk Viscosity of npeµ Matter in the Isothermal Case

The results for the bulk viscosity of relativistic npeµ matter (computed with the
isothermal susceptibilities) are shown in Figure 8. Panel (a) shows the results for neutrino-
transparent matter at frequency f = 1 kHz, which is typical for density oscillations in
neutron star mergers. At low temperatures, where λl Aj � ω, the bulk viscosity is given by
the sum of electronic and muonic partial viscosities, ζ = ζe + ζµ ∝ ω−2, see Equation (42).
In this regime we have typically ζµ � ζe, and the bulk viscosity of npeµ matter practically
coincides with that of npe matter which is shown in Figure 8 by dotted lines. For the given
frequency the bulk viscosity of npeµ matter has a resonant maximum at a temperature
between the resonant temperatures Tl of partial bulk viscosities ζl , where ω = γl(Tl) with
l = {e, µ}. The maximum of the bulk viscosity of npeµ matter is located at a slightly higher
temperature as compared to the bulk viscosity of npe matter. At temperatures above the
maximum, where λl Aj � ω, the bulk viscosity becomes frequency-independent. In this
regime, the bulk viscosity of npeµ matter exceeds the bulk viscosity of npe matter by factors
between 2.5 and 8.
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Figure 8. The bulk viscosity of relativistic npeµ matter as a function of the temperature for (a)
neutrino-transparent matter at f = 1 kHz; (b) neutrino-trapped matter. The region T ≤ 5 MeV in
panel (b) is shaded because neutrinos are no longer trapped at those temperatures. The dotted lines
show the bulk viscosities of relativistic npe matter.
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As in the neutrino-trapped matter, the equilibration rates are much larger than the
oscillation frequency, the bulk viscosity is given by the frequency-independent Formula (43).
In the high-temperature range we have mainly (An + Ap)C1 � A1C2, (An + Ap)C2 �
A2C1, (An + Ap)2 � A1 A2, which allows to simplify Equation (43) to

ζ '
λe(A1C2)

2 + λµ(A2C1)
2

λeλµ(A1 A2)2 =
C2

1
A1

1
γe

+
C2

2
A2

1
γµ

= ζe + ζµ. (45)

As the susceptibilities, C1 and C2 cross zero at high temperatures, the partial bulk
viscosities drop to zero at those points as well. The summed ζ will thus obtain a minimum
at an intermediate temperature but will remain finite at the minimum. The generic behavior
of the bulk viscosity of npeµ matter is similar to the one of npe matter. The former exceeds
the latter by factors from 3 to 10 on the left side of the minimum, whereas to the right side
of the minimum the muonic contribution to the bulk viscosity is negligible.

We also note that the nonrelativistic approximation would highly overestimate the
bulk viscosities in the whole temperature-density regime considered because this approx-
imation leads to an underestimate of the equilibration rates and an overestimate of the
susceptibilities.

4.4. Damping of Density Oscillations

Now we estimate the bulk viscous damping timescales of density oscillations in
relativistic npeµ matter. The damping timescale is given by [17,31,32]

τζ =
1
9

KnB

ω2ζ
, (46)

where ε is the energy density of the system, and

K = 9nB
∂2ε

∂n2
B

(47)

is the incompressibility of nuclear matter. It depends weakly on the temperature in both
regimes of neutrino-transparent and neutrino-trapped matter [18], therefore the tempera-
ture dependence of the damping timescale is practically the inverse temperature depen-
dence of the bulk viscosity. Figure 9 shows the damping timescale for two oscillation
frequencies: panel (a) with f = 1 kHz, and panel (b) with f = 10 kHz. In each of the panels,
we combined the results of neutrino-transparent (1 ≤ T ≤ 5 MeV) and neutrino-trapped
matter (10 ≤ T ≤ 100 MeV). For intermediate temperatures 5 ≤ T ≤ 10 MeV the results
are extrapolated between these two regimes with dashed lines. The damping timescale
attains its minimum around T = 5 MeV, with its value being inversely proportional to the
frequency. In the low-temperature regime (to the left side of the minimum) the damping
timescale is frequency-independent but becomes inversely proportional to the square of
ω in the neutrino-trapped regime as the bulk viscosity is independent of the oscillation
frequency there.

The shaded areas in Figure 9 separate the temperature-density range where the damp-
ing timescale becomes smaller than the early ('10 ms, dark shaded areas) and long-term
('1 s, lightly shaded areas) evolution timescales of post-merger object, respectively. For a
typical frequency f = 1 kHz, the bulk viscous damping is efficient in short-living remnants
only at low densities nB ≤ n0 in the temperature range 4 ≤ T ≤ 6 MeV. At higher densities,
the damping could be relevant during the long-term evolution only. For higher frequencies,
there is a larger domain of densities and temperatures where the damping timescales reach
down to the short-term evolution timescale of BNS mergers. For example, for f = 10 kHz
the short-term damping is efficient at densities nB ≤ 2n0 and for temperatures between
3 ≤ T ≤ 7 MeV. The dynamics of long-living remnants would be affected by the bulk
viscosity for a wider temperature-density range, typically 2 ≤ T ≤ 10 MeV and nB ≤ 5n0.
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Figure 9. The oscillation damping timescale as a function of temperature for various densities for
frequency fixed at (a) f = 1 kHz; (b) f = 10 kHz. The solid lines show the results obtained with
isothermal, and the dotted lines—with adiabatic susceptibilities. The dashed lines interpolate between
the results of neutrino-transparent and neutrino-trapped regimes.

For the sake of completeness, we show also the damping timescales computed with
adiabatic susceptibilities with dotted lines in Figure 9. Note that the bulk viscosities
and the damping timescales calculated in Ref. [17] used the adiabatic susceptibilities and
compressibilities. It was found that the bulk viscosities and the damping timescales for
adiabatic and isothermal oscillations in the neutrino-transparent matter differ by a factor
of around 2 in the regime where the bulk viscous damping is efficient in the post-merger
dynamics. This is fully consistent with our findings, see Figure 9. As expected, the
adiabaticity modifies the results significantly only in the high-temperature regime, where it
can increase τζ by more than an order of magnitude. However, in the high-temperature
regime of neutrino-trapped matter the Urca-process-driven bulk viscosity is not sufficiently
large to affect the evolution of BNS mergers.

5. Conclusions

In this work, we provided a brief review of our work on the Urca-process-driven bulk
viscosity of relativistic npeµ matter in the parameter range relevant to binary neutron star
mergers. We focused on the semi-leptonic Urca processes as well as leptonic processes in
npeµ matter in two different regimes of interest: (a) neutrino-transparent regime where
T ≤ Ttr with Ttr ' 5÷ 10 MeV being the neutrino-trapping temperature; and (b) neutrino-
trapped regime at T ≥ Ttr. Along with the results for the bulk viscosity in the neutrino-
trapped regime obtained earlier in Ref. [20], we showed novel results for the neutrino-
transparent matter as well as some results pertaining to the case of isentropic instead of
isothermal oscillations.

Our main observations can be summarized as follows:

(a) We observe that the leptonic reactions proceed much slower than the Urca process in
the entire temperature-density range. In the neutrino-transparent matter the dominant
leptonic reaction is the muon decay, whereas in the neutrino-trapped regime, the
dominant leptonic reactions are the neutrino and antineutrino absorption processes.

(b) As a result, the bulk viscosity of npeµ matter can be computed assuming that the
leptonic processes are frozen. Qualitatively, the bulk viscosity of npeµ matter exceeds
that of npe matter by factors from 2.5 to 8 above the maximum temperature in the
ν-transparent matter, and by factors from 1 to 10 in the ν-trapped matter.

(c) The bulk viscosity features its resonant maximum at a temperature where the average
β-relaxation rate of electronic and muonic Urca processes coincides with the angular
frequency of density oscillations. This resonant maximum appears around T ' 5 MeV
where the matter is still transparent to neutrinos. At higher temperatures, bulk
viscosity drops rapidly once the matter enters the neutrino-trapped regime. There
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appear sharp minima in the bulk viscosity at T ≥ 30 MeV where the lepton fractions
become independent of the density.

(d) Using our results for the bulk viscosity we estimate the bulk viscous damping timescales
of density oscillations in neutron star mergers. We find that for typical oscillation fre-
quencies 1 ≤ f ≤ 10 kHz there is a finite temperature-density range where the bulk
viscous dissipation can affect the short-term evolution ('10 ms) of BNS mergers sig-
nificantly. The damping timescale features a minimum at T ' 5 MeV with minimum
values of the order of ms at very low densities nB ≤ n0. At higher densities, the
damping timescales of density oscillations are larger and can affect the post-merger
evolution only on a long-time scale. At high temperatures where neutrinos are trapped
in the matter, the damping timescales are much longer; therefore, the Urca processes are
not the dominant channels by which to damp the density oscillations in BNS mergers.
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