Original e− Capture Cross Sections for Hot Stellar Interior Energies
Abstract
:1. Introduction
2. Formalism of Original e−-Capture Cross Sections
3. Results and Discussion
3.1. State-by-State -Capture Cross Sections
3.2. Individual Contribution of Each Multipolarity
3.3. Original Total Electron Capture Cross Sections
3.4. Impact to Experiments Nuclear Physics and Astrophysics
3.5. Comparison of Polar Vector and Axial Vector Contributions
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Kinematic Parameters
References
- Bethe, H.A.; Brown, G.E.; Applegate, J.; Lattimer, J.M. Equation of state in the gravitational collapse of stars. Nucl. Phys. A 1979, 324, 487. [Google Scholar] [CrossRef]
- Bethe, H.A. Supernova mechanisms. Rev. Mod. Phys. 1990, 62, 801. [Google Scholar] [CrossRef]
- Giannaka, P.G.; Kosmas, T.S. Electron Capture Cross Sections for Stellar Nucleosynthesis. Adv. High Energy Phys. 2015, 2015, 398796. [Google Scholar] [CrossRef]
- Kosmas, T.S.; Tsoulos, I.; Kosmas, O.; Giannaka, P.G. Evolution of hot and dense stellar interiors: The role of the weak interaction processes. Front. Astron. Space Sci. 2022, 8, 763276. [Google Scholar] [CrossRef]
- Giannaka, P.G. Nuclear e−-capture rates under pre-supernova nd supernova conditions. In Proceedings of the Neutrino Nuclear Responses (NNR19) for Double Beta Decays and Astro Neutrinos, Osaka, Japan, 8–9 May 2019; RCNP: Osaka, Japan, 2019. [Google Scholar]
- Nabi, J.U. Ground and excited states Gamow-Teller strength distributions of iron isotopes and associated capture rates for core-collapse simulations. Astrophys. Space Sci. 2011, 331, 537. [Google Scholar] [CrossRef]
- Langanke, K.; Martínez-Pinedo, G.; Zegers, R.G.T. Electron capture in stars. Rep. Prog. Phys. 2021, 84, 066301. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pinedo, G.; Langanke, K. Shell Model Applications in Nuclear Astrophysics. Physics 2022, 4, 677–689. [Google Scholar] [CrossRef]
- Suzuki, T.; Honma, M.; Mao, H.; Otsuka, T.; Kajino, T. Evaluation of electron capture reaction rates in Ni isotopes in stellar environments. Phys. Rev. C 2011, 83, 044619. [Google Scholar] [CrossRef]
- Suzuki, T.; Yoshida, T.; Kajino, T.; Otsuka, T. β decays of isotones with neutron magic number of N = 126 and r-process nucleosynthesis. Phys. Rev. C 2012, 85, 015802. [Google Scholar] [CrossRef]
- Fuller, G.M.; Fowler, W.A.; Newman, M.J. Stellar weak interaction rates for intermediate-mass nuclei. II. A = 21 to A = 60. Astrophys. J. 1982, 252, 715. [Google Scholar] [CrossRef]
- Aufderheide, M.B.; Fushiki, I.; Woosley, E.; Hartmann, D.H. Search for important weak interaction nuclei in presupernova evolution. Astrophys. J. Suppl. Ser. 1994, 91, 389. [Google Scholar] [CrossRef]
- Langanke, K.; Kolbe, E.; Dean, D.J. Unblocking of the Gamow-Teller strength in stellar electron capture on neutron-rich germanium isotopes. Phys. Rev. C 2001, 63, 032801. [Google Scholar] [CrossRef]
- Oda, T.; Hino, M.; Muto, K.; Takahara, M.; Sato, K. Rate Tables for the weak processes of sd-shell nuclei in stellar matter. At. Data Nucl. Data Tables 1994, 56, 231. [Google Scholar] [CrossRef]
- Nabi, J.U.; Klapdor-Kleingrothaus, H.V. Weak interaction rates of sd-shell nuclei in stellar environments calculated in the the proton-neutron quasi-particle random-phase approximation. At. Data Nucl. Data Tables 1999, 71, 149. [Google Scholar] [CrossRef]
- Langanke, K.; Martinez-Pinedo, G. Rate Tables for the weak processes of pf-shell nuclei in stellar environments. At. Data Nucl. Data Tables 2001, 79, 1. [Google Scholar] [CrossRef]
- Nabi, J.U.; Rahman, M.U.; Sajjad, M. Electron and positron capture rates on 55Co in stellar matter. Braz. J. Phys. 2007, 37, 4. [Google Scholar] [CrossRef]
- Giannaka, P.G.; Kosmas, T.S. Electron capture on nuclei in stellar environment. Particles 2022, 5, 377–389. [Google Scholar]
- Mori, K.; Famiano, M.A.; Kajino, T.; Suzuki, T.; Hidaka, J.; Honma, M.; Iwamoto, K.; Nomoto, K.; Otsuka, T. Impact of new Gamow–Teller strengths on explosive type Ia Supernova nucleosynthesis. Astrophys. J. 2016, 833, 179. [Google Scholar] [CrossRef]
- Mori, K.; Famiano, M.A.; Kajino, T.; Suzuki, T.; Garnavich, P.M.; Mathews, G.J.; Diehl, R.; Leung, S.C.; Nomoto, K.I. Nucleosynthesis Constraints on the Explosion Mechanism for Type Ia Supernovae. Astrophys. J. 2018, 863, 176. [Google Scholar] [CrossRef]
- Mori, K.; Famiano, M.A.; Kajino, T.; Kusakabe, M.; Tang, X. Impacts of the New Carbon Fusion Cross Sections on Type Ia Supernovae. Mon. Not. R. Astron. Soc. Lett. 2019, 482, L70–L74. [Google Scholar] [CrossRef]
- Brachwitz, F.; Dean, D.J.; Hix, W.R.; Iwamoto, K.; Langanke, K.; Martinez-Pinedo, G.; Nomoto, K.; Strayer, M.R.; Thielemann, F.-K.; Umeda, H. The role of electron captures in Chandrasekhar-mass models for Type Ia Supernova. Astrophys. J. 2000, 536, 934–947. [Google Scholar] [CrossRef] [Green Version]
- Nabi, J.U.; Sajjad, M.; Rahman, M.U. Electron capture rates on titanium isotopes in stellar matter. Acta Phys. Polon. B 2007, 38, 3203. [Google Scholar]
- Titus, R.; Sullivan, C.; Zegers, R.G.T.; Brown, B.A.; Gao, B. Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae. J. Phys. G 2018, 45, 014004. [Google Scholar] [CrossRef]
- Dean, D.J.; Langanke, K.; Chatterjee, L.; Radha, P.B.; Strayer, M.R. Electron capture on iron group nuclei. Phys. Rev. C 1998, 58, 536. [Google Scholar] [CrossRef]
- Cole, A.L.; Anderson, T.S.; Zegers, R.G.; Austin, S.M.; Brown, B.A.; Valdez, L.; Gupta, S.; Hitt, G.W.; Fawwaz, O. Gamow-Teller strengths and electron-capture rates for pf-shell nuclei of relevance for late stellar evolution. Phys. Rev. C 2012, 86, 015809. [Google Scholar] [CrossRef]
- Zhi, Q.; Langanke, K.; Martínez-Pinedo, G.; Nowacki, F.; Sieja, K. The 76Se Gamow-Teller strength distribution and its importance for stellar electron capture rates. Nucl. Phys. A 2011, 859, 172. [Google Scholar] [CrossRef]
- Langanke, K.; Martínez-Pinedo, G. Nuclear weak-interaction processes in stars. Rev. Mod. Phys. 2003, 75, 819. [Google Scholar] [CrossRef]
- Jing-Jing, L. Electron capture of strongly screening nuclides 56Fe, 56Co, 56Ni, 56Mn, 56Cr and 56V in pre-supernovae. Mon. Not. R. Astron. Soc. 2013, 433, 1108. [Google Scholar] [CrossRef]
- Langanke, K.; Martinez-Pinedo, G. Shell-model calculations of stellar weak interaction rates: II. Weak rates for Nuclei in the mass range A = 45–65 in Supernovae environments. Nucl. Phys. A 2000, 673, 481. [Google Scholar] [CrossRef]
- Sampaio, J.M.; Langanke, K.; Martinez-Pinedo, G.; Dean, D.J. Electron capture rates for core collapse supernovae. Nucl. Phys. A 2003, 718, 440. [Google Scholar] [CrossRef]
- Langanke, K.; Martinez-Pinedo, G.; Sampaio, J.M.; Dean, D.J.; Hix, W.R.; Messer, O.E.; Mezzacappa, A.; Liebendörfer, M.; Janka, H.T.; Ramp, M. Electron capture rates on nuclei and implications for stellar core collapse. Phys. Rev. Lett. 2003, 90, 241102. [Google Scholar] [CrossRef]
- Langanke, K.; Martinez-Pinedo, G. Supernova Electron Capture Rates on Odd-Odd Nuclei. Phys. Let. B 1999, 453, 187. [Google Scholar] [CrossRef] [Green Version]
- Giannaka, P.G.; Kosmas, T.S. Detailed description of exclusive muon capture rates using realistic two-body forces. Phys. Rev. C 2015, 92, 014606. [Google Scholar] [CrossRef]
- Sarriguren, P.; de Guerra, E.M.; Alvarez-Rodriguez, R. Gamow–Teller strength distributions in Fe and Ni stable isotopes. Nucl. Phys. A 2003, 716, 230. [Google Scholar] [CrossRef]
- Sarriguren, P.; de Guerra, E.M.; Escuderos, A. β decay in odd-A and even-even proton-rich Kr isotopes. Phys. Rev. C 2001, 64, 064306. [Google Scholar] [CrossRef]
- Kolbe, E.; Langanke, K.; Vogel, P. Comparison of continuum random phase approximation and the elementary particle model for the inclusive muon neutrino reaction on 12C. Nucl. Phys. A 1997, 613, 382. [Google Scholar] [CrossRef]
- Dzhioev, A.A.; Langanke, K.; Martínez-Pinedo, G.; Vdovin, A.I.; Stoyanov, C. Unblocking of stellar electron capture for neutron-rich N = 50 nuclei at Finite Temperature. Phys. Rev. C 2020, 101, 025805. [Google Scholar] [CrossRef]
- Hix, W.R.; Messer, O.E.; Mezzacappa, A.; Liebendörfer, M.; Sampaio, J.; Langanke, K.; Dean, D.J.; Martínez-Pinedo, G. Consequences of nuclear electron capture in core collapse supernovae. Phys. Rev. Lett. 2003, 91, 210102. [Google Scholar] [CrossRef]
- Zegers, R.G.T.; Department of Physics and Astronomy, Michigan State University, USA. Private communication, 2019.
- Giraud, S.; Zegers, R.G.; Brown, B.A.; Gabler, J.M.; Lesniak, J.; Rebenstock, J.; Ney, E.M.; Engel, J.; Ravlić, A.; Paar, N. Finite-temperature electron-capture rates for neutron-rich nuclei near N = 50 and effects on core–collapse supernova simulations. Phys. Rev. C 2022, 105, 055801. [Google Scholar] [CrossRef]
- Sullivan, C.; O’Connor, E.; Zegers, R.G.T.; Grubb, T.; Austin, S.M. The sensitivity of core-colapse supernovae to nuclear electron capture. Astrophys. J. 2016, 816, 44. [Google Scholar] [CrossRef]
- Smponias, T.; Kosmas, O. High Energy Neutrino Emission from Astrophysical Jets in the Galaxy. Adv. High Energy Phys. 2015, 2015, 921757. [Google Scholar] [CrossRef]
- Smponias, T.; Kosmas, O. Neutrino Emission from Magnetized Microquasar Jets. Adv. High Energy Phys. 2017, 2017, 496274. [Google Scholar] [CrossRef] [Green Version]
- Kosmas, O.T.; Smponias, T. Simulations of Gamma-Ray Emission from Magnetized Microquasar Jets. Adv. High Energy Phys. 2018, 2018, 960296. [Google Scholar] [CrossRef]
- Lau, R.; Beard, M.; Gupta, S.S.; Schatz, H.; Afanasjev, A.V.; Brown, E.F.; Deibel, A.; Gasques, L.R.; Hitt, G.W.; Hix, W.R.; et al. Nuclear Reactions in the Crusts of Accreting Neutron Stars. Astrophys. J. 2016, 859, 62. [Google Scholar] [CrossRef]
- Juodagalvis, A.; Langanke, K.; Hix, W.; Martínez-Pinedo, G.; Sampaio, J. Improved estimate of electron capture rates on nuclei during stellar core collapse. Nucl. Phys. A 2010, 848, 454. [Google Scholar] [CrossRef]
- Juodagalvis, A.; Langanke, K.; Martínez-Pinedo, G.; Hix, W.R.; Dean, D.J.; Sampaio, J.M. Neutral-current neutrino-nucleus cross sections for nuclei. Nucl. Phys. A 2005, 747, 87. [Google Scholar] [CrossRef]
- Giannaka, P.G.; Kosmas, T.S. Electron-capture and its role to explosive neutrino-nucleosynthesis. J. Phys. Conf. Ser. 2013, 410, 012124. [Google Scholar] [CrossRef]
- Chasioti, V.C.; Kosmas, T.S. A unified formalism for the basic nuclear matrix elements in semi-leptonic processes. Nucl. Phys. A 2009, 829, 234. [Google Scholar] [CrossRef]
- Kosmas, T.S.; Faessler, A.; Simkovic, F.; Vergados, J.D. State-by-state calculations for all channels of the exotic (μ−,e−) conversion process. Phys. Rev. C 1997, 56, 526. [Google Scholar] [CrossRef]
- Kosmas, T.S.; Vergados, J.D.; Civitarese, O.; Faessler, A. Study of the muon number violating (μ−,e−) conversion in a nucleus by using quasi-particle RPA. Nucl. Phys. A 1994, 570, 637. [Google Scholar] [CrossRef]
- Tsakstara, V.; Kosmas, T.S. Low-energy neutral-current neutrino scattering on 128,130Te isotopes. Phys. Rev. C 2011, 83, 054612. [Google Scholar] [CrossRef]
- Balasi, K.G.; Ydrefors, E.; Kosmas, T.S. Theoretical study of neutrino scattering off the stable even Mo isotopes at low and intermediate energies. Nucl. Phys. A 2011, 868, 82. [Google Scholar] [CrossRef]
- Balasi, K.G.; Ydrefors, E.; Kosmas, T.S. The response of 95,97Mo to supernova neutrinos. Nucl. Phys. A 2011, 866, 67. [Google Scholar]
- Tsakstara, V.; Kosmas, T.S. Analyzing astrophysical neutrino signals using realistic nuclear structure calculations and the convolution procedure. Phys. Rev. C 2011, 84, 064620. [Google Scholar] [CrossRef]
- Ydrefors, E.; Balasi, K.G.; Kosmas, T.S.; Suhonen, J. Detailed study of the neutral-current neutrino–nucleus scattering off the stable Mo isotopes. Nucl. Phys. A 2012, 896, 1. [Google Scholar] [CrossRef]
- Tsakstara, V.; Kosmas, T.S. Nuclear responses of 64,66Zn isotopes to supernova neutrinos. Phys. Rev. C 2012, 86, 044618. [Google Scholar] [CrossRef]
- Marketin, T.; Paar, N.; Nikšić, T.; Vretenar, D. Relativistic quasiparticle random-phase approximation calculation of total muon capture rates. Rhys. Rev. C 2009, 79, 054323. [Google Scholar] [CrossRef]
- Kosmas, T.S.; Faessler, A.; Vergados, J.D. The new limits of the neutrinoless (μ−,e−) conversion branching ratio. J. Phys. G 1997, 23, 693. [Google Scholar] [CrossRef]
- Eramzhyan, R.A.; Kuz’min, V.A.; Tetereva, T.V. Calculations of ordinary and radiative muon capture on 58,60,62Ni. Nucl. Phys. A 1998, 642, 428. [Google Scholar] [CrossRef]
- Kolbe, E.; Langanke, K.; Vogel, P. Muon capture on nuclei with N>Z, random phase approximation, and in-medium value of the axial-vector coupling constant. Phys. Rev. C 2000, 62, 055502. [Google Scholar] [CrossRef]
- Kosmas, T.S. Exotic μ−→e− conversion in nuclei: Energy moments of the transition strength and average energy of the outgoing e−. Nucl. Phys. A 2001, 683, 443. [Google Scholar] [CrossRef]
- Zinner, N.T.; Langanke, K.; Vogel, P. Muon capture on nuclei: Pandom phase approximation evaluation versus data for 6 ≤ Z≤ 94 nuclei. Rhys. Rev. C 2006, 74, 024326. [Google Scholar]
- Donnelly, T.W.; Peccei, R.D. Neutral current effects in nuclei. Phys. Rep. 1979, 50, 1. [Google Scholar] [CrossRef]
- Zegers, R.G.T. Charge-exchange experiments with rare isotope beams for astro and neutrino physics. In Proceedings of the Neutrino Nuclear Responses (NNR19) for Double Beta Decays and Astro Neutrinos, Osaka University, Osaka, Japan, 8–9 May 2019; RCNP: Osaka, Japan, 2019. [Google Scholar]
- Meyer, B.S. The r−, s−, and p-processes in nucleosynthesis. Annu. Rev. Astron. Astrophys. 1994, 32, 153. [Google Scholar] [CrossRef]
- Kolbe, E.; Langanke, K.; Martinez-Pinedo, G.; Vogel, P. Neutrino-nucleus reactions and nuclear structure. J. Phys. G 2003, 29, 2569. [Google Scholar] [CrossRef]
- Fröhlich, C.; Martinez-Pinedo, G.; Liebendörfer, M.; Thielemann, F.K.; Bravo, E.; Hix, W.R.; Langanke, K.; Zinner, N.T. Neutrino-Induced Nucleosynthesis of A > 64 Nuclei: The νp Process. Phys. Rev. Lett. 2006, 96, 142502. [Google Scholar] [CrossRef]
- Toivanen, J.; Kolbe, E.; Langanke, K.; Martınez-Pinedo, G.; Vogel, P. Supernova neutrino induced reactions on iron isotopes. Nucl. Phys. A 2001, 694, 395. [Google Scholar] [CrossRef]
- Ejiri, H.; Suhonen, J.; Zuber, K. Neutrino–nuclear responses for astro-neutrinos, single beta decays and double beta decays. Phys. Rep. 2019, 797, 1. [Google Scholar] [CrossRef]
- Ejiri, H. Nuclear Matrix Elements for β and ββ Decays and Quenching of the Weak Coupling gA in QRPA. Front. Phys. 2019, 7, 30. [Google Scholar] [CrossRef]
- Ejiri, H.; Suhonen, J. GT neutrino–nuclear responses for double beta decays and astro neutrinos. J. Phys. G Nucl. Part. Phys. 2015, 42, 055201. [Google Scholar] [CrossRef]
- Akimune, H.; Ejiri, H.; Hattori, F.; Agodi, C.; Alanssari, M.; Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Colo, G.; Diel, F.; et al. Spin-dipole nuclear matrix element for the double beta decay of 76Ge by the (3He, t) charge-exchange reaction. J. Phys. G Nucl. Part. Phys. 2020, 47, 05LT01. [Google Scholar] [CrossRef]
- Langanke, K.; Martinez-Pinedo, G. Supernova electron capture rates for 55Co and 56Ni. Phys. Let. B 1998, 436, 19. [Google Scholar] [CrossRef]
- Hausser, O.; Vetterli, M.C.; Fergerson, R.W.; Glashausser, C.; Jeppesen, R.G.; Smith, R.D.; Abegg, R.; Baker, F.T.; Celler, A.; Helmer, R.L.; et al. Nuclear response in the 54Fe(, ) reaction at 290 MeV. Phys. Rev. C 1991, 43, 230. [Google Scholar] [CrossRef] [PubMed]
- Wildenthal, B.H. Empirical strengths of spin operators in nuclei. Prog. Part. Nucl. Phys. 1984, 11, 5. [Google Scholar] [CrossRef]
- Machleidt, R. High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C 2001, 63, 024001. [Google Scholar] [CrossRef]
- O’Connell, J.S.; Donnelly, T.W.; Walecka, J.D. Semileptonic Weak Interactions with C12. Phys. Rev. C 1972, 6, 719. [Google Scholar] [CrossRef]
- Walecka, J.D. Semi-leptonic weak interactions in nuclei. In Muon Physics; Hughes, V.W., Wu, C.S., Eds.; Academic Press: New York, NY, USA, 1975; Volume 2, p. 113. [Google Scholar]
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: New York, NY, USA, 1969. [Google Scholar]
- Kaminski, W.A.; Faessler, A. Description of the ground-state pionic double charge exchange reaction on 128,130Te. Nucl. Phys. A 1991, 529, 605. [Google Scholar] [CrossRef]
- Tanaka, Y.; Oda, Y.; Petrovich, F.; Sheline, R.K. Effect of the spin-orbit potential on the single particle levels in superheavy region. Phys. Lett. B 1979, 83, 279. [Google Scholar] [CrossRef]
- Bugaev, E.V.; Bisnovatyi-Kogan, G.S.; Rudzsky, M.A.; Seidov, Z.F. The interaction of intermediate energy neutrinos with nuclei. Nucl. Phys. A 1979, 324, 350. [Google Scholar] [CrossRef]
- Vary, J. Private Communication. Available online: http://nuclear.physics.iastate.edu/npc.php (accessed on 1 May 2014).
- Frekers, D. Weak interaction processes in supernovae: New probes using charge exchange reaction at intermediate energies. Nucl. Phys. A 2004, 752, 580. [Google Scholar] [CrossRef]
- El-Kateb, S.; Jackson, K.P.; Alford, W.P.; Abegg, R.; Azuma, R.E.; Brown, B.A.; Celler, A.; Frekers, D.; Häusser, O.; Helmer, R.; et al. Spin-isospin strength distributions for fp shell nuclei: Results for the 55Mn(n,p), 56Fe(n,p), and 58Ni(n,p) reactions at 198 MeV. Phys. Rev. C 1994, 49, 3128. [Google Scholar] [CrossRef] [PubMed]
- Nabi, J.-U.; Riaz, M. Electron capture cross sections and nuclear partition functions for fp-shell nuclei. J. Phys. G 2019, 46, 085201. [Google Scholar] [CrossRef]
- Yako, K.; Sasano, M.; Miki, K.; Sakai, H.; Dozono, M.; Frekers, D.; Greenfield, M.B.; Hatanaka, K.; Ihara, E.; Kato, M.; et al. Gamow-Teller Strength Distributions in 48Sc by the 48Ca(p,n) and 48Ti(n,p) reactions and two-neutrino double-β decay nuclear matrix elements. Phys. Rev. Lett. 2009, 103, 012503. [Google Scholar] [CrossRef] [PubMed]
- Rakers, S.; Bäumer, C.; Van den Berg, A.M.; Davids, B.; Frekers, D.; De Frenne, D.; Fujita, Y.; Grewe, E.W.; Haefner, P.; Harakeh, M.N.; et al. Nuclear matrix elements for the 48Ca two-neutrino double-beta decay from high-resolution charge-exchange reactions. Phys. Rev. C 2004, 70, 054302. [Google Scholar] [CrossRef]
- Jokiniemi, L.; Suhonen, J. Muon-capture strength functions in intermediate nuclei of 0νββ decays. Phys. Rev. C 2019, 100, 014619. [Google Scholar] [CrossRef] [Green Version]
Si | S | Ti | Fe | Zn | Zr | |
---|---|---|---|---|---|---|
4.657 | 1.275 | 11.361 | 12.062 | 26.450 | 34.561 | |
1.036 | 2.131 | 2.784 | 3.916 | 4.466 | 8.739 | |
12.534 | 18.529 | 13.477 | 30.299 | 38.426 | 25.863 | |
0.606 | 2.007 | 2.052 | 4.018 | 9.726 | 13.696 | |
0.007 | 0.022 | 0.015 | 0.031 | 0.071 | 0.089 | |
0.185 | 0.421 | 0.709 | 0.980 | 1.438 | 1.875 | |
0.003 | 0.003 | 0.004 | 0.010 | 0.011 | 0.028 | |
Si | S | Ti | Fe | Zn | Zr | |
---|---|---|---|---|---|---|
5.45 | 8.74 | 9.16 | 7.63 | 5.54 | 10.30 | |
24.47 | 5.23 | 37.37 | 23.51 | 32.82 | 40.73 | |
3.19 | 8.23 | 6.75 | 7.83 | 12.07 | 16.14 | |
65.86 | 75.97 | 44.33 | 59.04 | 47.68 | 30.48 | |
0.98 | 1.73 | 2.33 | 1.91 | 1.78 | 2.21 | |
0.04 | 0.09 | 0.05 | 0.06 | 0.09 | 0.10 | |
∼0.00 | ∼0.00 | ∼0.00 | ∼0.00 | ∼0.00 | ∼0.00 | |
0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannaka, P.; Kosmas, T.; Ejiri, H. Original e− Capture Cross Sections for Hot Stellar Interior Energies. Particles 2022, 5, 390-406. https://doi.org/10.3390/particles5030031
Giannaka P, Kosmas T, Ejiri H. Original e− Capture Cross Sections for Hot Stellar Interior Energies. Particles. 2022; 5(3):390-406. https://doi.org/10.3390/particles5030031
Chicago/Turabian StyleGiannaka, Panagiota, Theocharis Kosmas, and Hiroyasu Ejiri. 2022. "Original e− Capture Cross Sections for Hot Stellar Interior Energies" Particles 5, no. 3: 390-406. https://doi.org/10.3390/particles5030031
APA StyleGiannaka, P., Kosmas, T., & Ejiri, H. (2022). Original e− Capture Cross Sections for Hot Stellar Interior Energies. Particles, 5(3), 390-406. https://doi.org/10.3390/particles5030031