Parametrizations of Collinear and kT-Dependent Parton Densities in Proton
Abstract
:1. Introduction
2. Theoretical Input
2.1. Mellin Transform
2.2. Quark Densities
2.3. DGLAP Equations
2.4. Special Cases
3. Low Asymptotics
3.1. Nonsinglet and Valence Parts
3.2. Singlet Part
4. Large Asymptotics
5. Parametrizations
5.1. Nonsinglet and Valence Parts
5.2. Sea and Gluon Parts
5.3. Properties of Parameterizations
5.3.1. Gross–Llewellyn–Smith and Gottfried Sum Rules
5.3.2. Momentum Conservation
5.4. Results for Parton Densities
6. TMD Parton Densities in the Proton
6.1. Differential Formulation
6.2. Integral Formulation
6.3. Sudakov form Factors
6.4. Cut-Off Parameter
6.5. Results for TMD Parton Densities
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. PDF Asymptotics at Large x Values
Appendix A.1. O(n0) Accuracy
Appendix A.2. O(n−1) Accuracy
Appendix B. Results at Large ν Values
Appendix C. Differential Formulation of KMR Approach
References
- Gribov, V.N.; Lipatov, L.N. Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 1972, 15, 438. [Google Scholar]
- Lipatov, L.N. The parton model and perturbation theory. Sov. J. Nucl. Phys. 1975, 20, 94. [Google Scholar]
- Altarelli, G.; Parisi, G. Asymptotic Freedom in Parton Language. Nucl. Phys. 1977, 126, 298. [Google Scholar] [CrossRef]
- Dokshitzer, Y.L. Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics. Sov. Phys. JETP 1977, 46, 641. [Google Scholar]
- Hou, T.J.; Gao, J.; Hobbs, T.J.; Xie, K.; Dulat, S.; Guzzi, M.; Huston, J.; Nadolsky, P.; Pumplin, J.; Schmidt, C.; et al. New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D 2021, 103, 014013. [Google Scholar] [CrossRef]
- Bailey, S.; Cridge, T.; Harland-Lang, L.A.; Martin, A.D.; Thorne, R.S. Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C 2021, 81, 341. [Google Scholar] [CrossRef]
- NNPDF Collaboration; Ball, R.D.; Carrazza, S.; Cruz-Martinez, J.; Del Debbio, L.; Forte, S.; Giani, T.; Iranipour, S.; Kassabov, Z.; Latorre, J.I.; et al. An open-source machine learning framework for global analyses of parton distributions. Eur. Phys. J. C 2021, 81, 958. [Google Scholar]
- Abt, I.; Aggarwal, R.; Andreev, V.; Arratia, M.; Aushev, V.; Baghdasaryan, A.; Baty, A.; Begzsuren, K.; Behnke, O.; Belousov, A.; et al. Impact of jet-production data on the next-to-next-to-leading-order determination of HERAPDF2.0 parton distributions. Eur. Phys. J. C 2022, 82, 243. [Google Scholar] [CrossRef]
- Alekhin, S.; Blümlein, J.; Moch, S.; Placakyte, R. Parton distribution functions, αs, and heavy-quark masses for LHC Run II. Phys. Rev. D 2017, 96, 014011. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Delgado, P.; Reya, E. Delineating parton distributions and the strong coupling. Phys. Rev. D 2014, 89, 074049. [Google Scholar] [CrossRef] [Green Version]
- Parente, G.; Kotikov, A.V.; Krivokhizhin, V.G. Analysis of deep inelastic structure functions in perturbative QCD at three loops. Phys. Lett. 1994, 333, 190. [Google Scholar] [CrossRef] [Green Version]
- Kataev, A.L.; Kotikov, A.V.; Parente, G.; Sidorov, A.V. Next-to-next-to-leading order QCD analysis of the CCFR data xF3 and F2 structure functions of the deep-inelastic neutrino-nucleon scattering. Phys. Lett. 1996, 388, 179. [Google Scholar] [CrossRef] [Green Version]
- Kataev, A.L.; Kotikov, A.V.; Parente, G.; Sidorov, A.V. Next-to-next-to-leading order QCD analysis of the revised CCFR data for xF3 structure function and the higher twist contributions. Phys. Lett. 1998, 417, 374. [Google Scholar] [CrossRef] [Green Version]
- Sidorov, A.V. QCD analysis of the CCFR data for x F(3) and higher twist contribution. Phys. Lett. 1996, 389, 379. [Google Scholar]
- Kataev, A.L.; Parente, G.; Sidorov, A.V. Higher twists and alpha(s)(M(Z)) extractions from the NNLO QCD analysis of the CCFR data for the xF(3) structure function. Nucl. Phys. 2000, 573, 405. [Google Scholar] [CrossRef]
- Kataev, A.L.; Parente, G.; Sidorov, A.V. Improved fits to the xF3 CCFR data at the next-to-next-to-leading order and beyond. Phys. Part. Nucl. 2003, 34, 20. [Google Scholar] [CrossRef] [Green Version]
- Shaikhatdenov, B.G.; Kotikov, A.V.; Krivokhizhin, V.G.; Parente, G. QCD coupling constant at NNLO from DIS data. Phys. Rev. D 2010, 81, 034008. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Krivokhizhin, V.G.; Shaikhatdenov, B.G. Strong coupling constant from QCD analysis of the fixed-target DIS data. JETP Lett. 2015, 101, 141–145. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Krivokhizhin, V.G.; Shaikhatdenov, B.G. Improved nonsinglet QCD analysis of fixed-target DIS data. J. Phys. G 2015, 42, 095004. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Krivokhizhin, V.G.; Shaikhatdenov, B.G. Analytic and ’frozen’ QCD coupling constants up to NNLO from DIS data. Phys. Atom. Nucl. 2012, 75, 507–524. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Krivokhizhin, V.G.; Shaikhatdenov, B.G. Gottfried sum rule in QCD NS analysis of DIS fixed target data. Phys. Atom. Nucl. 2018, 81, 244–252. [Google Scholar] [CrossRef]
- Krivokhizhin, V.G.; Kotikov, A.V. A systematic study of QCD coupling constant from deep-inelastic measurements. Phys. Atom. Nucl. 2005, 68, 1873–1903. [Google Scholar] [CrossRef]
- Demartin, F.; Forte, S.; Mariani, E.; Rojo, J.; Vicini, A. The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders. Phys. Rev. D 2010, 82, 014002. [Google Scholar] [CrossRef] [Green Version]
- Illarionov, A.Y.; Kotikov, A.V.; Parzycki, S.S.; Peshekhonov, D.V. New type of parametrizations for parton distributions. Phys. Rev. D 2011, 83, 034014. [Google Scholar] [CrossRef] [Green Version]
- Lopez, C.; Yndurain, F.J. Behavior of Deep Inelastic Structure Functions Near Physical Region Endpoints From QCD. Nucl. Phys. B 1980, 171, 231. [Google Scholar] [CrossRef]
- Lopez, C.; Yndurain, F.J. Behavior at x = 0, 1, Sum Rules and Parametrizations for Structure Functions Beyond the Leading Order. Nucl. Phys. B 1981, 183, 157. [Google Scholar] [CrossRef] [Green Version]
- Yndurain, F.J. Quantum Chromodynamics (An Introduction to the Theory of Quarks and Gluons); Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Gross, D.J.; Smith, C.H.L. High-energy neutrino—Nucleon scattering, current algebra and partons. Nucl. Phys. B 1969, 14, 337. [Google Scholar] [CrossRef] [Green Version]
- Gottfried, K. Sum rule for high-energy electron—Proton scattering. Phys. Rev. Lett. 1967, 18, 1174. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Lipatov, A.V.; Shaikhatdenov, B.G.; Zhang, P. Transverse momentum dependent parton densities in a proton from the generalized DAS approach. JHEP 2020, 28. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Lipatov, A.V.; Zhang, P.M. Transverse momentum dependent parton densities in processes with heavy quark generations. Phys. Rev. D 2021, 104, 054042. [Google Scholar] [CrossRef]
- Kimber, M.A.; Martin, A.D.; Ryskin, M.G. Unintegrated parton distributions. Phys. Rev. D 2001, 63, 114027. [Google Scholar] [CrossRef] [Green Version]
- Watt, G.; Martin, A.D.; Ryskin, M.G. Unintegrated parton distributions and inclusive jet production at HERA. Eur. Phys. J. C 2003, 31, 73. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.D.; Ryskin, M.G.; Watt, G. NLO prescription for unintegrated parton distributions. Eur. Phys. J. C 2010, 66, 163. [Google Scholar] [CrossRef]
- Angeles-Martinez, R.; Bacchetta, A.; Balitsky, I.I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F.A.; Cherednikov, I.O.; Connor, P.; Echevarria, M.G.; et al. Transverse momentum dependent (TMD) parton distribution functions: Status and prospects. Acta Phys. Polon. B 2015, 46, 2501. [Google Scholar] [CrossRef]
- Sherstnev, A.; Thorne, R.S. Parton Distributions for LO Generators. Eur. Phys. J. 2008, 55, 553–575. [Google Scholar] [CrossRef]
- Maciula, R.; Pasechnik, R.; Szczurek, A. Production of forward heavy-flavor dijets at the LHCb within the kT-factorization approach. Phys. Rev. D 2022, 106, 054018. [Google Scholar] [CrossRef]
- Baranov, S.P.; Lipatov, A.V.; Prokhorov, A.A. Role of initial gluon emission in double J/Ψ production at central rapidities. Phys. Rev. D 2022, 106, 034020. [Google Scholar] [CrossRef]
- Abdulov, N.A.; Jung, H.; Lipatov, A.V.; Lykasov, G.I.; Malyshev, M.A. Employing RHIC and LHC data to determine the transverse momentum dependent gluon density in a proton. Phys. Rev. D 2018, 98, 054010. [Google Scholar] [CrossRef] [Green Version]
- Abdulov, N.A.; Lipatov, A.V.; Malyshev, M.A. Inclusive Higgs boson production at the LHC in the kt-factorization approach. Phys. Rev. D 2018, 97, 054017. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, V.; Ferroglia, A.; Neubert, M.; Pecjak, B.D.; Yang, L.L. Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders. JHEP 2010, 97. [Google Scholar] [CrossRef] [Green Version]
- Buras, A. Asymptotic Freedom in Deep Inelastic Processes in the Leading Order and Beyond. Rev. Mod. Phys. 1980, 52, 199. [Google Scholar] [CrossRef]
- Kotikov, A.V. Deep inelastic scattering: Q**2 dependence of structure functions. Phys. Part. Nucl. 2007, 38, 1, Erratum in Phys. Part. Nucl. 2007, 38, 828. [Google Scholar] [CrossRef]
- Krivokhizhin, V.G.; Kotikov, A.V. Functions of the nucleon structure and determination of the strong coupling constant. Phys. Part. Nucl. 2009, 40, 1059. [Google Scholar] [CrossRef]
- Kotikov, A. Parton distributions at low x and gluon- and quark average multiplicities. arXiv 2015, arXiv:1502.07108. [Google Scholar]
- Arneodo, M.; Arvidson, A.; Badelek, B.; Ballintijn, M.; Baum, G.; Beaufays, J.; Bird, I.G.; Bjorkholm, P.; Botje, M.; Broggini, C.; et al. A Reevaluation of the Gottfried sum. Phys. Rev. D 1994, 50, R1–R3. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Velizhanin, V.N. Analytic continuation of the Mellin moments of deep inelastic structure functions. arXiv 2005, arXiv:hep-ph/0501274. [Google Scholar]
- Kazakov, D.I.; Kotikov, A.V. Total αs correction to the ratio of the deep inelastic scattering cross-sections R=σL/σT in QCD. Nucl. Phys. 1988, 307, 791, Erratum in Nucl. Phys. 1990, 345, 299. [Google Scholar] [CrossRef]
- Kotikov, A.V. The extraction of gluon distribution from DIS structure funstions. Phys. Atom. Nucl. 1994, 57, 133. [Google Scholar]
- Gross, D.I. How to Test Scaling in Asymptotically Free Theories. Phys. Rev. Lett. 1974, 32, 1071. [Google Scholar] [CrossRef]
- Gross, D.I.; Treiman, S.B. Hadronic Form-Factors in Asymptotically Free Field Theories. Phys. Rev. Lett. 1974, 32, 1145. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.D.; Forte, S. Double asymptotic scaling at HERA. Phys. Lett. B 1994, 335, 77. [Google Scholar] [CrossRef] [Green Version]
- De Rújula, A.; Glashow, S.L.; Politzer, H.D.; Treiman, S.B.; Wilczek, F.; Zee, A. Possible NonRegge Behavior of Electroproduction Structure Functions. Phys. Rev. D 1974, 10, 1649. [Google Scholar] [CrossRef] [Green Version]
- Mankiewicz, L.; Saalfeld, A.; Weigl, T. On the analytical approximation to the GLAP evolution at small x and moderate Q**2. Phys. Lett. B 1997, 393, 175. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Parente, G. Small x behaviour of parton distributions with soft initial conditions. Nucl. Phys. B 1999, 549, 242. [Google Scholar] [CrossRef] [Green Version]
- Illarionov, A.Y.; Kotikov, A.V.; Parente, G. Small x behavior of parton distributions. A study of higher twist. Phys. Part. Nucl. 2008, 39, 307. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Shaikhatdenov, B.G. Q2-evolution of parton densities at small x values. Phys. Part. Nucl. 2017, 48, 829. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Shaikhatdenov, B.G. Q2-evolution of parton densities at small x values. Effective scale for combined H1 and ZEUS F2 data. Phys. Atom. Nucl. 2015, 78, 525. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Shaikhatdenov, B.G. Q2-evolution of parton densities at small x values. Combined H1 and ZEUS F2 data. Phys. Part. Nucl. 2013, 44, 543. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Shaikhatdenov, B.G. Q2-evolution of parton densities at small x values and H1 and ZEUS experimental data. AIP Conf. Proc. 2015, 1606, 159–167. [Google Scholar]
- Cvetic, G.; Illarionov, A.Y.; Kniehl, B.A.; Kotikov, A.V. Small-x behavior of the structure function F(2) and its slope ∂lnF(2)/∂ln(1/x) for ’frozen’ and analytic strong-coupling constants. Phys. Lett. B 2009, 679, 350. [Google Scholar] [CrossRef] [Green Version]
- Illarionov, A.Y.; Kotikov, A.V. at low x. Phys. Atom. Nucl. 2012, 75, 1234–1239. [Google Scholar] [CrossRef]
- Kotikov, A.V. Gluon distribution as function of F2 and dF2/dlnQ**2 at small x. JETP Lett. 1994, 59, 667–670. [Google Scholar]
- Kotikov, A.V.; Parente, G. The Gluon distribution as a function of f2 and dF2 - dlnQ**2 small x. The Next-to-leading analysis. Phys. Lett. B 1996, 379, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V. Longitudinal structure function F(L) as function of F2 and dF2/dlnQ**2 at small x. J. Exp. Theor. Phys. 1995, 80, 979–982. [Google Scholar]
- Kotikov, A.V.; Parente, G. The Longitudinal structure function FL as a function of F2 and dF2/dlnQ**2 at small x. The Next-to-leading analysis. Mod. Phys. Lett. A 1997, 12, 963–974. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Parente, G. Indirect determination of the ratio R = Sigma(L)/Sigma(T) at small x from HERA data. J. Exp. Theor. Phys. 1997, 85, 17–19. [Google Scholar] [CrossRef]
- Illarionov, A.Y.; Kniehl, B.A.; Kotikov, A.V. Heavy-quark contributions to the ratio F(L)/F(2) at low x. Phys. Lett. B 2008, 663, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V. On the behavior of DIS structure function ratio R (x, Q**2) at small x. Phys. Lett. B 1994, 338, 349–356. [Google Scholar] [CrossRef]
- Kotikov, A.V. Gluon distribution as function of F(L) and F(2) at small x. Phys. Rev. D 1994, 49, 5746–5752. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Parente, G. QCD relations between structure functions at small x. arXiv 1997, arXiv:hep-ph/9710252. [Google Scholar]
- Kotikov, A.V.; Parente, G. Small x behavior of the slope dlnF(2)/dln(1/x) in the framework of perturbative QCD. J. Exp. Theor. Phys. 2003, 97, 859–867. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Shaikhatdenov, B.G.; Zhang, P. Application of the rescaling model at small Bjorken x values. Phys. Rev. D 2017, 96, 114002. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Shaikhatdenov, B.G.; Zhang, P. Antishadowing in the rescaling model at x∼0.1. Phys. Part. Nucl. Lett. 2019, 16, 311. [Google Scholar] [CrossRef] [Green Version]
- Matveev, V.A.; Muradian, R.M.; Tavkhelidze, A.N. Automodellism in the large—Angle elastic scattering and structure of hadrons. Lett. Nuovo Cim. 1973, 7, 719. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Farrar, G.R. Scaling Laws at Large Transverse Momentum. Phys. Rev. Lett. 1973, 31, 1153. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, S.J.; Ellis, J.; Cardi, E.; Karliner, M.; Samuel, M.A. Pade approximants, optimal renormalization scales, and momentum flow in Feynman diagrams. Phys. Rev. 1997, 56, 6980. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V. THE BEHAVIOR OF THE STRUCTURE FUNCTIONS AND RATIO R = sigma-L/sigma-T IN DEEP INELASTIC SCATTERING FOR x approximates 0 AND x approximates 1 AND THEIR SCHEME INVARIANT PARAMETRIZATION. JINR Preprint: JINR-E2-88-422. 1988. Available online: https://inspirehep.net/literature/265682 (accessed on 30 October 2022).
- Kotikov, A.V.; Maksimov, S.I.; Vovk, V.I. QCD parameterization for structure functions of deep inelastic scattering. Theor. Math. Phys. 1991, 84, 744. [Google Scholar]
- Kotikov, A.V.; Maximov, S.I.; Parobij, I.S. QCD parameterization of the parton distributions of deep inelastic scattering. Theor. Math. Phys. 1997, 111, 442. [Google Scholar] [CrossRef]
- Harland-Lang, L.A.; Martin, A.D.; Motylinski, P.; Thorne, R.S. Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 2015, 75, 204. [Google Scholar] [CrossRef] [Green Version]
- Golec-Biernat, K.; Stasto, A.M. On the use of the KMR unintegrated parton distribution functions. Phys. Lett. B 2018, 781, 633. [Google Scholar] [CrossRef]
- Guiot, B. Pathologies of the Kimber-Martin-Ryskin prescriptions for unintegrated PDFs: Which prescription should be preferred? Phys. Rev. D 2020, 101, 054006. [Google Scholar] [CrossRef] [Green Version]
- Valeshabadi, R.K.; Modarres, M. On the ambiguity between differential and integral forms of the Martin–Ryskin–Watt unintegrated parton distribution function model. Eur. Phys. J. C 2022, 82, 66. [Google Scholar] [CrossRef]
- Hautmann, F.; Jung, H. Transverse momentum dependent gluon density from DIS precision data. Nucl. Phys. B 2014, 883, 1. [Google Scholar] [CrossRef]
- Ciafaloni, M. Coherence Effects in Initial Jets at Small q**2/s. Nucl. Phys. B 1988, 296, 49. [Google Scholar] [CrossRef] [Green Version]
- Catani, S.; Fiorani, F.; Marchesini, G. QCD Coherence in Initial State Radiation. Phys. Lett. B 1990, 234, 339. [Google Scholar] [CrossRef]
- Catani, S.; Fiorani, F.; Marchesini, G. Small x Behavior of Initial State Radiation in Perturbative QCD. Nucl. Phys. B 1990, 336, 18. [Google Scholar] [CrossRef]
- Marchesini, G. QCD coherence in the structure function and associated distributions at small x. Nucl. Phys. B 1995, 445, 49. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V. THE EMC RATIO AS A FUNCTION OF x, Q**2 IN THE RESCALING MODEL. Sov. J. Nucl. Phys. 1989, 50, 127–128. [Google Scholar]
- Kotikov, A.V.; Lipatov, A.V.; Parente, G.; Zotov, N.P. The Contribution of off-shell gluons to the structure functions F(2)**c and F(L)**c and the unintegrated gluon distributions. Eur. Phys. J. C 2002, 26, 51. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Lipatov, A.V.; Zotov, N.P. The Contribution of off-shell gluons to the longitudinal structure function F(L). Eur. Phys. J. C 2003, 27, 219. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Lipatov, A.V.; Zotov, N.P. The Longitudinal structure function F(L): Perturbative QCD and k(T) factorization versus experimental data at fixed W. J. Exp. Theor. Phys. 2005, 101, 811–816. [Google Scholar] [CrossRef] [Green Version]
- van Hameren, A. A note on QED gauge invariance of off-shell amplitudes. arXiv 2019, arXiv:1902.01791. [Google Scholar]
- Nefedov, M.; Saleev, V. On the one-loop calculations with Reggeized quarks. Mod. Phys. Lett. A 2017, 32, 1750207. [Google Scholar] [CrossRef]
- Caporale, F.; Celiberto, F.G.; Chachamis, G.; Gordo Gomez, D.; Sabio Vera, A. Inclusive three- and four-jet production in multi-Regge kinematics at the LHC. AIP Conf. Proc. 2017, 1819, 060009. [Google Scholar]
, GeV | |||||||
AKL | |||||||
AKL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulov, N.A.; Kotikov, A.V.; Lipatov, A. Parametrizations of Collinear and kT-Dependent Parton Densities in Proton. Particles 2022, 5, 535-560. https://doi.org/10.3390/particles5040039
Abdulov NA, Kotikov AV, Lipatov A. Parametrizations of Collinear and kT-Dependent Parton Densities in Proton. Particles. 2022; 5(4):535-560. https://doi.org/10.3390/particles5040039
Chicago/Turabian StyleAbdulov, Nizami A., Anatoly V. Kotikov, and Artem Lipatov. 2022. "Parametrizations of Collinear and kT-Dependent Parton Densities in Proton" Particles 5, no. 4: 535-560. https://doi.org/10.3390/particles5040039
APA StyleAbdulov, N. A., Kotikov, A. V., & Lipatov, A. (2022). Parametrizations of Collinear and kT-Dependent Parton Densities in Proton. Particles, 5(4), 535-560. https://doi.org/10.3390/particles5040039