Long-Lived Particles Anomaly Detection with Parametrized Quantum Circuits
Abstract
:1. Introduction
2. Background
2.1. Anomaly Detection Algorithms
2.2. Parametrized Quantum Circuits
3. Simulation on Classic Hardware
3.1. Simple Use-Case: Handwritten Digits
3.2. High-Energy Physics Use-Case
4. Test on Quantum Hardware
4.1. Adaptation to Quantum Hardware
4.2. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QML | Quantum machine learning |
NISQ | Noisy intermediate scale quantum |
ANN | Artificial neural network |
PQC | Parametrized quantum circuit |
ROC | Receiver operating characteristic |
CNN | Convolutional neural network |
AUC | Area under the ROC curve |
LHC | Large Hadron Collider |
MDT | Muon drift chamber |
RMS | Root mean square |
ML | Machine learning |
References
- Jacob, B.; Peter, W.; Nicola, P.; Patrick, R.; Nathan, W.; Seth, L. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- García, D.P.; Cruz-Benito, J.; García-Peñalvo, F.J. Systematic Literature Review: Quantum Machine Learning and its applications. arXiv 2022, arXiv:2201.04093. [Google Scholar]
- Gregory, R.S.; Jonathan, P.O.; Dirk, E.; Jacques, C. Quantum optical neural networks. Npj Quantum Inf. 2019, 5, 60. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185. [Google Scholar] [CrossRef]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991. [Google Scholar] [CrossRef]
- Dong, G.; Liao, G.; Liu, H.; Kuang, G. A Review of the Autoencoder and Its Variants: A Comparative Perspective from Target Recognition in Synthetic-Aperture Radar Images. IEEE Geosci. Remote Sens. Mag. 2018, 6, 44–68. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Du, Y.; Hsieh, M.H.; Liu, T.; Tao, D. Expressive power of parametrized quantum circuits. Phys. Rev. Res. 2020, 2, 033125. [Google Scholar] [CrossRef]
- Haug, T.; Bharti, K.; Kim, M. Capacity and Quantum Geometry of Parametrized Quantum Circuits. PRX Quantum 2021, 2, 040309. [Google Scholar] [CrossRef]
- Gianelle, A.; Koppenburg, P.; Lucchesi, D.; Nicotra, D.; Rodrigues, E.; Sestini, L.; de Vries, J.; Zuliani, D. Quantum Machine Learning for b-jet charge identification. J. High Energy Phys. 2022, 2022, 14. [Google Scholar] [CrossRef]
- Alvi, S.; Bauer, C.; Nachman, B. Quantum Anomaly Detection for Collider Physics. arXiv 2022, arXiv:2206.08391. [Google Scholar] [CrossRef]
- Bauer, C.W.; Davoudi, Z.; Balantekin, A.B.; Bhattacharya, T.; Carena, M.; de Jong, W.A.; Draper, P.; El-Khadra, A.; Gemelke, N.; Hanada, M.; et al. Quantum Simulation for High Energy Physics. arXiv 2022, arXiv:2204.03381. [Google Scholar] [CrossRef]
- Mott, A.; Job, J.; Vlimant, J.; Lidar, D.; Spiropulu, M. Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 2017, 550, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Blance, A.; Spannowsky, M. Quantum machine learning for particle physics using a variational quantum classifier. J. High Energy Phys. 2021, 2021, 212. [Google Scholar] [CrossRef]
- Terashi, K.; Kaneda, M.; Kishimoto, T.; Saito, M.; Sawada, R.; Tanaka, J. Event Classification with Quantum Machine Learning in High-Energy Physics. Comput. Softw. Big Sci. 2021, 5, 2. [Google Scholar] [CrossRef]
- Chen, S.Y.C.; Wei, T.C.; Zhang, C.; Yu, H.; Yoo, S. Quantum Convolutional Neural Networks for High Energy Physics Data Analysis. Physical Review Research 2020, 4, 013231. [Google Scholar] [CrossRef]
- Wu, S.L.; Chan, J.; Guan, W.; Sun, S.; Wang, A.; Zhou, C.; Livny, M.; Carminati, F.; Di Meglio, A.; Li, A.C.Y.; et al. Application of quantum machine learning using the quantum variational classifier method to high energy physics analysis at the LHC on IBM quantum computer simulator and hardware with 10 qubits. J. Phys. G: Nucl. Part. Phys. 2021, 48, 125003. [Google Scholar] [CrossRef]
- Wu, S.L.; Sun, S.; Guan, W.; Zhou, C.; Chan, J.; Cheng, C.L.; Pham, T.; Qian, Y.; Wang, A.Z.; Zhang, R.; et al. Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC. Phys. Rev. Res. 2021, 3, 033221. [Google Scholar] [CrossRef]
- Bravo-Prieto, C.; Baglio, J.; Cè, M.; Francis, A.; Grabowska, D.M.; Carrazza, S. Style-based quantum generative adversarial networks for Monte Carlo events. Quantum 2022, 6, 777. [Google Scholar] [CrossRef]
- Ngairangbam, V.S.; Spannowsky, M.; Takeuchi, M. Anomaly detection in high-energy physics using a quantum autoencoder. Phys. Rev. D 2022, 105, 095004. [Google Scholar] [CrossRef]
- Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.; Menke, T.; et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004. [Google Scholar] [CrossRef]
- Coyle, B. Machine learning applications for noisy intermediate-scale quantum computers. arXiv 2022, arXiv:2205.09414. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef]
- De Luca, G. A Survey of NISQ Era Hybrid Quantum-Classical Machine Learning Research. J. Artif. Intell. Technol. 2021, 2, 9–15. [Google Scholar] [CrossRef]
- IBM Quantum. 2023. Available online: https://quantum-computing.ibm.com/ (accessed on 10 February 2023).
- Huang, H.Y.; Broughton, M.; Mohseni, M.; Babbush, R.; Boixo, S.; Neven, H.; McClean, J.R. Power of data in quantum machine learning. Nat. Commun. 2021, 12, 2631. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Bryant, P. LHC Machine. JINST 2008, 3, S08001. [Google Scholar] [CrossRef]
- Gneiting, T.; Vogel, P. Receiver Operating Characteristic (ROC) Curves. arXiv 2018, arXiv:1809.04808. [Google Scholar] [CrossRef]
- Abohashima, Z.; Elhosen, M.; Houssein, E.H.; Mohamed, W.M. Classification with Quantum Machine Learning: A Survey. arXiv 2020, arXiv:2006.12270. [Google Scholar] [CrossRef]
- Weigold, M.; Barzen, J.; Leymann, F.; Salm, M. Data Encoding Patterns for Quantum Computing. In Proceedings of the 27th Conference on Pattern Languages of Programs (PLoP ’20), Virtual, 12–16 October 2020; The Hillside Group: Corryton, TN, USA, 2022. [Google Scholar]
- Schuld, M.; Sweke, R.; Meyer, J.J. Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys. Rev. A 2021, 103, 032430. [Google Scholar] [CrossRef]
- Benenti, G.; Casati, G.; Strini, G. Principles of Quantum Computation and Information-Volume I: Basic Concepts; World Scientific: Singapore, 2004. [Google Scholar]
- Rojas, R. The Backpropagation Algorithm. In Neural Networks: A Systematic Introduction; Springer: Berlin/Heidelberg, Germany, 1996; pp. 149–182. [Google Scholar] [CrossRef]
- Bravo-Prieto, C. Quantum autoencoders with enhanced data encoding. Mach. Learn. Sci. Technol. 2021, 2, 035028. [Google Scholar] [CrossRef]
- Efthymiou, S.; Ramos-Calderer, S.; Bravo-Prieto, C.; Pérez-Salinas, A.; García-Martín, D.; Garcia-Saez, A.; Latorre, J.I.; Carrazza, S. Qibo: A framework for quantum simulation with hardware acceleration. Quantum Sci. Technol. 2021, 7, 015018. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2015, arXiv:1603.04467. [Google Scholar]
- McClean, J.R.; Boixo, S.; Smelyanskiy, V.N.; Babbush, R.; Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 2018, 9, 4812. [Google Scholar] [CrossRef] [PubMed]
- Cerezo, M.; Sone, A.; Volkoff, T.; Cincio, L.; Coles, P.J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 2021, 12, 1791. [Google Scholar] [CrossRef]
- Shende, V.V.; Bullock, S.S.; Markov, I.L. Synthesis of quantum-logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2006, 25, 1000–1010. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Falkowski, A.; Ruderman, J.A.T.; Volansky, V.T.; Zupan, J. Hidden Higgs decaying to lepton jets. J. High Energy Phys. 2010, 2010, 77. [Google Scholar] [CrossRef]
- Strassler, M.J.; Zurek, K.M. Echoes of a hidden valley at hadron colliders. Phys. Lett. B 2007, 651, 374–379. [Google Scholar] [CrossRef]
- ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. JINST 2008, 3, S08003. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Standalone vertex finding in the ATLAS muon spectrometer. JINST 2014, 9, P02001. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for long-lived neutral particles produced in pp collisions at = 13 TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer. Phys. Rev. D 2020, 101, 052013. [Google Scholar] [CrossRef]
- Skolik, A.; McClean, J.R.; Mohseni, M.; van der Smagt, P.; Leib, M. Layerwise learning for quantum neural networks. Quantum Mach. Intell. 2021, 3, 5. [Google Scholar] [CrossRef]
- Ací n, A.; Bloch, I.; Buhrman, H.; Calarco, T.; Eichler, C.; Eisert, J.; Esteve, D.; Gisin, N.; Glaser, S.J.; Jelezko, F.; et al. The quantum technologies roadmap: A European community view. New J. Phys. 2018, 20, 080201. [Google Scholar] [CrossRef]
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum Computing: A Taxonomy, Systematic Review and Future Directions. arXiv 2020, arXiv:2010.15559. [Google Scholar] [CrossRef]
- Kaltenbaek, R.; Acin, A.; Bacsardi, L.; Bianco, P.; Bouyer, P.; Diamanti, E.; Marquardt, C.; Omar, Y.; Pruneri, V.; Rasel, E.; et al. Quantum technologies in space. Exp. Astron. 2021, 51, 1677–1694. [Google Scholar] [CrossRef]
- Bass, S.D.; Erez, Z. Quantum technologies in particle physics. Phil. Trans. R. Soc. 2021, 380, 20210072. [Google Scholar] [CrossRef]
- Doser, M.; Auffray, E.; Brunbauer, F.; Frank, I.; Hillemanns, H.; Orlandini, G.; Kornakov, G. Quantum Systems for Enhanced High Energy Particle Physics Detectors. Front. Phys. 2022, 10, 483. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordoni, S.; Stanev, D.; Santantonio, T.; Giagu, S. Long-Lived Particles Anomaly Detection with Parametrized Quantum Circuits. Particles 2023, 6, 297-311. https://doi.org/10.3390/particles6010016
Bordoni S, Stanev D, Santantonio T, Giagu S. Long-Lived Particles Anomaly Detection with Parametrized Quantum Circuits. Particles. 2023; 6(1):297-311. https://doi.org/10.3390/particles6010016
Chicago/Turabian StyleBordoni, Simone, Denis Stanev, Tommaso Santantonio, and Stefano Giagu. 2023. "Long-Lived Particles Anomaly Detection with Parametrized Quantum Circuits" Particles 6, no. 1: 297-311. https://doi.org/10.3390/particles6010016
APA StyleBordoni, S., Stanev, D., Santantonio, T., & Giagu, S. (2023). Long-Lived Particles Anomaly Detection with Parametrized Quantum Circuits. Particles, 6(1), 297-311. https://doi.org/10.3390/particles6010016