Supersymmetric AdS Solitons, Ground States, and Phase Transitions in Maximal Gauged Supergravity †
Abstract
:1. Introduction
2. The Model
2.1. Original Black Hole Solution
2.2. Soliton Solutions
3. Results
3.1. Supersymmetry
3.2. Phase Configurations
3.2.1. Fixed Charge Boundary Conditions
3.2.2. Susy Configurations in the Fixed Charge Framework
3.2.3. Stability and Positive Energy Theorem
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Witten, E. Instability of the Kaluza-Klein Vacuum. Nucl. Phys. B 1982, 195, 481–492. [Google Scholar] [CrossRef]
- Horowitz, G.T.; Myers, R.C. The AdS / CFT correspondence and a new positive energy conjecture for general relativity. Phys. Rev. D 1998, 59, 026005. [Google Scholar] [CrossRef] [Green Version]
- Constable, N.R.; Myers, R.C. Spin two glueballs, positive energy theorems and the AdS / CFT correspondence. JHEP 1999, 10, 037. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Ross, S.F. The Dual of nothing. Phys. Rev. D 2002, 66, 086002. [Google Scholar] [CrossRef] [Green Version]
- Birmingham, D.; Rinaldi, M. Bubbles in anti-de Sitter space. Phys. Lett. B 2002, 544, 316–320. [Google Scholar] [CrossRef] [Green Version]
- Astefanesei, D.; Jones, G.C. S-branes and (anti-)bubbles in (A)dS space. JHEP 2005, 6, 037. [Google Scholar] [CrossRef] [Green Version]
- Oliva, J.; Tempo, D.; Troncoso, R. Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity. JHEP 2009, 7, 011. [Google Scholar] [CrossRef] [Green Version]
- Stotyn, S.; Mann, R.B. Magnetic charge can locally stabilize Kaluza–Klein bubbles. Phys. Lett. B 2011, 705, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Anabalon, A.; Astefanesei, D.; Choque, D. Hairy AdS Solitons. Phys. Lett. B 2016, 762, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Bah, I.; Heidmann, P. Topological Stars and Black Holes. Phys. Rev. Lett. 2021, 126, 151101. [Google Scholar] [CrossRef]
- Anabalon, A.; Ross, S.F. Supersymmetric solitons and a degeneracy of solutions in AdS/CFT. JHEP 2021, 07, 015. [Google Scholar] [CrossRef]
- Gonzalez, H.A.; Tempo, D.; Troncoso, R. Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes. JHEP 2011, 11, 066. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, A.; Giribet, G.; Leston, M.; Oliva, J.; Ray, S. Scalar field perturbations in asymptotically Lifshitz black holes. Phys. Rev. D 2012, 85, 124001. [Google Scholar] [CrossRef] [Green Version]
- Correa, F.; Faúndez, A.; Martínez, C. Rotating hairy black hole and its microscopic entropy in three spacetime dimensions. Phys. Rev. D 2013, 87, 027502. [Google Scholar] [CrossRef] [Green Version]
- Ayón-Beato, E.; Bravo-Gaete, M.; Correa, F.; Hassaïne, M.; Juárez-Aubry, M.M.; Oliva, J. First law and anisotropic Cardy formula for three-dimensional Lifshitz black holes. Phys. Rev. D 2015, 91, 064006. [Google Scholar] [CrossRef] [Green Version]
- Shaghoulian, E. Black hole microstates in AdS. Phys. Rev. D 2016, 94, 104044. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Gaete, M.; Gomez, S.; Hassaine, M. Cardy formula for charged black holes with anisotropic scaling. Phys. Rev. D 2015, 92, 124002. [Google Scholar] [CrossRef] [Green Version]
- Bravo Gaete, M.; Guajardo, L.; Hassaine, M. A Cardy-like formula for rotating black holes with planar horizon. JHEP 2017, 04, 092. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, V.; Larjo, K.; Simon, J. Much ado about nothing. Class. Quant. Grav. 2005, 22, 4149–4170. [Google Scholar] [CrossRef] [Green Version]
- Ooguri, H.; Spodyneiko, L. New Kaluza-Klein instantons and the decay of AdS vacua. Phys. Rev. D 2017, 96, 026016. [Google Scholar] [CrossRef] [Green Version]
- Galloway, G.J.; Surya, S.; Woolgar, E. A Uniqueness theorem for the AdS soliton. Phys. Rev. Lett. 2002, 88, 101102. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.; Tempo, D.; Troncoso, R. Gravitational solitons, hairy black holes and phase transitions in BHT massive gravity. JHEP 2011, 07, 093. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Gaete, M.; Gomez, S.; Hassaine, M. Towards the Cardy formula for hyperscaling violation black holes. Phys. Rev. D 2015, 91, 124038. [Google Scholar] [CrossRef] [Green Version]
- Brill, D.; Pfister, H. States of Negative Total Energy in Kaluza-Klein Theory. Phys. Lett. B 1989, 228, 359–362. [Google Scholar] [CrossRef]
- D’Adda, A.; Horsley, R.; Di Vecchia, P. Supersymmetric Magnetic Monopoles and Dyons. Phys. Lett. B 1978, 76, 298–302. [Google Scholar] [CrossRef]
- Hruby, J. On the Supersymmetric Solitons and Monopoles. Nucl. Phys. B 1980, 162, 449–460. [Google Scholar] [CrossRef]
- Witten, E.; Olive, D.I. Supersymmetry Algebras That Include Topological Charges. Phys. Lett. B 1978, 78, 97–101. [Google Scholar] [CrossRef]
- Townsend, P.K. SUPERSYMMETRIC EXTENDED SOLITONS. Phys. Lett. B 1988, 202, 53–57. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Voloshin, M.B. Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry. Phys. Rev. D 1999, 59, 045016. [Google Scholar] [CrossRef] [Green Version]
- Losev, A.; Shifman, M. N=2 sigma model with twisted mass and superpotential: Central charges and solitons. Phys. Rev. D 2003, 68, 045006. [Google Scholar] [CrossRef] [Green Version]
- Shifman, M.; Vainshtein, A.; Zwicky, R. Central charge anomalies in 2-D sigma models with twisted mass. J. Phys. A 2006, 39, 13005–13024. [Google Scholar] [CrossRef]
- Bobev, N.; Charles, A.M.; Min, V.S. Euclidean black saddles and AdS4 black holes. JHEP 2020, 10, 073. [Google Scholar] [CrossRef]
- Anabalón, A.; Gallerati, A.; Ross, S.; Trigiante, M. Supersymmetric solitons in gauged N = 8 supergravity. JHEP 2023, 02, 055. [Google Scholar] [CrossRef]
- Anabalon, A.; Astefanesei, D.; Gallerati, A.; Trigiante, M. New non-extremal and BPS hairy black holes in gauged N = 2 and N = 8 supergravity. JHEP 2021, 04, 047. [Google Scholar] [CrossRef]
- Duff, M.J.; Liu, J.T.; Rahmfeld, J. Four-dimensional string-string-string triality. Nucl. Phys. B 1996, 459, 125–159. [Google Scholar] [CrossRef] [Green Version]
- Behrndt, K.; Lust, D.; Sabra, W.A. Stationary solutions of N = 2 supergravity. Nucl. Phys. B 1998, 510, 264–288. [Google Scholar] [CrossRef]
- Duff, M.J.; Liu, J.T. Anti-de Sitter black holes in gauged N = 8 supergravity. Nucl. Phys. B 1999, 554, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Andrianopoli, L.; Gallerati, A.; Trigiante, M. On Extremal Limits and Duality Orbits of Stationary Black Holes. JHEP 2014, 01, 053. [Google Scholar] [CrossRef] [Green Version]
- Anabalón, A.; Astefanesei, D.; Gallerati, A.; Trigiante, M. Hairy Black Holes and Duality in an Extended Supergravity Model. JHEP 2018, 4, 058. [Google Scholar] [CrossRef] [Green Version]
- Anabalón, A.; Astefanesei, D.; Choque, D.; Gallerati, A.; Trigiante, M. Exact holographic RG flows in extended SUGRA. JHEP 2021, 4, 053. [Google Scholar] [CrossRef]
- Inverso, G. Electric-magnetic deformations of D = 4 gauged supergravities. JHEP 2016, 3, 138. [Google Scholar] [CrossRef] [Green Version]
- Dall’Agata, G.; Inverso, G.; Marrani, A. Symplectic Deformations of Gauged Maximal Supergravity. JHEP 2014, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Gallerati, A.; Trigiante, M. Introductory Lectures on Extended Supergravities and Gaugings. Springer Proc. Phys. 2016, 176, 41–109. [Google Scholar] [CrossRef] [Green Version]
- de Wit, B.; Nicolai, H. N=8 Supergravity with Local SO(8) x SU(8) Invariance. Phys. Lett. B 1982, 108, 285. [Google Scholar] [CrossRef] [Green Version]
- de Wit, B.; Nicolai, H. N=8 Supergravity. Nucl. Phys. B 1982, 208, 323. [Google Scholar] [CrossRef] [Green Version]
- Gallerati, A. Constructing black hole solutions in supergravity theories. Int. J. Mod. Phys. A 2020, 34, 1930017. [Google Scholar] [CrossRef]
- Witten, E. A Simple Proof of the Positive Energy Theorem. Commun. Math. Phys. 1981, 80, 381. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hull, C.M.; Warner, N.P. The Stability of Gauged Supergravity. Nucl. Phys. B 1983, 218, 173. [Google Scholar] [CrossRef]
- Anabalón, A.; Astefanesei, D.; Gallerati, A.; Trigiante, M. Instability of supersymmetric black holes via quantum phase transitions. JHEP 2021, 11, 116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallerati, A. Supersymmetric AdS Solitons, Ground States, and Phase Transitions in Maximal Gauged Supergravity. Particles 2023, 6, 762-770. https://doi.org/10.3390/particles6030048
Gallerati A. Supersymmetric AdS Solitons, Ground States, and Phase Transitions in Maximal Gauged Supergravity. Particles. 2023; 6(3):762-770. https://doi.org/10.3390/particles6030048
Chicago/Turabian StyleGallerati, Antonio. 2023. "Supersymmetric AdS Solitons, Ground States, and Phase Transitions in Maximal Gauged Supergravity" Particles 6, no. 3: 762-770. https://doi.org/10.3390/particles6030048
APA StyleGallerati, A. (2023). Supersymmetric AdS Solitons, Ground States, and Phase Transitions in Maximal Gauged Supergravity. Particles, 6(3), 762-770. https://doi.org/10.3390/particles6030048